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Abstract

Phosphatidylcholine  (PC)  and  phosphatidylethanolamine  (PE),  which  make  up  the  bulk  of  mammalian  cell
membrane  phospholipids,  are  recognized  for  their  importance  in  metabolic  health.  Perturbations  in  the  ratio  of
PC:PE can affect  membrane integrity  and function,  which thus  have serious  health  consequences.  Imbalance in
the hepatic PC and PE membrane content can be linked to metabolic disturbances such as ER stress,  fatty liver
and insulin resistance. Given that impaired insulin sensitivity underlies the pathology of many metabolic disorders
and  skeletal  muscle  is  a  significant  regulator  of  energy  metabolism,  it  is  likely  that  aberrant  phospholipid
metabolism in skeletal muscle affects whole-body insulin sensitivity. Sarco/endoplasmic reticulum Ca2+ ATPase
(SERCA)  activity  and  mitochondrial  function  respond  to  alterations  in  PC:PE  ratio  and  are  associated  with
glucose homeostasis. Moreover, PC and PE content within the mitochondrial membrane influence mitochondrial
respiration and biogenesis and thus, metabolic function. As skeletal muscle phospholipids respond to stimuli such
as  diet  and  exercise,  understanding  the  implications  of  imbalances  in  PC:PE ratio  is  of  great  importance  in  the
face of the rising epidemic of obesity related diseases. This review will summarize the current state of knowledge
signifying  the  links  between  skeletal  muscle  PC:PE  ratio  and  insulin  sensitivity  with  respects  to  PC  and  PE
metabolism, SERCA activity, mitochondrial function and exercise.
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Introduction

Phosphatidylcholine (PC) and phosphatidylethanol-
amine  (PE)  are  the  most  abundant  phospholipids  in
mammalian  cell  membranes,  with  PC  accounting  for
45%–50% and  PE  for  15%–25% of  the  total  lipid
content[1].  PC  and  PE  are  synthesized de  novo in  the
analogous  cytidine  diphosphate  (CDP)-choline  and
CDP-ethanolamine branches of the Kennedy pathway,
respectively[2]. In the PC-Kennedy pathway, exogenous

choline  is  taken  up  by  the  cell  and  is  initially
phosphorylated  by  choline  kinase  (CK)  to
phosphocholine[2]. In the second step, the rate limiting
enzyme  CTP:phosphocholine  cytidylyltransferase
(CCT/Pcyt1) converts phosphocholine to CDP-choline
using  cytidine  diphosphate  (CTP)[2].  Finally,  CDP-
choline:1,2-diacylglycerol  cholinephosphotransferase
(CEPT)  catalyzes  the  condensation  of  CDP-choline
and  diacylglycerol  (DAG)  to  produce  PC[2].  PE  is
produced  from  the  analogous  PE-Kennedy  pathway
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from ethanolamine and DAG[2].  Alternatively, PE can
be  produced  from  the  decarboxylation  of
phosphatidylserine  (PS) via phosphatidylserine
decarboxylase  (PSD)  in  the  mitochondria[3].  PS  is
produced  from  preexisting  PC  and  PE  through  base
exchange  reactions via phosphatidylserine  synthase  1
(PSS1)  and  phosphatidylserine  synthase  2  (PSS2),
respectively,  in  the  mitochondrial  associated
membranes of  the ER[3].  Notably,  several  enzymes of
the Kennedy pathway demonstrate overlap in substrate
usage[4].  In  addition  to  its  putative  function  in  the
phosphorylation  of  choline,  multiple  mammalian  CK
isoforms  possess  the  ability  to  phosphorylate
ethanolamine[5].  Likewise,  the  isoform  ethanolamine
kinase  2  (EK2)  also  shows dual  kinase  activity[6] and
several  phototransferases  are  able  to  use  both  CDP-
choline and CDP-ethanolamine[7].  However, CCT and
CTP:phosphoethanolamine cytidylyltransferase (ECT/
Pyct2) are highly specific for their substrates (Fig. 1)[3].

PC  and  PE  are  distributed  asymmetrically  in  the
outer  and  inner  leaflets  of  the  plasma membrane:  the
majority  of  PC  is  localized  to  the  outer  leaflet,
whereas  PE  is  enriched  in  the  inner  leaflet[8].

Maintenance  of  the  ratio  of  PC  to  PE  within  cellular
membranes  is  critical  for  membrane  function[9].
Perturbations in this ratio which expose altered levels
of  PC/PE  content  to  either  leaflet  of  the  membrane
affect  membrane  integrity  through  the  alteration  of
membrane  potential  and  permeability  to  proteins  and
cytokines[9–10].  Moreover,  these changes in membrane
dynamics can affect fluidity of the membrane as well
as  lipid  rafts  which  in  turn  can  alter  insulin  receptor
kinetics  and  glucose  uptake,  indicating  the  potential
ramifications  of  an  altered  PC:PE  ratio  on  insulin
sensitivity[11–15].

