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The highly conserved COP9 signalosome (CSN), composed of 8
subunits (Cops1 to Cops8), has been implicated in pluripotency
maintenance of human embryonic stem cells (ESCs). Yet, the mech-
anism for the CSN to regulate pluripotency remains elusive. We
previously showed that Cops2, independent of the CSN, is essential
for the pluripotency maintenance of mouse ESCs. In this study, we
set out to investigate how Cops5 and Cops8 regulate ESC differ-
entiation and tried to establish Cops5 and Cops8 knockout (KO)
ESC lines by CRISPR/Cas9. To our surprise, no Cops5 KO ESC clones
were identified out of 127 clones, while three Cops8 KO ESC lines
were established out of 70 clones. We then constructed an induc-
ible Cops5 KO ESC line. Cops5 KO leads to decreased expression of
the pluripotency marker Nanog, proliferation defect, G2/M cell-
cycle arrest, and apoptosis of ESCs. Further analysis revealed dual
roles of Cops5 in maintaining genomic stability of ESCs. On one
hand, Cops5 suppresses the autophagic degradation of Mtch2 to
direct cellular metabolism toward glycolysis and minimize reactive
oxygen species (ROS) production, thereby reducing endogenous
DNA damage. On the other hand, Cops5 is required for high
DNA damage repair (DDR) activities in ESCs. Without Cops5, ele-
vated ROS and reduced DDR activities lead to DNA damage accu-
mulation in ESCs. Subsequently, p53 is activated to trigger G2/M
arrest and apoptosis. Altogether, our studies reveal an essential
role of Cops5 in maintaining genome integrity and self-renewal of
ESCs by regulating cellular metabolism and DDR pathways.
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The unlimited self-renewing capacity and differentiation po-
tential into all types of cells in the body, which is called

pluripotency, renders embryonic stem cells (ESCs) a promising
donor cell source for regenerative medicine. However, genomic
stability and tumorigenicity of ESCs raise safety issues for their
clinical applications.
To maintain genome stability, endogenous DNA lesions caused

by transcription, replication, and oxidative stresses need to be repaired
by various DNA damage repair (DDR) pathways, including base
excision repair, mismatch repair, nucleotide excision repair (NER),
homologous recombination (HR), and nonhomologous end-joining
(NHEJ) (1, 2). Compared with differentiated cells, ESCs have a
higher risk to acquire more DNA lesions due to their fast pro-
liferation rate and hyperactive global transcription (3, 4). Yet,
mutation frequency in ESCs is lower than that in mouse embry-
onic fibroblasts (5). At least two strategies, high DDR activities
and low levels of reactive oxygen species (ROS), are applied by
ESCs to secure the genome integrity (6, 7). To maintain high DDR
activities, genes involved in DDR are expressed at higher levels in
ESCs than in differentiated cells (8, 9). And ESCs preferentially
use HR, rather than NHEJ, to repair DNA double-stranded breaks
(DSBs) with high fidelity (10). Moreover, some ESC-specific factors
also contribute to efficient DDR. For example, Zscan4, which is

transiently expressed in about 5% of ESCs at a given time,
promotes rapid telomere elongation by telomere recombination
and regulates genomic stability (11). Induced by genotoxic stress,
Filia stimulates the PARP1 activity and relocates from centro-
somes to DNA damage sites and mitochondria to regulate DDR
and apoptosis (12). Sall4, a pluripotency transcription factor,
facilitates the ataxia telangiectasia-mutated activation in re-
sponse to DSBs (13). To minimize the ROS-induced genomic
DNA damage, ESCs produce lower levels of mitochondrial ROS
and express higher levels of antioxidants than differentiated cells
(14, 15). ESCs predominantly produce ATP through glycolysis,
rather than through oxidative phosphorylation (OXPHOS), even
though glycolysis is less efficient in energy production (15). The
so-called Warburg effect allows sufficient supply of anabolic in-
termediates for proliferation, as well as minimizing the pro-
duction of ROS (16). It has been reported that restricting the
entry of pyruvate into mitochondria by uncoupling protein 2,
together with high levels of hexokinase II and inactive pyruvate
dehydrogenase, might rewire the cellular metabolism favoring
glycolysis over OXPHOS (17, 18).
The highly conserved COP9 signalosome (CSN) is composed

