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Abstract

During histiotrophic nutrition of the embryo, maternal platelets may be the first circulating maternal cells that find their way into
the placental intervillous space through narrow intertrophoblastic gaps within the plugs of spiral arteries. Activation of platelets at
the maternal-fetal interface can influence trophoblast behavior and has been implicated in serious pregnancy pathologies. Here,
we show that platelet-derived factors impaired expression and secretion of the human chorionic gonadotropin beta-subunit
(BhCG) in human first trimester placental explants and the trophoblast cell line BeWo. Impaired fhCG synthesis was not the
consequence of hampered morphological differentiation, as assessed by analysis of differentiation-associated genes and electron
microscopy. Platelet-derived factors did not affect intracellular cAMP levels and phosphorylation of CREB, but activated Smad3
and its downstream-target plasminogen activator inhibitor (PAI)-1 in forskolin-induced BeWo cell differentiation. While TGF-[3
type I receptor inhibitor SB431542 did not restore impaired 3hCG production in response to platelet-derived factors, Smad3
inhibitor SIS3 interfered with CREB activation, suggesting an interaction of cAMP/CREB and Smad3 signaling. Sequestration
of transcription co-activators CBP/p300, known to bind both CREB and Smad3, may limit 3hCG production, since CBP/p300
inhibitor C646 significantly restricted its forskolin-induced upregulation. In conclusion, our study suggests that degranulation of
maternal platelets at the early maternal-fetal interface can impair placental hCG production, without substantially affecting
morphological and biochemical differentiation of villous trophoblasts.

Key messages

* Maternal platelets can be detected on the surface of the placental villi and in intercellular gaps of trophoblast cell columns
from gestational week 5 onwards.

» Platelet-derived factors impair hCG synthesis in human first trimester placenta.

» Platelet-derived factors activate Smad3 in trophoblasts.

* Smad3 inhibitor SIS3 interferes with forskolin-induced CREB signaling.

* Sequestration of CBP/p300 by activated Smad3 may limit placental hCG production.
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Introduction

Successful human pregnancy is initiated by implantation of
the blastocyst into the decidua, i.e. the highly differentiated
endometrium, which provides the ground for subsequent pla-
centation. At this early stage of pregnancy, a sequence of
complex and tightly regulated processes guarantees the devel-
opment of the placenta, which functions as an immunological
barrier and allows the supply of maternal nutrients, as well as
the exchange of respiratory gases and the synthesis of endo-
crine factors to adapt the maternal physiology to the growing
embryo. One key event in human placentation is the establish-
ment of the uteroplacental circulation, enabling direct contact
of maternal blood with placental chorionic villi. Placental
extravillous trophoblasts invade the maternal decidua, where
they accumulate and form cellular plugs that obstruct maternal
arterial blood flow to the developing placental villous tissue
until the end of the first trimester of pregnancy. However,
presence of loosely cohesive trophoblast plugs with clear
capillary-sized channels with flow toward the intervillous
space has been suggested to enable initial microvascular flux
by 7 weeks of gestation [1]. These channels seem to be the
first signs of subsequent plug disintegration and complete re-
modeling of maternal spiral arteries into wide-bore, low-
resistance conduits.

The time when trophoblast plugs become loosely cohesive
can be considered the time when platelets—as the first circu-
lating maternal cells—find their way through the narrow in-
tercellular gaps into the intervillous space. Previous immuno-
staining of early human placental tissues detected platelets in
maternal spiral arteries, attaching to the surface of invaded
trophoblasts or to vessel walls that were infiltrated by
perivascular trophoblasts [2]. In the same study, in vitro ex-
periments showed that CD41% platelets adhered to isolated
CD146" extravillous trophoblasts and that most of the plate-
lets expressed P-selectin on their cell surface, suggesting that
they had been activated. Moreover, co-culture with platelets
enhanced invasion of trophoblasts and morphological obser-
vations suggested that platelet-derived factors induced
extravillous trophoblast differentiation toward an
endovascular phenotype [2]. We have recently shown mater-
nal platelets on villous explant cultures from human first tri-
mester placenta, indicating that adherence of maternal plate-
lets to the villous surface is a common process even in early
stages of human pregnancy [3]. However, later on in pregnan-
cy, exaggerated activation of aggregated platelets at the
maternal-fetal interface is implicated in serious pregnancy pa-
thologies [4]. Accordingly, procoagulant platelet- or
endothelial-derived extracellular vesicles have been suggested
to trigger accumulation of activated platelets in the murine
placenta, causing inflammasome activation in trophoblasts
and leading to characteristic hallmarks of the pregnancy pa-
thology preeclampsia [5].
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Interestingly, initiation of microvascular flux through
capillary-sized channels of loosely cohesive trophoblast plugs
during the second half of the first trimester of pregnancy coin-
cides with a steep rise in placental secretion of the pregnancy
hormone human chorionic gonadotropin (hCG). In human preg-
nancy, hCG levels rise exponentially during the first 7 weeks, to
peak at 10 weeks of gestation and decline slowly until term [6].
The major function of hCG during human pregnancy is driving
hemochorial placentation, including regulation of uterine, fetal,
and placental growth, as well as protecting pregnancy from
myometrial contraction and from immune rejection [6]. In terms
of placental growth, hCG has been shown to trigger differentia-
tion and fusion of villous trophoblasts with the overlying, so-
called syncytiotrophoblast, which builds the epithelial-like sur-
face of placental chorionic villi [7]. HCG is predominantly syn-
thesized in the syncytiotrophoblast, and thus acts in a paracrine/
autocrine way on villous growth, which is mainly driven by
trophoblast growth at this early stage in pregnancy. The temporal
overlap of the moment when maternal platelets may get first
contact with placental chorionic villi and the steep rise in hCG
tempted us to test the hypothesis whether or not platelet-derived
factors play a regulatory role in the differentiation of the villous
trophoblast and its production of hCG.