Mounting  evidence  indicates  that  PC  and  PE  are
key  factors  in  metabolic  health[7,16–  17].  Disruptions  in
hepatic  PC:PE ratio  due  to  obesity  and  its  associated
oversupply  of  fatty  acids  in  humans  or  in  gene
deletion mouse models being linked to impairments in
liver  regeneration  and  the  development  of  varying
severities  of  liver  disease[10,18–  21].  When  phosphati-
dylethanolamine N-methyltransferase  (PEMT) knock-
out  mice  were  fed  a  choline-deficient  diet,  they
showed  reductions  in  the  PC:PE  ratio  with
concomitant  development  of  steatosis,  steatohepatitis
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Fig. 1   Biosynthetic pathways for PC and PE production. The major pathway for PC and PE production occurs at the endoplasmic retic-
ulum  (ER) via de  novo synthesis  through  the  analogous  CDP-choline  and  CDP-ethanolamine  branches  of  the  Kennedy  pathway,
respectively[2]. In the PC-Kennedy pathway, choline is first phosphorylated by CK to P-choline, which is converted to CDP-choline by the
rate limiting enzyme CCT/Pcyt1[2]. Lastly, CEPT catalyzes the formation of PC from CDP-choline and DAG. The CDP-ethanolamine branch
of the Kennedy pathway is using a similar set of reactions except for the involvement of ethanolamine instead of choline to form PE[2]. PE
can also be produced from PS via PSD in the mitochondria[3]. PS is synthesized from PE by PSS2 or from PC by PSS1 in mitochondria-asso-
ciated regions of the ER[3].  Dashed lines indicate dual specificity in enzyme substrate usage[5–7]. PE: phosphatidylethanolamine; PC: phos-
phatidylcholine; PS:  phosphatidylserine;  CDP:  cytidine  diphosphate;  CTP:  cytidine  diphosphate;  CK:  choline  kinase;  P-choline:  phos-
phocholine;  CCT/Pcyt1:  CTP:phosphocholine  cytidylyltransferase;  CEPT:  CDP-choline:1,2-diacylglycerol  cholinephosphotransferase;
DAG: diacylglycerol; TG: triglyceride; EK: ethanolamine kinase; P-ethanolamine: phosphoethanolamine; ECT/Pcyt2: CTP:phosphoethano-
lamine cytidylyltransferase;  EPT:  CDP-ethanolamine:1,2-diacylglycerol  ethanolaminephosphotransferase;  PSD:  phosphatidylserine  de-
carboxylase; PSS1: phosphatidylserine synthase 1; PSS2: phosphatidylserine synthase 2.
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and  death  from  liver  failure[10,20].  On  the  other  hand,
obese  mice  showed  an  increased  hepatic  PC:PE ratio
compared  to  lean  mice,  which  associated  with
endoplasmic  reticulum  (ER)  stress  and  steatosis[19].
Correction  of  this  ratio  reduced  ER  stress  and
improved glucose homeostasis[19]. Thus, it appears that
imbalances  in  the  PC:PE ratio  in  either  direction  can
be detrimental.

While evidence of the effects of altered PC:PE ratio
is  apparent  in  hepatic  tissues,  less  appreciated  is
phospholipid  metabolism  in  skeletal  muscle.  Skeletal
muscle  is  intrinsically  linked  to  whole  body  energy
metabolism via the  major  role  it  plays  in  lipid  and
glucose  oxidation[22].  Importantly,  skeletal  muscle
significantly regulates whole-body glucose homeostasis
through  its  large  contribution  to  insulin-stimulated
glucose disposal[23]. In obesity, aberrant intramuscular
lipid  metabolism  adversely  impacts  insulin  signaling
and consequentially, skeletal muscle insulin resistance
developments[24–  25].  The  associations  between  altered
hepatic  PC:PE  ratio  and  obese  phenotype  raise  the
possibility  that  similar  alterations  in  PC  and  PE
metabolism in skeletal muscle may be occurring given
its  intimate  link  with  insulin  sensitivity.  The
connection between skeletal muscle insulin resistance
and  metabolic  disorders[24] together  with  the  findings
that  correction  of  hepatic  PC:PE  ratio  improves
glucose  homeostasis,  which  indicates  the  likelihood
that skeletal muscle PC:PE ratio plays a role in insulin
sensitivity[19].

Phosphatidylcholine  and  phosphatidyletha-
nolamine  effects  on  metabolic  dysfunction
and insulin sensitivity

The  fundamental  importance  of  phospholipid
metabolism  in  growth,  development  and  metabolic
health  is  demonstrated  in  the  serious  health
consequences  associated  with  deficiencies  in
pathways  for  PC  and  PE  synthesis[7,16–  17].  In  muscle
cells,  choline  deficiency  alters  PC  homeostasis
through  a  decrease  in  PC  production via
downregulation  of Pcyt1,  the  rate  limiting  enzyme
responsible  for de  novo PC  production  in  the  CDP-
choline branch of the Kennedy pathway[26]. These cells
exhibited fat  accumulation in the form of  an increase
in  total  triglyceride  (TG)  content  and  lipid  droplet
formation[26]. While deletion of Pcyt2, the rate limiting
enzyme  in  the  CDP-ethanolamine  pathway,  is
embryonically  lethal[16], Pcyt2 heterozygous  mice
survive,  however,  showed  reduced  flux  through  the
CDP-ethanolamine  pathway  which  limits  the  rate  of
PE  synthesis[7].  As  a  substrate,  DAG  availability  has

the  capacity  to  regulate  flux  through  the  CDP-
ethanolamine pathway[27–29]. Reciprocally, flux through
the pathway influences DAG accumulation,  and thus,
TG metabolism as excess DAG is redirected from PE
to  TG  synthesis  (Fig.  2)[7,30–  31].  In  accordance  with
evidence from Pcyt1 inhibition in macrophages[30] and
hepatocyte Pcyt2 knockdown[32] and  knockout[31],
skeletal  muscle  from  global  heterozygous Pcyt2
(Pcyt2+/−)  mice  showed  elevated  DAG  and  TG
content[7].  This  occurs  as  a  consequence  of  decreased
DAG  utilization  in  the  CDP-ethanolamine  pathway
and  subsequent  shift  from  PE  to  TG  synthesis  and
along  with  enhanced  expression  of  several  lipogenic
genes[7]. Pcyt2+/− mice exhibit a decrease in markers of
mitochondrial  biogenesis,  a  downregulation  of
mitochondrial  fatty  acid  (FA)  β-oxidation  genes
accompanied by a decreased ability to oxidize FA, and
develop  insulin  resistance[7].  These  shifts  in
metabolism  lead  to  hypertriglyceridemia,  liver
steatosis and adult-onset obesity[7].