of eight subunits (Cops1 to Cops8). Its most studied function is
to regulate protein degradation through suppressing the activity
of the cullin-RING-E3 ligases by deneddylation of cullins (19–
21). In addition, the CSN is associated with damage specific
DNA binding protein 2 (DDB2) and Cockayne syndrome type A
protein (CSA) complexes involved in two NER pathways, global
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genome repair (GGR) and transcription coupled repair (TCR),
respectively. Knockdown of COPS5 leads to NER defect (22). A
whole-genome RNA interference screening revealed that COPS1,
COPS2, and COPS4 are required for maintaining the expression
of the OCT4-GFP reporter in human ESCs, implicating a role of
the CSN in pluripotency maintenance (23). However, by knocking
down individual CSN subunits, we found that only Cops2, but not
any other CSN subunits, is essential for the self-renewal and G2/M
transition of mouse ESCs (24, 25). Moreover, Cops5 and Cops8
null embryos die after embryonic day 7.5, while no Cops2 null
mice survive to embryonic day 7.5 (26–28). These data impli-
cate that Cops5 and Cops8 might be involved in late differen-
tiation events, while Cops2 is essential for the establishment of
pluripotency in the inner cell mass.
We set out to investigate how Cops5 and Cops8 regulate the

differentiation of ESCs and tried to establish Cops5 and Cops8
knockout (KO) ESC lines by CRISPR/Cas9. To our surprise, no
Cops5 KO ESC clones were identified out of 127 clones, while
three Cops8 KO ESC lines were established out of 70 clones. We
then constructed an inducible Cops5 KO (iC5; C5 KO) ESC line.
Cops5 KO leads to decreased expression of the pluripotency
marker Nanog, proliferation defect, G2/M cell-cycle arrest, and
apoptosis of ESCs. Further analysis demonstrated that, without
Cops5, DDR activities are reduced. In addition, loss of Cops5
accelerates the turnover of Mtch2 through autophagy, thus alter-
ing cellular metabolism toward OXPHOS and enhancing ROS
level. Consequently, DNA damages are accumulated in ESCs, and
p53 is activated to trigger apoptosis. Altogether, our studies reveal
an essential role of Cops5 in maintaining genome integrity of
ESCs by regulating cellular metabolism and DDR pathways.

Results
Cops8, but Not Cops5, Can Be Knocked Out in Mouse ESCs.Aiming to
study the roles of Cops5 and Cops8 in ESC differentiation, we
designed single guide RNAs (sgRNAs) targeting Cops5 and
Cops8 (Fig. 1 A and B). The cutting efficiencies of Cas9 at Cops5

and Cops8 loci were about 60 and 56%, as demonstrated by the
disruption of the BsmI and HinfI sites, respectively (Fig. 1 C and
D). Three Cops8 KO ESC lines were established out of 70 clones.
In contrast, no Cops5 KO ESC line was obtained after screening
127 clones (Fig. 1E). Even though seven clones harboring two
disrupted BsmI sites in the Cops5 alleles were identified, none of
the seven clones had frameshift mutations in both Cops5 alleles.
These data implied that Cops5might be essential for mouse ESCs.