Results

Maternal platelets can be detected at the early
maternal-fetal interface

Immunohistochemistry of 31 human first trimester placenta
tissues for platelet marker CD42b detected maternal platelets
on the surface of placental villi from gestational week 5 up to
week 12. Maternal platelets were either detected on the apical
surface of the syncytiotrophoblast (Fig. 1a, b) or on initial
perivillous fibrinoid deposits (Fig. 1c). Interestingly, some
cases showed platelets between the villous cytotrophoblast
and the syncytiotrophoblast layer (Fig. 1d). Staining of serial
sections for HLA-G (Fig. le), a marker for the invasive
extravillous trophoblast and CD42b (Fig. 1f), detected mater-
nal platelets in intercellular spaces of HLA-G-positive tropho-
blasts in anchoring parts of cell columns, which attach placen-
tal villi to the maternal decidua. Moreover, staining of adjacent
first trimester placental tissue sections for CD42b as well as
for HLA-G and von Willebrand factor (vWF), as a marker for
endothelial cells, showed maternal platelets accumulating in
close proximity of fragmentary trophoblast plugs in uterine
blood vessels (Fig. 1g, h). Overall, the immunohistochemical
survey revealed that 29 out of 31 (93.6%) first trimester pla-
centa cases showed platelets on the surface of placental villi
(Suppl. Table 1). Of note, the occurrence of platelets adhering
on initial fibrinoid deposits increased with gestational age.
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«Fig. 1 Platelet-derived factors impair hCG synthesis in the villous tropho-
blast. Immunohistochemistry of 31 human first trimester placenta tissues for
platelet marker CD42b showed maternal platelets either on the apical surface
of the syncytiotrophoblast (a, b; arrowheads) or on initial perivillous fibrinoid
deposits (¢, asterisk). Some cases showed platelets between the villous
cytotrophoblast and the syncytiotrophoblast layer (d, arrowhead). Staining
of adjacent sections for extravillous trophoblast marker HLA-G (e) and
CD42b (f) showed maternal platelets (arrowhead) in intercellular clefts of
extravillous trophoblasts. Staining of adjacent first trimester decidua sections
for CD42b showed maternal platelets (arrowheads) in close proximity of
fragmentary trophoblast plugs (g), which were identified by double immuno-
histochemistry for HLA-G (brown, arrowhead) and the endothelial marker
VWF (blue)(h). Nuclei were stained with hematoxylin in a-g; no nuclear
counterstain in h. Expression of hCG beta-subunit CGB (i) and secretion of
BhCG (j) was determined in placental explants in the presence and absence of
pHPL after 48 h. In BeWo cells, forskolin-induced (20 uM) expression of
CGB (k) and secretion of BhCG (1) was analyzed in the presence and absence
of pHPL after 48 h. DMSO (0.1% v/v) served as vehicle control.
Immunohistochemical images are representative for gestational week 6 in d
and gestational week 7 in a—c and e, f, and week 11 in g, h. Data ini and j are
presented as means = SEM from 14 different cases and were tested for
differences using two-tailed Wilcoxon’s signed rank test. Data in k and 1 are
presented as means + SEM from three independent experiments using differ-
ent cell passages and differences between groups were identified using one-
way analysis of variance followed by Tukey’s multiple comparisons test.
Scale bars represent 100 pum. *p <0.05, **p <0.01, ***p < (0.001

Platelet-derived factors reduce BhCG synthesis
in the villous trophoblast

In order to elucidate the consequence of putative platelet degran-
ulation at the early maternal-fetal interface, placental explants
and the trophoblast cell line BeWo were incubated in the pres-
ence or absence of pooled human platelet lysate (pHPL).
Presence of pHPL significantly decreased mRNA expression of
the (-subunit of human chorionic gonadotropin (encoded by
CGB) in placental explants by 35.4%, when compared with con-
trols (Fig. 1i). Analysis of explant culture supernatants matched
mRNA data, showing a 25.9% decreased FhCG secretion in the
presence of pHPL as well (Fig. 1j). Results from placental ex-
plant culture were confirmed in BeWo cells, which were stimu-
lated with forskolin, a compound well described to induce
syncytiotrophoblast formation. Both, mRNA expression (Fig.
1k) and secretion of the 3-subunit of hCG (Fig. 11) were strongly
increased upon forskolin stimulation, whereas both were signif-
icantly impaired in response to pHPL treatment after 48 h. In line
with these observations, co-incubation of ADP-stimulated plate-
lets with BeWo cells showed a similar inhibiting effect on
forskolin-induced CGB expression (Suppl. Fig. 1A).