Interestingly,  in  contrast  to  global Pcyt2+/− mice[7],
mice  with  muscle-specific  knockout  of Pcyt2
(MPcyt2−/−)  showed  increased  muscle  mitochondrial

 

Ethanolamine

P-ethanolamine

CDP-ethanolamine

TG
PE

DAG

DAG

CMP

CTP

PPi

ATP

ADP
EK

EPT

Pcyt2

 

Fig.  2   Pcyt2 knockdown redirects  DAG from PE to TG syn-
thesis. The suppression of  Pcyt2 activity  results  in  decreased flux
through the CDP-ethanolamine pathway and thus, CDP-ethanolam-
ine  production  is  reduced.  Inadequate  CDP-ethanolamine  pools
limit the ability of EPT to use of DAG as a substrate in the final re-
action of PE production and causes DAG to accumulate in the cell.
Consequently, DAG is shifted from a substrate for PE to TG syn-
thesis,  leading  to  increased  production  and  accumulation  of  TG.
EK:  ethanolamine  kinase;  P-ethanolamine:  phosphoethanolamine;
ECT/Pcyt2:  CTP:phosphoethanolamine  cytidylyltransferase;  EPT:
CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotrans-
ferase; DAG: diacylglycerol; TG: triglyceride.
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biogenesis,  oxidative  capacity  and  exercise
performance[15].  MPcyt2−/− mice  retained  whole  body
and  skeletal  muscle  insulin  sensitivity  despite
elevations  in  muscle  DAG  and  TG  content[15].  In
contradiction  with  the  prevailing  hypothesis  that
suggests  the  accumulation  of  DAG  causes  insulin
resistance via activation  of  PKCθ[33–  34],  elevations  in
muscle DAG did not alter membrane bound PKCθ nor
its  phosphorylation  status;  as  such,  insulin  sensitivity
was  not  impacted[15].  The  reason  for  the  discrepancy
between Pcyt2+/− and  MPcyt2−/− is  not  clear  but  may
be  related  to  altered  energy  metabolism  in  other
tissues  of Pcyt2+/− mice  such  as  the  liver[7] or
MPcyt2−/− upregulation  of  FA  oxidation[15].
Additionally,  skeletal  muscle  overexpression  of  Acyl
CoA thioesterase 7 (Acot7) in chow fed rats, which, in
the tibialis  muscle modified PC and PE to levels  that
resemble those of animals on a high fat  diet,  induced
mixed  responses  in  insulin  mediated  glucose  uptake
and β-oxidation across tibialis, red extensor digitorum
longus (EDL), white ELD and quadriceps muscles[35].
Thus,  distinct  characteristics  of  specific  skeletal
muscles may also be responsible for the differences in
insulin  action  responses[35].  Moreover,  given  that
Pcyt2 knockout  is  embryonically  lethal[16],  a  muscle
specific  knockout  model  exemplifies  an  extreme
condition  and  thus,  may  not  accurately  represent  a
likely  outcome  in  a  natural  model.  Nevertheless,
together  these  findings  indicate  the  potential
significance  of  PC  and  PE  homeostasis  in  metabolic
health  and  importantly,  demonstrate  their  modulatory
relationship with insulin sensitivity.

The link between skeletal muscle phospholipid acyl
chain  composition  and  insulin  sensitivity  in  humans
has  been  known  for  over  two  decades[36–  38].  Briefly,
insulin  sensitivity  has  shown  to  be  positively
associated  with  unsaturated  fatty  acids  with  the
mechanism of action suggested to be due to alterations
in insulin receptor concentration and receptor affinity,
improved  membrane  fluidity  and  membrane-protein
dynamics[13,39– 40].  However,  the  relationships  between
the  different  classes  of  phospholipids  and  insulin
sensitivity  are  less  clear.  While  it  is  evident  that
alterations  in  PC  and  PE  synthetic  pathways  affect
metabolic  health,  the  levels  and  ratio  of  PC:PE  in
skeletal muscle and its association to insulin action is
more recently being investigated.

In  agreement  with  findings  from  human  primary
myocytes[41],  recent  evidence  from  human  studies
indicates that skeletal muscle PC:PE ratio is inversely
associated  with  insulin  sensitivity[42– 43].  In  endurance
trained  athletes  (ATH),  obese  sedentary  adults  (OB)
and  type  2  diabetics  (T2D),  basal  skeletal  muscle