Cops5 KO Compromises the Self-Renewal and Differentiation of ESCs.
To directly demonstrate the pivotal role of Cops5 in pluripotency
maintenance of ESCs, we constructed an inducible Cops5 KO ESC
line, using a strategy that we had developed previously (29). A
doxycycline-inducible Cops5 (iC5) ESC line was then generated
from KH2 cells (30). The sgRNA recognition site in the exoge-
nous inducible Cops5 gene was mutated to render it resistant to
Cas9. Then the endogenous Cops5 alleles were disrupted in iC5
ESCs by CRISPR/Cas9 in the presence of doxycycline (Dox),
resulting in iC5; C5 KO ESCs. Only a residual amount of Cops5
remains in iC5; C5 KO ESCs at 48 h after Dox withdrawal, and no
Cops5 is detectable by Western blot at 96 h after Dox withdrawal
(Fig. 2A). Notably, depletion of Cops5 compromises the self-
renewal of ESCs, demonstrated by loss of ESC colony morphol-
ogy, reduced proliferation rate, and colony-forming capacity (Fig.
2 B–D). Moreover, iC5; C5 KO ESCs cannot be cultured for more
than two passages without Dox. The messenger RNA (mRNA)
levels of the pluripotency genes Nanog, Oct4, and Sox2 are not
altered by Cops5 KO (Fig. 2E). Yet, Nanog protein, but not Oct4,
is decreased upon Cops5 KO (Fig. 2A), suggesting that Cops5
regulates Nanog expression posttranscriptionally. With Nanog
truncation mutants and individual domains fused to luciferase, we
found that both N-terminal and C-terminal domains of Nanog, but
not the Homeobox domain of Nanog, mediate the degradation of
Nanog in Cops5 KO ESCs (SI Appendix, Fig. S1). Cops5 KO also
perturbs the expression of differentiation genes, such as Fgf5,

BA

C D

E

BsmI:
702 bp
483 bp

Control sgRNA

219 bp

- + +

Efficiency: 60%

M

5’-

Cops5

GGTCAGTTGGACAGCGAATCTGG5’ 3’

Cops8

HinfI

Targeting
Gene

Total
clones

Clones with 1
mutant allele

Cops5

Cops8

127 29 7

70 3 14

0

Clones with 2 frame
shift mutations

3

HinfI:

412 bp
320 bp

Control sgRNA
- + +

Efficiency: 56%

M

Clones with 2
mutant alleles

-3’
BsmI

GGCCGCCTTGAGAATGCAATCGG

Fig. 1. Failure in construction of Cops5 KO ESC line by CRISPR/Cas9. (A and B) Schematic illustration of sgRNA design for Cops5 (A) and Cops8 (B). Gray and
black rectangles represent the exons of Cops5 and Cops8, respectively. The restriction endonuclease sites in the sgRNA recognition sequences are underlined,
and the protospacer-adjacent motifs are shown in red. (C and D) Cutting efficiency of Cas9 at the Cops5 (C) and Cops8 (D) loci. ESCs were transfected with
pX330 plasmids targeting Cops5 (C) and Cops8 (D) or with the pX330 plasmid without an sgRNA insert. Forty-eight hours after transfection, cells were
harvested for genomic DNA purification. DNA fragments of 702- and 412-bp around the Cas9 target sites at the Cops5 and Cops8 loci were amplified by PCR,
respectively. The DNA fragments were digested by BsmI or HinfI. The intensities of DNA bands were quantified using Image J software, and the cutting
efficiency was calculated. (E) Genotypes of ESC clones after Cas9 treatment. ESCs were transfected as described in C and D. Forty-eight hours after trans-
fection, ESCs were treated with trypsin and plated at low density. After 5 to 7 d, individual colonies were picked, expanded, and subjected to genotyping.

2520 | www.pnas.org/cgi/doi/10.1073/pnas.1915079117 Li et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1915079117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1915079117


Gata6, Hand1, Bmp4, and Cdx2 (Fig. 2F). All these data suggest
an essential role of Cops5 in ESC self-renewal.
Next, we tested whether Cops5 is required for the differenti-

ation of ESCs. iC5; C5 KO ESCs were cultured with Dox and
then were allowed to form embryoid bodies (EBs) in hanging
drops with or without Dox. EBs without Cops5 are smaller than
EBs with Cops5 (Fig. 2G). Cops5 KO does not block the down-
regulation of the pluripotency genes Nanog, Oct4, and Sox2.
Rather, it leads to deregulation of differentiation genes, such as
elevated expression of Gata6, Hand1, Bmp4, and Cdx2, and to
reduced expression of Nestin and T (Fig. 2H). Thus, Cops5 is also
required for EB differentiation of ESCs.