Platelet-derived factors do not affect villous
trophoblast differentiation

Since placental BhCG synthesis in vivo occurs in the highly
differentiated syncytiotrophoblast, we next tested whether de-
creased BFhCG expression in placental explants and BeWo cells
was the consequence of impaired trophoblast differentiation in
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response to platelet-derived factors. Analyses of the transcription
factor glial cells missing homolog (GCM)1, one of the major
factors in regulating trophoblast differentiation [8], showed a
3.1-fold increase in mRNA expression after 3 h stimulation with
forskolin, which was not significantly impaired in the presence of
pHPL (Fig. 2a). On protein level, no significant changes were
observed (Fig. 2b, c). Expression of alkaline phosphatase,
placental-like 2 (ALPPL2), a marker for biochemical villous tro-
phoblast differentiation, was upregulated after forskolin treat-
ment, and was significantly impaired by pHPL (Fig. 2d).
Immunoblot analysis confirmed forskolin-induced upregulation
of ALPPL2 on protein level, which was decreased by 33.5% in
the presence of pHPL (Fig. 2¢ and f). The GCM1 downstream
targets syncytin-1 (ERVW-1, Fig. 2g) and syncytin-2 (ERVFRD-
1, Fig. 2h, both well-described fusogenic retroviral envelope pro-
teins that trigger trophoblast fusion [9, 10] were upregulated by
forskolin after 48 h cultivation, but were not significantly affected
by addition of pHPL. Moreover, expression of the cell junction
protein E-cadherin (CDH]) significantly decreased 4.5-fold as a
consequence of forskolin-induced trophoblast fusion, which was,
however, not affected by pHPL (Fig. 2i).

Since analysis of these markers did not suggest a substantial
effect of pHPL on trophoblast differentiation, we next deter-
mined effects on morphological changes in trophoblast differen-
tiation using scanning electron microscopy. Undifferentiated
BeWo cells, i.e., incubated with vehicle control alone, frequently
showed reef-like membrane ruffles on their surface, irrespective
of absence or presence of pHPL (Fig. 2j, k, respectively). In
contrast, forskolin stimulation gave rise to formation of closely
spaced microvilli (Fig. 21), which seemed less dense in the pres-
ence of pHPL after 48 h (Fig. 2m). In order to substantiate this
observation, we analyzed the expression of ezrin, a member of
the ezrin-radixin-moesin (ERM) family, which plays a major role
in formation and/or maintenance of actin-based cell surface struc-
tures [11]. Upon forskolin-induced differentiation, ezrin was sig-
nificantly upregulated 1.9-fold, whereas the presence of pHPL
had no effect on its expression (data not shown). Overall, markers
of trophoblast differentiation and fusion, as well as morphologi-
cal analysis by scanning electron microscopy indicated that im-
paired hCG synthesis in response to pHPL was not the conse-
quence of impaired syncytialization. This assumption was sub-
stantiated by the fact that pHPL addition either at experimental
start or after a preceding 48 h forskolin stimulation showed im-
paired CGB expression (Suppl. Fig. 1B).

Platelet-derived factors do not affect
forskolin-induced cAMP/CREB signaling in BeWo cells

In order to unravel underlying mechanisms, effects of pHPL on
forskolin-induced cAMP/CREB signaling were determined in
BeWo cells. Forskolin stimulation led to a steep rise in intracel-
lular cAMP after 30 min, which sustained at this level until 6 h
(Fig. 3a). Addition of pHPL did not affect the rise in intracellular
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Fig.2 Trophoblast differentiation is not significantly affected by platelet-
derived factors. Expression of transcription factor GCM1 mRNA (a) and
protein levels (b, ¢) as well as expression of differentiation marker
ALPPL2 mRNA (d) and protein levels (e, f) were analyzed in BeWo cells
after forskolin induction (20 uM) in the presence and absence of pHPL
after 3 h (GCM1I) and 48 h (ALPPL2). Additionally, expression of
markers for trophoblast differentiation and fusion, syncytin-1 (g,
ERVW-1), syncytin-2 (h, ERVFRD-1), and E-cadherin (i, CDHI) were
analyzed after 48 h. Scanning electron microscopy analyses showed
membrane ruffling in vehicle control BeWo cells (DMSO, 0.1% v/v)
incubated without (j) or with (k) pHPL for 48 h. Forskolin-stimulated

cAMP neither after 30 min nor between 1 and 6 h of forskolin
treatment (Fig. 3a). Since rising cAMP activates the cAMP re-
sponse element-binding protein (CREB), levels of activated, i.e.,
phosphorylated-CREB (pCREB) were analyzed in the absence
and presence of pHPL. As expected, forskolin stimulation of