PC:PE  ratio  was  negatively  correlated  with  insulin
sensitivity  while  total  levels  of  PE  and  PC  are
positively  related  to  insulin  sensitivity[42].  Moreover,
this association occurred across all participants and in
a  group  specific  manner  where  the  ATH  group
exhibited  lower  PC:PE  ratio  and  higher  insulin
sensitivity  compared  to  T2D,  with  similar  trends  for
OB[42].  Similarly,  in  both  normal  and  dysglycemic
men,  basal  PC:PE  ratio  was  shown  to  negatively
correlate  with  insulin  sensitivity  across  all
participants[43].  However,  these  findings  are
contradicted  by  animal  models  that  demonstrate  no
effect  on  insulin  action  despite  altered  PC  and  PE
content.  Reduced  levels  of  PC  and  PE  in  rat  tibialis
muscle[35], and PE in mouse skeletal muscle[15] did not
influence  insulin  sensitivity.  Moreover,  while
correction  of  obesity-induced  alterations  in  hepatic
PC:PE  ratio  improved  insulin  sensitivity  in  mice,
levels  of  other  lipid  species  and  their  fatty  acid
composition  were  also  modified[19].  Thus,  the
influence  of  phospholipid  content  on  insulin  action
cannot  be  solely  attributed to  the  alteration of  PC:PE
ratio and may also or instead involve changes in other
major lipid species and their  fatty acid tails.  Whether
skeletal  muscle  PC:PE  ratio  plays  a  direct  role  in
insulin sensitively is unclear;  however,  these findings
suggest  possible  associations  between  PC  and  PE
content  and  insulin  resistance  that  warrant  further
investigation.  There  are  several  links  between  PC:PE
ratio  and  insulin  sensitivity  namely,
sarco/endoplasmic  reticulum  Ca2+ ATPase  (SERCA)
activity  and  mitochondrial  function,  which  will  be
explored below.

Sarco/endoplasmic reticulum Ca2+ ATPase

The SERCA is a multi-domain membrane-spanning
protein  that  regulates  muscle  contractile  function  by
inducing  muscle  relaxation  through  the  translocation
of  Ca2+ from  the  cytosol  into  the  lumen  of  the
sarcoplasmic  reticulum  (SR)[44].  The  ability  of  lipid
bilayer  composition to  modulate  the  catalytic  activity
of  SERCA  is  well  established in  vitro[44–  46].  In
reconstituted  dioleoyl-PC:dioleoyl-PE  bilayers,
elevations  in  PE  content,  and  thereby  decreases  in
PC:PE  ratio  of  the  membrane  system,  results  in  an
increase  in Vmax of  SERCA[44–  46] and  a  reduction
in KCa, i.e.,  increases  the  Ca2+ binding  affinity  of
SERCA[44]. On the other hand, increased PC content in
the  membrane  has  been  found  to  inhibit  the  calcium
transport  activity  of  SERCA[19,47–  48].  Together,  these
findings  reveal  the  activating  role  of  PE  on  SERCA
function  and  demonstrate  an  inverse  correlation
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between  PC:PE  and  SERCA activity[44–45].  Moreover,
novel  developments  in  X-ray crystallography provide
support  for  the  key  role  of  phospholipids  in  SERCA
function[49].

The  relationship  between  PC:PE  and  SERCA
function is also reflected in in vivo models. Consistent
with  the  finding  that  overexpression  of  Pemt,  the  PE
to  PC  conversion  enzyme,  significantly  inhibits
SERCA activity  in  liver  cells[19],  elevated  hepatic  ER
PC:PE  ratio  in  obese  mice  induces  SERCA
dysfunction and ER stress[19]. Conversely, reduction in
ER  PC:PE  ratio  in  obese  liver  as  a  result  of  Pemt
suppression via shRNA,  significantly  improves
SERCA  function[19],  confirming  the  inhibitory  effect
of  elevated PC:PE in  the  ER.  In  muscle,  the  findings
are  similar.  In  overloaded mouse  plantaris  muscles[50]

and a mouse model of muscular dystrophy[51],  the SR
PC:PE  ratio  negatively  correlates  with  SERCA
activity.  The connection between SERCA and insulin
sensitivity  is  established  in  primary  myocytes  which
show  insulin  sensitivity  and  SERCA  activity  are
diminished  in  response  to  an  elevated  SR  PC:PE
ratio[41]. Additionally, in the liver of obese and diabetic
mice  SERCA  protein  and  consequently,  ER  Ca2+ is
reduced.  Furthermore,  overexpression  of  SERCA  in
these  mice  restores  glucose  tolerance  with  the  likely
mechanism  being  related  to  an  increase  in  ER
chaperone  protein  function  given  their  preference  for
high  ER  Ca2+ levels  and  thus,  enhanced  ER  folding
capacity[52]. Collectively, these findings, together with
the  associations  between  PC:PE  ratio  and  insulin
sensitivity,  suggest  that  SERCA  may  provide  a
mechanistic  link  in  the  relationship  between  PC:PE
ratio and insulin resistance. Disruptions in PC:PE ratio
of  the  SR  likely  influence  muscle  insulin  sensitivity
through the disruption of calcium homeostasis[53].

Several  recent  studies  have  examined  the  role  of
SERCA function in skeletal muscle insulin resistance.
In high-fat, high-calorie diets, the enzyme responsible
for  catalyzing  the  committed  step  in de  novo
lipogenesis,  fatty  acid  synthase  (FAS),  is  suppressed
in  most  tissues[54].  However,  the  opposite  is  found  to
occur  in  muscle  tissues[53].  Elevations  in  muscle  FAS
activity  in  mice  with  high-fat  diet  induced  obesity  is
thought  to  function  to  increase  FAS-facilitated  PE
synthesis  at  the  SR  in  order  to  maintain  SERCA
activity[53].  This  mechanism  is  supported  by  the
overexpression of FAS in a mouse model of muscular
dystrophy,  which  rescues  the  impaired  SERCA
function through an increase in SR PE and subsequent
normalization  of  SR  PC:PE  ratio[51].  In  mice  with
muscle-specific FAS knockout fed a high-fat diet, PE
content  is  reduced  and  thus,  SERCA  activity  is

inhibited[53].  Unexpectedly,  however,  this  suppression
of  SERCA lead  to  improvements  in  insulin  signaling
likely  due  to  reduced  SERCA  mediated  Ca2+ uptake
and  resultant  elevations  in  cytosolic  Ca2+