Cops5 KO Leads to G2/M Arrest and Apoptosis through p53 Activation.
Given the growth defect of Cops5 KO ESCs, we analyzed the cell-
cycle profile of iC5; C5 KO ESCs after Dox withdrawal by pro-
pidium iodide staining. G2/M cells, as well as the sub-G1 population
(apoptotic cells), are increased upon Cops5 KO (Fig. 3A). Sev-
eral key molecular markers for apoptosis, including cleaved
Caspase 3, p53, and DNA damage (indicated by γH2AX and
comet assay), are also activated after Cops5 KO (Fig. 3 B and C
and SI Appendix, Fig. S2A). To prove that Cops5 KO activates p53
to induce G2/M arrest and apoptosis, we knocked out p53 in iC5;
C5 KO ESCs (SI Appendix, Fig. S2B). p53 KO partially rescues the

reduced proliferation rate and G2/M arrest caused by Cops5 KO,
whereas Cops5 KO-induced apoptosis is completely rescued by
p53 KO (Fig. 3 D–F). In contrast, the γH2AX signal, an indicator
of DNA damage, is not affected by p53 KO (SI Appendix, Fig.
S2C). These data suggest that Cops5 KO leads to DNA damage
accumulation and subsequently to p53 activation, which in turn
induces apoptosis, G2/M arrest, and reduced growth rate.
To address whether the essential role of Cops5 in ESC self-

renewal is dependent on the CSN, we analyzed the effect of
Cops8 KO on ESCs. Both Cops5 and Cops8 KO compromise the
deneddylation activity of the CSN, indicating disruption of the CSN
by Cops5 or Cops8 KO (SI Appendix, Fig. S3A). However, except
for slightly reduced growth rate, Cops8 KO ESCs do not have
defects in pluripotency marker expression, cell-cycle progression,
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Fig. 2. Cops5 is required for ESC self-renewal and differentiation. (A) iC5; C5
KO ESCs cultured with Dox (Passage 0, P0) were switched into medium without
Dox for two passages. The protein levels of the pluripotency factors Nanog and
Oct4, as well as the CSN subunits, Cops2, Cops5, and Cops8, were measured by
Western blot. (B) Colony morphology change upon Cops5 KO. Phase-contrast
images of ESC colonies at each passage are shown. (Scale bar, 100 μm.) (C)
Growth curves of Cops5 KO ESCs. iC5; C5 KO ESCs were cultured in ESC medium
with or without Dox. The cell numbers were counted every passage, and an
equal amount of ESCs was plated into tissue culture dishes. (D) Colony forming
assay of iC5; C5 KO ESCs with or without Dox. (Scale bar, 200 μm.) (E) Quan-
titative RT-PCR was performed to measure the RNA levels of the pluripotency
markers Nanog, Oct4, and Sox2. (F) Expression of differentiation genes after
Cops5 KO. (G) iC5; C5 KO ESCs were cultured with Dox, and then the cells were
used for EB differentiation with or without Dox. (Left) The images of day 4 EBs
(40× magnification) with or without Dox. The relative diameters of day 4 EBs
were measured and plotted (Right). (H) Quantitative RT-PCR analysis of
pluripotency and differentiation genes in day 4 EBs, as described in G. *P <
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 3. Loss of Cops5 leads to G2/M arrest and apoptosis through activating
p53. (A) Cell-cycle analysis of iC5; C5 KO ESCs at different passages after Dox
withdrawal. (B) Western blot to detect apoptotic markers, p53, and cleaved
Caspase 3 upon Cops5 KO. (C) Immunofluorescence images of γH2AX upon
Cops5 KO. (Scale bar, 10 μm.) Relative fluorescence intensities of γH2AX were
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plotted (Right). (D) iC5; C5 KO and iC5; C5 KO; p53 KO ESCs were cultured in
serum/LIF medium with or without Dox for two passages. Cell numbers were
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or DNA damage accumulation (SI Appendix, Fig. S3 B–G).
Moreover, upon differentiation, Cops8 KO ESCs fail to activate
T and Cdx2, while Cdx2 is up-regulated in Cops5 KO EBs (Fig. 2H
and SI Appendix, Fig. S3H). All these data suggest that the CSN-
independent function of Cops5 contributes to pluripotency main-
tenance of ESCs.