BeWo cells showed extensive formation of microvilli in absence (1) and
presence of pHPL (m). Data in bar graphs are presented as means + SEM
from six (a), four (¢), or three (all others) independent experiments using
different cell passages. Differences between groups were identified using
one-way analysis of variance and Tukey’s multiple comparisons test (a, d,
g—i). Western blots are representative for four (b) and three (e) different
experiments. For band densitometry (c, f), controls were set to one and
data were tested using one sample 7 test. Scanning electron microscopy
images are representative for three different experiments. Scale bar in j
represents 10 um. *p <0.05, **p <0.01, ***p < 0.001

BeWo cells and subsequent ELISA showed 2.7-fold and 2.5-fold
increased phosphorylation of CREB at serine 133 after 30 min
and 1 h, respectively, while levels declined to control levels after
3 h (Fig. 3b). Addition of pHPL did not affect the forskolin-
induced activation of CREB (Fig. 3b). Interestingly, the presence
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Fig. 3 Platelet-derived factors do not affect cAMP/CREB signaling, but
activated Smad3 in BeWo differentiation. Levels of intracellular cAMP
(a) and phosphorylated CREB (b) were analyzed by ELISA in forskolin-
stimulated (20 uM) and vehicle control (DMSO, 0.1% v/v) BeWo cells in
the presence and absence of pHPL at indicated time points. Moreover,
phosphorylated CREB (pCREB) was analyzed by immunoblot (¢) and
band densitometry (d) after 1 h treatment. Expression of CREB target
gene NR4A2 (e) was analyzed in BeWo cells after forskolin induction in
the presence and absence of pHPL after 1 h. Phosphorylated Smad3
(pSmad3) was analyzed by immunoblot (f) and band densitometry (g)

of pHPL alone, without forskolin stimulation, induced a 2.4-fold
and 2.1-fold phosphorylation of CREB after 30 min and 1 h,
respectively (Fig. 3b). Data from ELISA were confirmed by
immunoblot analysis, showing no significant effect of pHPL on
forskolin-induced activation of CREB after 1 h incubation (Fig.
3c, d). Analysis of the expression of Nuclear Receptor Subfamily
4 Group A Member 2 (NR4A2), a previously described down-
stream target of cCAMP/CREB signaling [12], showed strong
induction in response to forskolin after 1 h, confirming activation
of CREB, but did not show a significant difference between
presence or absence of pHPL (Fig. 3e). In summary, pHPL treat-
ment did not significantly alter cAMP and pCREB levels in
forskolin-induced BeWo differentiation.
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after 1 h treatment. Expression of Smad3 target gene SERPINE! (h) was
analyzed in BeWo cells after 48 h. Data in bar graphs a and b are pre-
sented as means = SEM from five independent experiments using differ-
ent cell passages and were tested for differences using two-way analysis
of variance followed by Tukey’s multiple comparisons test. Western blots
are representative for three (c) and eight (f) different experiments. For
band densitometry (d, g), controls were set to one and data were tested
using one sample ¢ test. Data in e and h were analyzed using one-way
analysis of variance and Tukey’s multiple comparisons test. *p <0.05,
**p<0.01, **¥p <0.001

Platelet-derived factors activate Smad3 in BeWo cells

Since platelet-derived factors include a number of factors that
regulate growth and differentiation, such as the transforming
growth factor (TGF)-f superfamily members TGF-f3 and bone
morphogenetic proteins (BMPs)-2, BMP-4, and BMP-6, we
next analyzed effects of pHPL on TGF-f-signaling in
forskolin-stimulated BeWo cells. Initial membrane-based im-
munoblot array screening of the phosphorylation status of eight
TGF-3 pathway proteins showed that neither forskolin treat-
ment alone nor combined forskolin with pHPL activated
Smadl, Smad2, Smad4, and Smad5 (Suppl. Fig. 2 and Suppl.
Table 2). Moreover, pHPL did not activate TGF-beta-activated
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kinase (TAK)I or the transcription factors ATF2 and c-Jun,
whereas c-Fos showed increased activation in presence of
pHPL, irrespective of incubation with or without forskolin
(Suppl. Fig. 2 and Suppl. Table 2). Additional immunoblot
analysis revealed a 2.5-fold increase of phosphorylated
Smad3 in the presence of pHPL, while forskolin treatment