concentration  leading  to  an  increase  in  glucose
transport via activation  of  Ca2+/calmodulin-dependent
kinase  kinase-β  (CaMKKβ)  and  subsequently,
CaMKKβ-dependent  5'-AMP-activated protein kinase
(AMPK)  phosphorylation  and  activation[53] (Fig.  3).
AMPK stimulates  the  translocation  of  GLUT4  to  the
plasma  membrane,  enhancing  glucose  uptake  and
homeostasis[53].  This  finding  is  corroborated  in
choline/ethanolamine  phosphotransferase  1  (CEPT1)
knockdown  in  C2C12  myoblasts  and  muscle-specific
knockout  mice  fed  a  high-fat  diet  where  CEPT1
deficiency increases the SR PC:PE ratio and decreases
SERCA  activity  to  preserve  insulin  sensitivity[14].
However,  as  proper  Ca2+ handling  is  required  for
muscle function, both FAS and CEPT1 knockout mice
exhibited  decreased  muscle  strength  and  exercise
intolerance,  indicating  that  improved  insulin
sensitivity  due  to  decreased  SERCA activity  is  likely
to come at the cost of appropriate relaxation of muscle
fibers and thus, causes muscle weakness[14,53,55]. Lastly,
FAS  and  CEPT  knockout  mice  were  protected  from
diet induced obesity[53], whereas lipid overload in mice
fed  with  a  high-fat  diet  and  obese  humans  is
associated  with  an  upregulation  of  CEPT1  muscle
mRNA  which  is  inversely  correlated  to  insulin
sensitivity[14].  Thus, it  is possible that in vice versa to
the finding that CEPT knockdown reduces contractile
function  at  the  expense  of  muscle  insulin  sensitivity,
increased CEPT1 expression induced by high-fat  diet
feeding  and  obesity  may  alter  the  SR  PC:PE  to
preserve  SERCA  function  and  physical  performance
capacity at the expense of insulin sensitivity[14].

Mitochondria

As  skeletal  muscle  mitochondrial  respiration
significantly  contributes  to  whole  body  energy
metabolism[56],  it  is  hypothesized  that  deficiencies  in
skeletal  muscle  mitochondrial  content[57] and
function[58] modulate  insulin  sensitivity.  Skeletal
muscle  mitochondria  are  dynamic organelles  that  can
readily  respond  to  metabolic  stimuli  such  as
exercise[59] or  high  fat  diets[57] through  mitochondrial
biogenesis  and  alterations  in  oxidative  capacity.
Specifically,  mitochondrial  mediated  alterations  in
insulin sensitively may be of particular importance in
females as the hormone 17β-estradiol  (E2) influences
mitochondrial  membrane  fluidity  in  mouse  skeletal
muscle[60].  E2  treatment  lowered  membrane
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microviscosity and in turn reestablished mitochondrial
bioenergetics,  respiratory  function  and  insulin
sensitivity  in  E2  deficient  female  mice,  likely  as  a
consequence  of  the  restoration  of  optimal
phospholipid  packing  and  cellular  redox
homeostasis[60]. These findings indicate the importance
of  membrane  dynamics  for  mitochondrial  function
which  can  be  affected  by  the  degree  of  phospholipid
packing  and  composition[61– 62].  Given  that  mitochon-
drial  phospholipids  influence  mitochondrial  biogene-
sis[63–64],  bilayer-protein  interactions[61],  the  activity  of
the  electron  transport  system  and  therefore,
mitochondrial function[62,65], skeletal muscle mitochon-
drial PC:PE ratio may be an important determinant of
whole-body  insulin  sensitivity.  Despite  this
possibility,  there  is  a  lack  of  skeletal  muscle
mitochondrial phospholipid studies. As such, findings
from  hepatic  studies  must  be  utilized  to  deduce
potential  links  between  alterations  PC:PE  ratio,
mitochondrial  activity  and  insulin  sensitivity  in
skeletal muscle.

The  connection  between  mitochondrial  biogenesis,
PC  and  PE,  and  insulin  sensitivity  remains  largely
unclear.  The  observation  that  type  2  diabetics  and
insulin-resistant  individuals  with  impaired  glucose
tolerance  have  approximately  30% less  skeletal
muscle  mitochondria  than  insulin-sensitive
individuals[66 –  69],  engendered  the  hypothesis  that
insulin  resistance  arises  from  the  accumulation  of

intramyocellular lipids as a consequence of decreased
FA  oxidation  in  mitochondrial  deficient  skeletal
muscle[58,70].  As  previously  mentioned  and  in
agreement with this hypothesis, MPcyt2−/− mice show
increased  mitochondrial  biogenesis,  oxidative
capacity,  exercise  endurance  and  also  demonstrate
improved  insulin  sensitivity[15].  However,  this
hypothesis  is  challenged  by  the  findings  that  in  mice
fed  a  high  fat  diet,  insulin  resistance  still  occurs
despite an increased mitochondrial content in skeletal
muscle[57].  Further,  contrary  to  MPcyt2−/− mice,
disruption  of  the  CDP-ethanolamine  pathway via
muscle specific deletion of CEPT showed no effect on
mitochondria, yet, insulin sensitivity improved[14]. The
reason  for  these  discrepancies  is  unclear  and
highlights  the  complexity  of  skeletal  muscle
mitochondrial PC and PE metabolism.