Cops5 Depletion Impairs DDR Activities. We then addressed the
question how Cops5 KO induces DNA damage accumulation. It
has been demonstrated that the CSN is associated with DDB2 and
CSA complexes, which are involved in two NER pathways, GGR
and TCR, respectively. Also, knockdown of COPS5 in human fi-
broblasts leads to defects in GGR and TCR (22). Moreover, os-
teosarcoma U2OS cells with COPS5 knockdown display HR
repair defect (31). Thus, we measured the GGR, TCR, HR, and
NHEJ activities in wild-type (WT) and Cops5 KO ESCs and found
that the GGR, TCR, HR, and NHEJ activities are all reduced in
Cops5 KO ESCs (Fig. 4). In contrast, Cops8 KO does not impair
DDR activities (SI Appendix, Fig. S4 A–D), arguing that Cops5,
rather than the CSN, is required for GGR and TCR activities.
It has been reported that, in mouse embryonic fibroblasts and

osteosarcoma cells, Cops5 depletion activates p53, which sub-
sequently suppresses the transcription of Rad51, a key gene for
HR, and leads to reduced HR activity (31). The working
mechanism for Cops5 to regulate HR in ESCs appears to be
different. First, Rad51 protein, but not Rad51mRNA, is reduced
in Cops5 KO ESCs (SI Appendix, Fig. S4E). Second, decreased
expression of Rad51 proteins in Cops5 KO ESCs are not com-
pletely abolished by p53 KO (SI Appendix, Fig. S4F). Third, even
though p53 KO rescue the apoptosis induced by Cops5 KO, p53

KO does not affect DNA damage accumulation in Cops5 KO
ESCs (SI Appendix, Fig. S2C), indicating that p53 is downstream
of DNA damage accumulation. Thus, our data suggest that Cops5
KO impairs HR activity through down-regulating the Rad51 pro-
tein, independent of p53. Similarly, reduced NHEJ activity inCops5
KO ESCs is likely due to decreased Ku70 protein, a key factor for
NHEJ, again independent of p53 (SI Appendix, Fig. S4 E and F).

Cops5 Regulates Cellular Metabolism to Maintain Genome Stability.
Xpa KO ESCs, defected in both GGR and TCR, are viable (32).
No obvious DNA damage is accumulated in Xpa KO ESCs under
normal culture conditions (SI Appendix, Fig. S4G). In addition,
HR and NHEJ activities are only reduced, but not completely
abolished, in Cops5 KO ESCs. These data imply that reduced
DDR activities might not be the only reason for increased DNA
damage in Cops5 KO ESCs under normal culture conditions. We
suspected that DNA damage accumulation in Cops5 KO ESCs is
due to enhanced endogenous DNA damage, combined with
impaired DDR activities. To test this hypothesis, we examined
the cellular level of ROS, which is an important oxidative mol-
ecule causing endogenous DNA damage. Indeed, Cops5 KO, but
not Cops8 KO, enhances the level of ROS in ESCs (Fig. 5A and
SI Appendix, Fig. S5A). Consistent with elevated ROS level,
glycolysis activity is decreased and OXPHOS activity is enhanced
in Cops5 KO ESCs, but not in Cops8 KO ESCs (Fig. 5 B and C
and SI Appendix, Fig. S5 B and C). Moreover, Cops5 KO appears
to have a negligible effect on ROS level, glycolysis, and
OXPHOS activities in differentiated cells (SI Appendix, Fig. S5
D–F). To demonstrate the important role of ROS in elevated
DNA damage induced by Cops5 KO, we treated ESCs with the
reductant N-acetylcysteine (NAC). Both γH2AX immunostain-
ing and a comet assay showed that NAC treatment suppresses
DNA damage accumulation in Cops5 KO ESCs (Fig. 5 D and E).