alone had no effect after 1 h incubation (Fig. 3f, g).
Importantly, the activation of Smad3 in response to pHPL stim-
ulation was confirmed by a second antibody clone (Suppl. Fig.
3). Analysis of the well-described Smad3 downstream target
plasminogen activator inhibitor (PAI)-1 [13], encoded by the
gene SERPINEI, showed a 3.3-fold upregulation after
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Fig. 4 Inhibitors of TGF-{3/Smad3-signaling do not restore impaired
BhCG synthesis. BeWo cells were pre-incubated with SB431542 at final
concentrations of 10 uM for 2 h. Thereafter, CGB (a), ALPPL2 (b), and
SERPINE] (c) expressions were analyzed in BeWo cells after forskolin
induction (20 uM) in the presence and absence of pHPL and with or
without SB431542 (10 uM) after 48 h. Efficiency of SB431542 (d) and
SIS3 (e, 10 uM) was evaluated by immunoblots for phosphorylated
Smad3 (pSmad3) in BeWo cells, after pre-incubation with the inhibitors
for 1 h and subsequent stimulation with or without pHPL or TGF-31
(10 nM) for 1 h. Expression of CGB (f) and secretion of BhCG (g) were
analyzed in BeWo cells after forskolin induction (20 M) in presence and
absence of pHPL and with or without SIS3 (10 uM) after 48 h.

Immunoblots and band densitometry for pSmad3 (h, i) and pCREB (j,
k) were analyzed in BeWo cells after 1 h pre-incubation with SIS3
(10 uM) and subsequent forskolin stimulation in presence and absence
of pHPL for 1 h. Data in bar graphs are presented as means + SEM from
five (f) and three (all others) independent experiments using different cell
passages. Data in a—c and f and were tested for differences using one-way
analysis of variance followed by Tukey’s multiple comparisons test.
Western blots are representative for three (d, e) and five (h, j) different
experiments. For data analysis of secreted hCG (g) and band densitom-
etry (i, k), controls were set to one and data were tested using one sample ¢
test. *p <0.05, ¥*¥*p<0.01, ***p <0.001
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treatment with pHPL alone, while combined administration of
forskolin and pHPL impaired this effect after 48 h (Fig. 3h).
These data suggest that platelet-derived factors activate
TGF--signaling through Smad3 activation in BeWo cells.

Inhibitors of TGF-/Smad3-signaling do not restore
impaired BhCG synthesis

To determine whether impaired FhCG synthesis in response to
platelet-derived factors was a result of TGF-[3-signaling and
Smad3 activation, we next used SB431542, a selective inhibitor
of the TGF-f3 type I receptor (TGFBR1). While pHPL again
decreased CGB (Fig. 4a) and ALPPL?2 (Fig. 4b) expressions in
forskolin-stimulated BeWo cells by 50% and 40%, respectively,
an addition of SB431542 did not reverse this effect. In contrast,
pHPL-induced SERPINEI upregulation was significantly
blocked by SB431542, suggesting sufficient efficiency of the
inhibitor (Fig. 4c). However, administration of SB431542 did
only partially inhibit pHPL-induced activation of Smad3 (Fig.
4d), arguing against the involvement of TGFBRI in impaired
CGB expression.

Next, we used SIS3, a specific inhibitor of TGF-{3/Smad3
signaling [14], which showed appropriate efficiency to decrease
TGF-B-induced Smad3 phosphorylation in BeWo cells (Fig. 4¢).
However, SIS3 did not block the pHPL-mediated decrease of
BhCG mRNA expression (Fig. 4f) and secretion (Fig. 4g) in
forskolin-stimulated BeWo cells. Surprisingly, SIS3 administra-
tion alone, i.e., without addition of forskolin and/or pHPL,
showed a substantial 11-fold induction of CGB expression, when
compared with the non-stimulated control (Fig. 4f). This led us to
further investigate the effects of SIS3 on both Smad3 and CREB
activation in forskolin-stimulated BeWo cells, which were incu-
bated with or without pHPL. Accordingly, phosphorylation of
Smad3 increased in the presence of pHPL in non-stimulated cells
and was blocked almost to control levels by SIS3 after 1 h (Fig.
4h, 1). However, in forskolin-stimulated cells, SIS3 did not inhibit
pHPL-induced Smad3 phosphorylation (Fig. 4h, i). Although
described as specific Smad3 inhibitor, SIS3 showed considerable
effects on CREB phosphorylation. In non-stimulated cells, SIS3
per se induced CREB phosphorylation, while in forskolin-
stimulated cells SIS3 administration considerably inhibited phos-
phorylation of CREB (Fig. 4j, k). Together, these data suggest an
interference between Smad3 and CREB signaling in BeWo cells.

CREB-binding proteins are required for efficient BhCG
synthesis

The transcription co-activators CREB-binding protein (CBP)
and p300 (also referred to as EP300) have been implicated to
play essential roles in both, Smad- and CREB-driven gene ex-
pression [15]. Thus, we analyzed CBP and p300 protein levels,
to determine whether impaired 3hCG synthesis was a result of
deregulated co-activators. However, neither CBP (Fig. 5a, ¢) nor
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p300 (Fig. 5b, d) protein levels were significantly changed in the
presence of pHPL. Forskolin stimulation showed a trend to de-
crease p300 levels by 30%, which however did not reach statis-
tical significance. Next, we tested whether CREB-binding pro-
teins are required for CGB expression. Administration of C646, a
selective inhibitor of CBP and p300 [16], significantly impaired
forskolin-induced CGB expression in BeWo cells by 57.1% after
24 h (Fig. Se). Finally, we tested whether or not there is an
additive effect, when cells were co-treated with the CBP/p300
inhibitor and pHPL. While incubation with C646 or pHPL alone
showed similar inhibiting effects, co-incubation of cells with
C646 and pHPL did not show an effect beyond the p300/CPB
inhibition with C646 alone (Fig. Se).