PE is highly enriched in mitochondrial membranes,
containing about 40% of total phospholipids, with the
majority  of  PE  being  synthesized in  situ  via
mitochondrial  phosphatidylserine  decarboxylase
(PSD)[3,71].  As  PE  is  a  nonbilayer-forming
phospholipid  with  a  shape  that  introduces  curvature
into  the  mitochondrial  membrane,  it  is  specifically
enriched in the inner mitochondrial membrane (IMM)
to  allow  for  folding  of  the  IMM  into  crista[72].  The
importance  of  mitochondrial  PE  production  is
exemplified  in  whole  body Pisd−/− mice  which  lacks
PSD activity[73].  Despite  the  continued PE production
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Fig. 3   Mechanism of enhanced insulin sensitivity in FAS deficient mice. Suppression of FAS, and thus FAS-facilitated PE synthesis, at
the SR results in a reduction of SR PE content. Correspondingly, SERCA activity is impaired leading to decreased Ca2+ uptake into the SR
lumen and subsequent accumulation of cytosolic Ca2+. CaMKKβ is activated by cytosolic Ca2+ which leads to increased phosphorylation and
therefore,  activity  of  AMPK.  AMPK activation  induces  the  translocation  of  GLUT4 to  the  plasma membrane  and thus,  enhances  insulin-
stimulated  glucose  uptake  and  improves  skeletal  muscle  glucose  homeostasis.  FAS:  fatty  acid  synthase;  SR:  sarcoplasmic  reticulum;  PE:
phosphatidyl ethanolamine; CaMKKβ: Ca2+/calmodulin-dependent kinase kinase-β; AMPK: 5'-AMP-activated protein kinase.
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via CDP-ethanolamine  pathway  in  the  ER,  PSD
knockout  is  embryonically  lethal[73].  The  PE
deficiency  in  the  mitochondria  of  these  mice  causes
misshapen,  swollen  and  fragmented  mitochondria[73].
Notably,  even  a  moderate  <30% mitochondrial  PE
reduction  and  corresponding  increase  in  PC:PE  ratio
in  CHO  cells  induced  by Pisd knockdown  caused
similar  aberrant  morphology  and  impaired  cell
growth[74].  On  the  other  hand,  a  33% reduction  in
PC:PE  ratio  in  hepatic  mitochondria  of Pemt
knockdown mice, due to reduced methylation of PE to
PC,  results  in  smaller  and  more  elongated
mitochondria[74].  Because  oxidative  phosphorylation
occurs  at  the  inner  mitochondrial  membrane,  proper
folding  of  the  membrane  is  imperative  for
mitochondrial  respiration[72].  In  insulin  resistance,
muscle  mitochondria  have reported to  be smaller  and
dysfunctional  compared  to  mitochondria  from  lean
volunteers[67],  suggesting  that  PC:PE  ratio  may
influence  insulin  sensitivity  through the  regulation  of
mitochondrial morphology.

PC:PE  ratio  also  appears  to  be  a  modulator  of
mitochondrial oxidative capacity through its influence
on mitochondrial respiratory chain (MRC) complexes.
In  yeast,  increased  levels  of  PE  have  been  shown  to
correlate  with  biogenesis  of  MRC  components,
indicating  its  role  in  MRC  function[75].  Accordingly,
CHO  cells  with  reduced  PE  content  show  inhibited
activities  of  electron  transport  complexes Ⅰ and Ⅳ,
resulting  in  reduced  respiration  and  decreased  ATP
production[76].  Increased  PE  content  with  a
corresponding  reduction  in  hepatic  PC:PE  ratio
resulted  in  an  increase  in  electron  transport  chain
activity, respiration and ATP production with striking
correlations  between  PE  and  ATP  levels[74].  The
mechanism underlying these findings remains elusive,
however, a specific role for PE in the catalytic activity
of  MRC  complexes  is  suggested  in Arabidopsis
thaliana,  where  depletion  of  mitochondrial  PE
decreases  complex Ⅳ,  and  thus  respiration,  without
any  effect  on  individual  MRC  subunit  levels[77].
Moreover,  increased  mitochondrial  PC  content  in
cardiomyocytes  reduces  electron  transport  complex
Ⅰ, Ⅱ and Ⅳ activity,  suggesting  an  inhibitory  effect
on  enzyme  activity[62],  possibly  through  allosteric
regulation[61].

PE  is  further  implicated  in  mitochondrial  function
as it  is  a  positive regulator[78] and a limiting factor  of
autophagy[79].  The  mitochondrial-selective  form  of
autophagy,  mitophagy,  is  of  particular  importance  in
skeletal  myocytes  given  their  high  metabolic  activity
which  is  supported  by  a  large  population  of
mitochondria  harbored  in  intricate  networks[80–  81].  As