Cops5 Regulates Cellular Metabolism through Mtch2. To understand
the molecular mechanism of Cops5 in regulating cellular me-
tabolism, we looked into the list of Cops5-interacting proteins
identified by coimmunoprecipitation (co-IP) and mass spectro-
metric analysis (25). We focused on the 49 proteins interacting
with Cops5, but not with Cops2 (Dataset S1), because the reg-
ulation of cellular metabolism by Cops5 is independent of the
CSN. Among these 49 proteins, Mtch2, a transporter located in
the mitochondrial inner membrane, drew our immediate atten-
tion. First, the interaction between Cops5 and Mtch2 was vali-
dated by co-IP and Western blot (Fig. 6 A and B). Next, we
showed that Mtch2 protein, but not its mRNA, decreases upon
Cops5 KO (Fig. 6 C and D). The down-regulation of Mtch2
protein upon Cops5 KO is due to autophagic degradation, as the
autophagy inhibitor 3-methyladenine (3-MA) restored the level of
Mtch2 protein in Cops5 KO ESCs (Fig. 6E). We then constructed
an iC5; C5 KO ESC line stably overexpressing Mtch2 (SI Appen-
dix, Fig. S6A). Mtch2 overexpression rescues the growth defect of
Cops5 KO ESCs, as well as reduced glycolysis, enhanced OXPHOS,
and elevated ROS level caused by Cops5 KO (Fig. 6 F–I). More
importantly, Cops5 KO no longer induces DNA damage accumu-
lation when Mtch2 is overexpressed (Fig. 6J and SI Appendix, Fig.
S6B). These data indicate that Mtch2 is a key downstream target of
Cops5 in regulating cellular metabolism.

Discussion
ESCs are able to proliferate infinitely under proper culture
condition. For applications of ESCs and their derivatives, such as
genetically modified animals and cell replacement therapy, it is
necessary to maintain genomic stability of ESCs during the ex-
pansion phase. ESCs apply at least two strategies to secure ex-
ceptional genomic stability. First, the generation of endogenous
DNA damage is minimized through preferentially utilizing gly-
colysis over OXPHOS to reduce the ROS level (15). Second,
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high DDR activities are maintained to remove DNA damage
efficiently. Both high expression levels of DDR genes and ESC-
specific factors, including Zscan4, Filia, and Sall4, contribute to
high DDR activities in ESCs (8, 9, 11–13). In this study, we dis-
covered that Cops5 is involved in both suppressing endogenous
DNA damage by ROS and in maintaining high DDR activities to
safeguard genome integrity of mouse ESCs. First, Cops5 ensures
the biased energy production by the glycolysis pathway through
maintaining the proper expression level of Mtch2. Consequently,
the generation of ROS is suppressed, thus minimizing endogenous
DNA damage caused by ROS. Second, Cops5 is required for high
DDR activities, including NER, HR, and NHEJ, in ESCs. Thus,
Cops5 contributes to genomic stability of ESCs through suppressing
endogenous DNA damage and activating DDR activities simulta-
neously. Without Cops5, down-regulated Mtch2 rewires the cellular
metabolism toward OXPHOS, resulting in elevated ROS and en-
dogenous DNA damage. Enhanced endogenous DNA damage,
together with impaired DDR activities, leads to accumulation of
DNA damage in Cops5 KO ESCs, which in turn activates p53 and
induces G2/M arrest, slow growth rate, and apoptosis (Fig. 7).
We previously reported that Cops2 is essential for pluri-