Discussion

Here, we provide evidence that platelet-derived factors impair
placental hCG synthesis. Although trophoblast plugs in uterine
arteries obstruct maternal arterial blood flow to the developing
placental chorionic tissue during the first trimester of human
pregnancy, maternal platelets may pass through narrow
intertrophoblastic gaps that have been suggested to enable initial
microvascular flux by 7 weeks of gestation [1]. We show plate-
lets on the surface of placental villi from 5 weeks gestation on-
wards, where they either adhered directly on the apical surface of
the syncytiotrophoblast or on initial perivillous fibrinoid.
Moreover, we detected platelets between the villous
cytotrophoblast and the syncytiotrophoblast layer. These obser-
vations suggest that platelets gain access to the intervillous space
early in first trimester, and moreover, that they are involved in re-
epithelialization of damaged syncytiotrophoblast areas and con-
tribute to perivillous fibrin deposition. On the basis of these as-
sumptions, it is tempting to speculate whether or not alterations in
the intensity of maternal plasma flow may affect the degree of
adherence and activation of maternal platelets at the maternal-
fetal interface. Once uteroplacental blood flow is completely
established, turbulences may cause shear stress and subsequent
injury to the trophoblast layer. Damaged regions of villi may
become denuded of syncytiotrophoblast, and exposure of extra-
cellular matrix molecules may induce the maternal coagulation
cascade, eventually leading to depositions of fibrin-type fibrinoid
at these sites of injury [17]. Consequently, the syncytial epitheli-
um may become re-established over the fibrin matrix by
cytotrophoblasts which proliferate, differentiate, and fuse [18,
19].

Our observation of maternal platelets in intercellular spaces of
HLA-G-positive trophoblasts in anchoring parts of cell columns
may represent a yet unidentified way how platelets can enter the
early intervillous space. Moreover, we detected maternal platelets
in fragmentary trophoblast plugs of uterine blood vessels, which
is in good agreement with a previous study by Sato et al. [2].
From our staining, it is not possible to assess whether or not they
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Fig. 5 Inhibition of CBP/p300 impairs CGB expression in BeWo cells.
Immunoblots and band densitometry for CBP (a, ¢) and p300 (b, d) were
analyzed in BeWo cells after forskolin stimulation (20 uM) in the pres-
ence and absence of pHPL after 1 h. CGB expression (e) was analyzed in
BeWo cells after forskolin induction (20 uM) in presence and absence of
C646 (20 uM) after 24 h. Data in ¢ and d are presented as means + SEM

get activated by this passage. However, previous co-culture of
isolated extravillous trophoblasts with platelets led to externali-
zation of P-selectin to the surface of adherent platelets, suggest-
ing they had been activated [2]. Hence, adherence and activation
of maternal platelets in narrow intercellular gaps of trophoblast
plugs or cell columns may be followed by degranulation and
release of granule-stored factors, which then could easily be
transported into the intervillous space by the maternal ultrafil-
trate, blood plasma [20].

Villous trophoblast differentiation and fusion are regulated by
a wide panel of growth factors and cytokines [21], some of
which, like epidermal growth factor (EGF) and TGF-f3, are abun-
dantly found in platelet granules and pHPL [22]. However, our
data suggest that morphological differentiation, if at all, is only
marginally impaired in the presence of platelet-derived factors.
The observation of impaired hCG synthesis despite unchanged
differentiation argues for different regulatory mechanisms, which
may be interconnected, but may not necessarily be regulated
through the same pathways. This has previously been suggested
by Johnstone et al., who showed that EGF treatment of primary
trophoblasts inhibited hCG secretion, but at the same time stim-
ulated syncytialization [23]. Moreover, hCG synthesis has been
reported in forskolin-stimulated BeWo cells that were hindered to
fuse by treatment with the protein kinase inhibitor H-89 [24],
again arguing for different regulatory mechanisms.

from four, and those in e from three independent experiments using dif-
ferent cell passages. Western blots are representative for four different
experiments. For data analysis of band densitometry (¢, d), controls were
set to one and data were tested using one sample 7 test. Data in e were
tested for differences using one-way analysis of variance followed by
Tukey’s multiple comparisons test. ***p < 0.001

In the present study, we demonstrate that hallmarks of tropho-
blast fusion, such as reduction in E-cadherin expression [25], as
well as upregulation of syncytins [9] and microvilli formation
were not significantly altered by platelet-derived factors.
However, it should be stressed that sample size of cell culture
experiments in this study is too small to identify minor but sta-
tistically significant differences between treatments. Since neither
morphology nor differentiation markers significantly changed,
we suggest that impaired BhCG synthesis in response to
platelet-derived factors was not the consequence of impaired
syncytialization. Thus, platelet-derived factors may directly act
on the syncytiotrophoblast—an assumption which is supported
by the fact that BhCG synthesis was impaired by platelet-derived
factors regardless of adding them at experimental start or after
48 h forskolin stimulation, when syncytialization already had
occurred (Suppl. Fig. 1B). This is in good agreement with a study
by Song et al., showing a reduction in hCG production, when
adding TGF-[3 to primary trophoblasts after 4-day culture, after
transformation of cyto- to syncytiotrophoblast has taken place
[26].