continuous  exposure  of  mitochondria  to  reactive
oxygen  species,  generated  as  a  by-product  of  energy
production,  can  cause  mitochondrial  DNA  mutations
or  perturb  protein  folding,  selective  clearance  of
damaged or  dysfunctional  mitochondria  is  imperative
to  maintain  proper  function  of  the  mitochondrial
network[82].  Additionally,  mitophagy  is  implicated  in
developmental  processes[83–   85] such  as  the  transition
from  a  glycolytic  state  to  one  that  derives  ATP
primarily  from  oxidative  phosphorylation  in
differentiating  myoblasts[84–  85].  During  this  meta-
bolic  shift,  mitophagy  is  dramatically  upregulated  to
allow for  a  dynamic remodeling of  the mitochondrial
network  which  involves  mitochondrial  clearance  and
subsequent  reassembly  of  functionally  different
mitochondria  capable  of  robust  ATP  production[84–  85].
More recently, mitophagy of undamaged mitochondria
has  been  associated  with  enhanced  cellular  energy
homeostasis through mitochondrial renewal[86–88] which
occurs  routinely  under  physiological  conditions[86].  In
human  primary  myoblasts[86],  and  several  other  cell
types[87], mitophagy  is  dramatically  upregulated  in
response  to  the  stimulation  of  oxidative
phosphorylation[86] and metabolic conditions that favor
mitochondrial  function  and  respiration[87] thus
indicating  mitophagy  may  routinely  enhance  energy
production  through  constant  regeneration  of
mitochondria  that  chronically  prevents,  rather  than  to
acutely  react,  to  mitochondrial  damage.  PE  is
intimately  involved  in  autophagy  as  it  is  enriched  in
the  membranes  of  autophagosomes  where  it
covalently  conjugates  cytosolic  microtubule-
associated protein 1 light chain 3 (LC3-Ⅰ) to form the
selective  autophagosomal  protein  LC3-Ⅱ[88].
Mitochondrial  derived  PE,  specifically,  plays  an
integral  role  in  the  autophagic  process.  Disruption  of
mitochondrial/ER connections[89] and direct  inhibition
of PE formation via PISD knockdown[87] decreases the
amplitude of autophagy. Furthermore, the donation of
mitochondrial  membrane material  to  autophagosomes
formation  under  basal  conditions[90] together  with  the
observation that concurrent elevation of PE levels and
autophagy  occur  in  the  absence  of  increased  ATP
production[87] indicates a role for mitochondrial PE in
autophagy  for  the  enhancement  of  energy  production
separate  from  increased  MRC  activity.  Thus,  the
maintenance of mitochondrial PE levels may influence
mitochondrial  function  and  cellular  energy
homeostasis through its supportive and regulatory role
in mitophagy.

Collectively, these findings indicate that the balance
of  the  PC:PE  ratio  is  important  for  cristae
development,  mitochondrial  shape  and  growth,  can
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influence  mitochondrial  respiration  and  optimize
mitochondrial  function via mitophagy.  Given  that
reduced  muscle  mitochondrial  function  is  associated
with  insulin  resistance  in  skeletal  muscle[64– 65,91],  it  is
likely  that  imbalances  in  the  mitochondrial  PC:PE
ratio  can  play  a  modulatory  role  in  muscular  insulin
sensitivity.  Moreover,  differences  in  these  studies
highlight  the  complexity  of  mitochondrial  phospho-
lipid  metabolism  and  demand  further  research  as
many  mechanisms  underlying  these  findings  remain
unclear.

Response to exercise

Exercise  is  known  to  improve  skeletal  muscle  and
whole-body  insulin  sensitivity  and  glucose
tolerance[92– 93] both  acutely[94] and  chronically[95].  The
effect  of  exercise  training  on  skeletal  phospholipid
acyl  chain  composition  has  been  addressed  in  many
studies[96–99], however, less attention has been given to
alterations  in  the  skeletal  muscle  PC:PE  ratio  in
response  to  exercise.  Given  the  connections  between
PC:PE  ratio  and  SERCA  activity,  mitochondrial
activity and insulin sensitivity[14–15,64], it is possible that
exercise  partly  exerts  its  effects  on  insulin  sensitivity
through the alteration of PC:PE ratio.

When endurance  trained ATH,  T2D and OB,  were
subjected  to  a  single  session  of  exercise,  skeletal
muscle PC and PE content were markedly altered in a
group-specific  manner  for  ATH  and  T2D;  however,
PC:PE  ratio  remained  unchanged  in  all  groups[42].  In
contrast, a study that measured skeletal muscle PC and
PE  in  normal  and  dysglycemic  men  after  an  acute
exercise  session  (untrained  state)  and  after  12  weeks
of  exercise  intervention  (trained  state),  showed  a
reduction  in  the  PC:PE  ratio  after  a  single  exercise
session  in  an  untrained  state[43].  In  these  men,  12
weeks of exercise training also resulted in a decreased
PC:PE ratio along with an increased total  PC and PE
levels  and  improved  insulin  sensitivity  compared  to
baseline[43].  Interestingly,  however,  after  participants
underwent 12 weeks of exercise intervention, an acute
exercise  session  did  not  alter  PC:PE  ratio  in  either
group[43].  Moreover,  the  exercise  trained  groups  from
both  studies,  ATH[39] and  normal/dysglycemic  men
after 12-week training[43], showed a lower PC:PE ratio
and  greater  insulin  sensitivity  compared  to  T2D/OB
and  baseline,  respectively[42–  43].  These  findings  may
suggest  adaptations  to  chronic  exercise  training  that
favor  increased  PE  and  lower  skeletal  muscle  PC:PE
ratio to support exercise performance[42–43]. Given that
trained  men  maintain  lower  PC:PE  ratios  and
improved  insulin  sensitivity,  is  possible  that  in  these