potency maintenance through stabilizing Nanog protein and as a
transcriptional corepressor (24). We failed to demonstrate the
requirement of Cops5 in ESC self-renewal by short hairpin RNA

knockdown, most likely due to low efficiency of Cops5 knock-
down. Nevertheless, both Cops2 and Cops5 contribute to pluri-
potency maintenance independent of the CSN. Nanog protein
are down-regulated upon Cops2 knockdown or Cops5 KO.
However, the Homeobox domain of Nanog is required for Cops2
to promote Nanog protein stability (24), while Cops5 stabilizes
Nanog protein through the N-terminal and C-terminal domains
(SI Appendix, Fig. S1), suggesting that Cops2 and Cops5 regulate
Nanog stability through distinct mechanisms. Cops8 KO ESCs
provide further supporting evidences. Both Cops5 and Cops8 KO
compromise the deneddylation activity of the CSN (SI Appendix,
Fig. S3A). However, except for a slightly reduced growth rate,
Cops8KO does not affect pluripotency marker expression, cell-cycle
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progression, or DNA damage accumulation in ESCs (SI Appen-
dix, Fig. S3 B–G). Moreover, Cops8 KO does not affect DDR
activities, cellular ROS level, glycolysis, and OXPHOS activities
(SI Appendix, Fig. S4 A–D). All these data suggest that CSN-
independent function of Cops5 contributes to pluripotency main-
tenance and genomic stability of ESCs.
Our data show that Cops5 KO reprograms the cellular metab-

olism toward OXPHOS through down-regulating Mtch2. How-
ever, there are conflicting results regarding Mtch2 in metabolism
regulation. Mtch2 KO enhances glycolytic flux and suppresses
OXPHOS in ESCs (33). In contrast, loss of Mtch2 in hemato-
poietic stem cells (HSCs) and skeleton muscle cells promotes the
metabolic switch from glycolysis to mitochondrial OXPHOS (34,
35). Our data are consistent with the metabolic regulatory func-
tion of Mtch2 in HSCs and skeleton muscle cells, despite that we
studied Mtch2 in ESCs. Down-regulation of Mtch2 in our study
and Mtch2 KO in the work by Bahat et al. (33) might account for
the opposite effects in regulating metabolic switch. Consistent with
this note, knockdown of Mtch2 with small interfering RNA in
ESCs leads to down-regulation of glycolysis and elevation of
OXPHOS (SI Appendix, Fig. S6 C–F). Alternatively, the differ-
ence in ESC culture conditions might contribute to the seemingly
conflicting observation. We cultured ESCs in the presence of
leukemia inhibitory factor (LIF) and serum, whileMtch2 KO ESCs
were cultured in 2i/LIF and serum-free condition.
Cops5KO down-regulates Mtch2 through autophagic degradation.

Yet, the detailed mechanism of how Cops5 regulates autophagic
degradation of Mtch2 remains unclear. Cops5 is a metalloprotease
with deneddylation and deubiquitination activities (22). In addi-
tion to its well-known role in proteasomal degradation, ubiquitin
also serves as a key signal for selective autophagy (36, 37). Thus, it
is possible that Cops5 regulates the autophagy of Mtch2 by deu-
biquitinating Mtch2. In addition, it has been shown that Cops5
regulates autophagy via the ERN1 and mTOR pathways in goat
endometrial epithelial cells (38). Given that Cops5 interacts with

the mitochondrial protein Mtch2, the possibility is raised that
Cops5 regulates mitophagy or, even more specifically, the auto-
phagy of Mtch2. Interestingly, mitophagy plays an important role
in metabolic switch and cell-fate change (39, 40). Thus, further
investigation of how Cops5 regulates the autophagic degradation
of Mtch2 might shed light on metabolic regulation and cell-fate
determination of ESCs.