Indeed, TGF-f3 has previously been described to decrease a
number of fundamental trophoblast-derived pregnancy hor-
mones, including progesterone and estradiol as well as human
placental lactogen (hPL) and hCG [26-28]. Moreover, TGF-[3-
Smad signaling has been shown to decrease expression of
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GCM1 and ERVW-1 in villous explants and BeWo cells [29].
Though platelets are a major source of TGF-f3, our inhibitor
experiments using SB431542 rather argue against the involve-
ment of TGF-f3 type I receptor in this process. However, it is
important to stress that forskolin abrogates the inhibiting action
of SIS3 on Smad3 activation, and, moreover, SIS3 per se acti-
vates CREB. If this observation is just the result of unspecific
side effects by SIS3 or some upstream interaction between
Smad3 and CREB signaling remains unclear at this point.
Importantly, increased levels of cAMP, which is a key messenger
of many hormones and neuropeptides, have been shown to an-
tagonize the effects of TGF-f3 [15].

Previous experiments with human dermal fibroblasts revealed
a functional interaction between cAMP/CREB and TGF-f3 sig-
naling, resulting in a strong suppressive effect of both forskolin
and the membrane-permeable cAMP analog dibutyryl-cAMP on
extracellular matrix (ECM)-related genes, including collagen
type I, connective tissue growth factor (CTGF), TIMP
metallopeptidase inhibitor 1, and PAI-1. This suppressive effect
has been explained by sequestration of the co-activators CBP and
p300 by activated CREB, as shown by elegant experiments using
a mammalian two-hybrid system [15]. Our observation of im-
paired PAI-1 mRNA expression in response to combined admin-
istration of forskolin and pHPL (Fig. 3h) may thus be explained

by interference of c(AMP/CREB and TGF-{3 signaling. Since the
amount of nuclear CBP/p300 is limited, formation of CREB-
CBP/p300 complexes may reduce the amount of CBP/p300
available to Smad3 and vice versa. Thus, it is tempting to spec-
ulate that platelet-derived TGF-f3 activates Smad3, which se-
questrates co-activators CBP and/or p300 and in turn reduces
their availability to CREB, leading to reduced BhCG synthesis
in forskolin-stimulated trophoblasts (Fig. 6). The interaction of
Smad3 and CBP and/or p300 has previously been shown by co-
immunoprecipitation of overexpressed FLAG- or Myc-tagged
Smad3 and co-activators, respectively [30]. Unfortunately, co-
immunoprecipitation of Smad3 and CBP/p300 failed in our cells,
which may be explained by the fact that endogenous levels of
involved proteins are too low for successful pull-down.
However, our experiments with the selective CBP/p300
inhibitor C646 showed significantly impaired forskolin-
induced CGB expression, which was not further impaired after
simultaneous C646 and pHPL treatment, suggesting that the
amount of CBP/p300 available to CREB is indeed a rate-
limiting factor for trophoblastic hCG synthesis. Of note, pre-
vious immunostainings showed activated CREB and CBP
strongly expressed in nuclei of the syncytiotrophoblast,
whereas p300 seems to be primarily expressed in
cytotrophoblasts but could also be detected in a low number

platelet-derived
factors
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| Smads |
l Smad4 | /| CBP/p300 |-~~\

i il
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CTGF

Fig. 6 Proposed concept how platelet-derived factors impair placental
BhCG synthesis. Activation of maternal platelets at the maternal-fetal
interface is followed by degranulation of granule-stored factors, which
then could easily be transported into the intervillous space (IVS) where
they can act on the syncytiotrophoblast (ST). Activation of Smad signal-
ing in response to platelet-derived factors induces expression of Smad3
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targets, such as plasminogen activator inhibitor 1 (PAI-1, encoded by
SERPINEI) and connective tissue growth factor (CTGF). At the same
time, activation of Smad-signaling abrogates CREB-dependent expres-
sion of BhCG (CGB) and alkaline phosphatase, placental-like 2
(ALPPL?2) by sequestrating the transcriptional co-activators CBP/p300
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of syncytial nuclei [31]. Smad3 is considerably expressed in
isolated primary extravillous trophoblasts, whereas it has been
detected only marginally in the villous trophoblast population,
suggesting that TGF-{3-mediated Smad-signaling is largely
absent in the floating placental epithelium under homeostatic
conditions [32]. However, TGF-3 Smad-dependent signaling
through activation of TGF-3-receptors has been previously
shown by others in first trimester placental explant culture
[29, 33] and our own current data demonstrate that platelet-
derived factors substantially induced PAI-1, a well-described
downstream target of TGF-3/Smad-signaling [13].
Upregulation of placental PAI-1, as a consequence of
perivillous platelet aggregation, may promote augmented de-
position of fibrin-type fibrinoid by inhibiting both tissue plas-
minogen activator (tPA) and urokinase-type plasminogen ac-
tivator (uPA). Importantly, deposition as well as continuous
clearance of fibrin-type fibrinoid are normal events in human
placenta throughout pregnancy [34]. A disbalanced turnover
of placental fibrin-type fibrinoid has been suggested for preg-
nancies complicated by pregnancy-induced hypertension [35,
36] and maternal diabetes mellitus [37].