men  a  single  exercise  session  does  not  stimulate  the
remodeling  of  membrane  PC:PE  ratio  to  the  same
degree as it  does in an untrained state as trained men
likely  exhibit  closer  to  an  optimal  PC:PE  ratio  for
exercise performance, and thus, require less alterations
to adapt to exercise as untrained men. Of note, even in
the  absence  of  exercise  training,  muscle  PC:PE  ratio
was  lower  in  OB  compared  to  T2D  and  tended  to
inversely  correlate  with  insulin  sensitivity[43].  This
provides evidence that in addition to chronic exercise
adaptation,  a  lowered  PC:PE  ratio  may  also  support
insulin  sensitivity  independently  of  exercise.  The
molecular  adaptations  to  exercise  training  that  link
PC:PE  ratio  and  insulin  sensitivity  may,  at  least  in
part,  be  regulated  by  SERCA  activity  and
mitochondrial  function  (Fig.  4).  As  previously
mentioned,  reduced  PC:PE  ratio  has  an  activating
effect  on  SERCA[43],  and  is  associated  with  insulin
sensitive  compared  to  insulin  resistant  primary
myocytes[41].  Conversely,  increased  PC:PE  ratio,
impairs SERCA function, negatively impacts exercise
performance  in  FAS  and  CEPT1  KO  mice[14,53] and
decreased  PE  synthesis  reduces  skeletal  muscle
mass[14].  As  such,  it  is  possible  that  chronic  exercise
training  may  facilitate  a  decreased  PC:PE  ratio  to
support  SERCA  activity  and  an  increase  in  insulin
sensitivity,  skeletal  muscle  mass,  contractile  function
and  exercise  capacity.  Another  possible  link  between
the concomitant exercise-induced alterations in PC:PE
ratio  and  insulin  sensitivity  relates  to  mitochondrial
activity.  In  skeletal  muscle,  insulin  resistance  is
associated  with  mitochondrial  dysfunction[64–  65,91],
whereas  exercise  training  increases  skeletal  muscle
mitochondrial  density  and  aerobic  capacity[59,100] and
alters  total  skeletal  muscle  PC/PE  content[42–  43].  In
normal  and  dysglycemic  men,  a  decrease  in  skeletal
muscle PC:PE ratio in response to exercise correlated
with  percent  area  of  mitochondria  in  muscle  cells,
skeletal muscle oxidative phosphorylation and mTOR
signaling[43],  indicating  trained  groups  exhibit
increased  mitochondrial  biogenesis  and  function.
Because  mitochondrial  membranes  are  enriched  in
PE[3],  increased mitochondrial biogenesis may help to
explain the reduction in overall PC:PE ratio in trained
groups.  Furthermore,  in  addition  to  increased
abundance of mitochondria, it is possible that exercise
causes  a  decrease  in  PC:PE  ratio  in  mitochondrial
membranes  themselves  to  support  oxidative
phosphorylation.  Increases  in  PE  in  the  inner
mitochondrial membrane may enhance its folding and
therefore  facilitate  an  increase  in  oxidative
capacity[101].  Taken  together,  these  findings  may
suggest  that  a  lower  skeletal  muscle  PC:PE  ratio
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reflects  increases  in  mitochondrial  biogenesis  and
function  as  an  adaptation  to  long  term  exercise.
Transcriptomic  analysis  helps  to  shed  light  on  the
potential  mechanisms  underlying  the  alterations  in
synthesis and degradation pathways for phospholipids
that  are  responsible  for  modified  membrane  PC  and
PE content in response to exercise. After 12 weeks of
exercise  intervention,  mRNA  transcripts  of  CHPT1
and  PCYT2  were  increased,  mirroring  the  increased
PC  and  PE  levels,  decreased  PC:PE  ratio  and
increased  insulin  sensitivity[43].  Furthermore,  CDP-
ethanolamine, the product of ECT (Fig. 1), was shown
to  be  increased  both  before  and  after  exercise  in  the
more  insulin  sensitive,  ATH  group  compared  to
insulin  insensitive  T2D with  a  similar  trend for  ATH
compared to OB groups[42].  These findings are in line
with  a  recent  genome-wide  association  study  that
examined  1 012  human  skeletal  muscle  samples  for
genes  in  relation  to  insulin  sensitivity.  PCYT2  was
found  to  be  positively  associated  with  improvements
in  insulin  sensitively  across  four  independent
studies[102].  As ECT catalyzes the rate limiting step in
the de novo Kennedy pathway of PE synthesis[103], it is
likely  that  this  enzyme  plays  an  important  role  in
insulin  sensitivity  through  its  ability  to  modulate  PE
production  and  thus,  membrane  PC:PE  ratio.  The

upregulation  of  PCYT2 expression[43] and  increase  in
CDP-ethanolamine[42] in  trained  compared  to
untrained  groups  together  with  its  correlation  to
insulin  sensitivity[42– 43,102] suggest  that  an  increase  in
the  enzymatic  activity  of  ECT  may  reflect  an
adaptation  to  chronic  exercise  which  functions  to
increase  insulin  sensitivity.  These  findings  together
with  the  metabolic  defects  observed  in Pcyt2
knockdown  mice[4,16] suggest  the  candidacy  of
ECT/Pcyt2 as a molecular target for therapy given that
reduced  insulin  signaling  in  skeletal  muscle  is  a
hallmark in T2D and obesity related pathologies.

Conclusions

The  relationship  between  skeletal  muscle  PC:PE
ratio  and  metabolism,  and  insulin  sensitivity  is
complex.  Skeletal  muscle  PC:PE  ratio  is  negatively
correlated  with  insulin  sensitivity,  however,  whether
PC:PE ratio  has  direct  implications  for  insulin  action
remains unsolved. It is evident that proper PC:PE ratio
is  imperative  for  SERCA function  and  mitochondrial
respiration which both likely contribute to whole body
insulin  sensitivity  through  their  roles  in  skeletal
muscle;  albeit,  the  mechanisms  linking  these  factors
require  further  clarification.  Nevertheless,  given  that
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Fig. 4   Potential mechanisms through which exercise-induced decrease in skeletal muscle PC:PE ratio improves insulin sensitivity
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skeletal  muscle  insulin  insensitivity  is  a  hallmark  of
T2D  together  with  the  associations  between  elevated
PC:PE  ratio  and  impaired  insulin  sensitivity,  muscle
specific  targeting  of  PC  and  PE  metabolism  could
provide  novel  therapeutic  options  for  metabolic
disorders.
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