Materials and Methods
Cell Culture and Transfection. D3 and KH2 ESCs were cultured in ESC medium
which consists of 15% fetal bovine serum (FBS) (HyClone), 85% Dulbecco’s
Modified Eagle Media (DMEM) (high-glucose DMEM, Gibco), 2 mM
L-glutamine, 5,000 units/mL penicillin and streptomycin, 0.1 mM nonessential
amino acids (Invitrogen), 0.1 mM β-mercaptoethanol (Sigma), and 1,000 units/mL
LIF (Millipore).

To establish the iC5 ESC line, KH2 ESCs were transfected with pBS31-Cops5m
and pCAGGS FLPe using lipofectamine 3000 (Invitrogen) (30). After 10-d of
hygromycin selection, individual colonies were picked up and validated by
genotyping. To induce the expression of exogenous Cops5 gene, 1 μMDox was
added into medium. To knockout Cops5 or Cops8, pX330 plasmids targeting
Cops5 or Cops8were transfected into ESCs using lipofectamine 3000. Two days
after transfection, ESCs were plated down at low density to allow the for-
mation of colonies from single cells. Five to seven days later, individual colo-
nies were picked up and subjected to further culture and analysis.

GGR Assay. GGR assay was performed as described elsewhere (41). Cover-
slips were placed into a 24-well plate and coated with gelatin in advance.
ESCs (1 × 105) were plated into each well and cultured to 50% confluence.
Cells were washed with phosphate-buffered saline (PBS) and irradiated
with 5 J/m2 ultraviolet (UV) light for 5 s. Immediately after UV irradiation,
cells were immediately incubated with 5-ethynyl-2′-deoxyuridine (final
concentration 10 μM, Invitrogen, C10637) in serum-free DMEM for 4 h at
37 °C. After three washes with PBS, cells were fixed and permeabilized in
buffer 1 (2% paraformaldehyde; 0.5% Triton-X; 0.3 M sucrose; diluted in
PBS) on ice for 20 min, followed by three washes with 10% FBS in PBS for
5 min each. Cells were blocked with PBS containing 10% FBS for 30 min at
room temperature. After aspirating PBS, 1 μL of 2.5 mM Alexa Fluor 488-
azide and 100 μL buffer 2 (4 mM CuSO4; 10 mM sodium ascorbate; 50 mM
Tris·HCl, pH 7.3) were mixed and added to the cells. After a 1-h incubation
at room temperature, cells were washed three times with PBST (0.05%
Tween 20) for 5 min each. Hoechst 33342 (5 μg/mL) diluted with PBS was
added to the cells. After a 20-min incubation at room temperature, cells
were fixed with 3.7% formaldehyde for 20 min. Images were captured by
Zeiss Axio-Imager Z1 fluorescence microscope and analyzed by Image
J software.

TCR Assay. TCR assay was performed as described elsewhere (32). Cells (2.5 ×
105) were plated into each well of a six-well plate, cultured with or without
Dox. Simultaneously, 3 μg/mL Illudin S (Santa Cruz, SC-391575) was added to
the medium for the experimental group. At passages 1 and 2, cells were
harvested, and live cells were counted under a microscope after Trypan
blue staining.

Measurement of NHEJ and HR. The NHEJ and HR reporters were described
elsewhere (42). The NHEJ or HR reporter plasmids were transfected into iC5;
C5 KO ESCs, Cops8 KO, and WT ESCs, and stably integrated clones were
established after puromycin selection. A 1-μg I-SceI–expressing plasmid was
transfected into NHEJ or HR reporter ESC lines to induce a DSB. Forty-
eight hours after transfection, cells were harvested for flow cytometry
analysis.

Statistical Analysis. All data were analyzed by Student’s t test. Statistically
significant P values were indicated in figures as follows: *P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001. Averages and SDs of at least three in-
dependent experiments are shown in figures when applicable.

Data Availability Statement. All data are included in the manuscript and
SI Appendix.
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