Impaired placental hCG secretion in response to platelet-
derived factors may have serious consequences on pregnancy
outcome, since multiple important steps of early placentation,
including trophoblast proliferation, differentiation, and inva-
sion, are regulated by this hormone [38]. In line with this
assumption, previous studies suggest that low hCG concentra-
tions in late first trimester may be associated with increased
risk to develop preeclampsia later on in pregnancy [39, 40].
Interestingly, low hCG concentrations very early in pregnancy
have been associated with a subsequent risk of preeclampsia
as well. This has been shown in a prospective follow-up study
of pregnancies conceived after [IVF. Accordingly, maternal
concentrations of hCG on day 12 after embryo transfer were
inversely associated with the risk for severe preeclampsia in a
dose-dependent manner [41]. Whether antiplatelet therapy in
carly gestation abolishes impaired hCG production by
blocking platelet activation at the maternal-fetal interface re-
mains speculative. Amongst anticoagulants, low-dose aspirin
administration in early pregnancy is currently controversially
discussed to have beneficial effects on pregnancy outcome.
Meta-analyses of randomized controlled trials suggest that
aspirin reduces the risk of preterm preeclampsia, but not term
preeclampsia, and only when it is initiated at <16 weeks of
gestation and at a daily dose of > 100 mg [42]. However,
compliance with treatment and individual response may also
contribute to the effectiveness of aspirin therapy [43].

In summary, our study suggests that maternal plate-
lets can pass through intercellular clefts of extravillous
trophoblast plugs and cell columns, enabling entrance
into the early intervillous space. By the time of platelet
activation and degranulation, platelet-derived factors im-
pair placental BhCG production, without substantially

affecting morphological and biochemical differentiation
of villous trophoblasts.

Materials and methods
Human placenta tissue samples

The study was approved by the ethical committee of the
Medical University of Graz (26-132 ex 13/14 and 31-019 ex
18-19). First trimester placental tissues were obtained between
weeks 5 and 12 of gestation with written informed consent
from women undergoing legal elective pregnancy
terminations.

Immunohistochemistry and immunohistochemical
double staining

Human formalin-fixed paraffin-embedded (FFPE) first tri-
mester placenta tissues (n =31, mean gestational week 8.01
+2.08, see Suppl. Table 1) were cut (5 pm) and mounted on
Superfrost Plus slides. After deparaffinization, slides were
subjected to antigen retrieval by boiling sections in Epitope
Retrieval Solution pH 9.0 (Novocostra, Leica) for 7 min at
120 °C. Thereafter, sections were stained using a staining
robot (Autostainer 360; Thermo Fisher Scientific) with prima-
ry antibodies as indicated in Suppl. Table 3 using the
UltraVision Large Volume Detection System HRP Polymer
Kit (Thermo Fisher Scientific) as previously described [3, 44].

Immunohistochemical double staining was performed with
the Multivision Polymer Detection system using mouse
monoclonal anti-HLA-G and rabbit polyclonal anti-vWF an-
tibodies using dilutions as indicated in Suppl. Table 3 accord-
ing to the protocol previously described [45].

Placental explant culture

Placental villous tissue from human first trimester (n = 14,
mean gestational week 8.26 &+ 0.45) was thoroughly rinsed in
buffered saline and dissected into small pieces of approxi-
mately 5 mg moist mass as described previously [46].
Placental explants were cultured in 6 well dishes (Nunc) and
4 ml/well DMEM (including low glucose, pyruvate, L-gluta-
mine) supplemented with 10% FCS (HyCloneTM; Gibco)
and penicillin/streptomycin (Gibco), in a hypoxic workstation
(BioSpherix; Redfield, NY, USA) under 2.5% oxygen for in-
dicated durations at 37 °C. For treatments, culture medium
was supplemented with 10% pooled human platelet lysate
(pHPL) and heparin (Merck, Darmstadt, Germany). Heparin
served as an anticoagulant and was added to pHPL-
supplemented media as well as to the controls at a final con-
centration of 2 U/ml. pHPL was produced at the Department
of Transfusion Medicine, Paracelsus Medical University of
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Salzburg as previously described [47]. In brief, each batch of
pHPL was prepared by pooling ten expired buffy-coat-derived
platelet concentrates (40 blood donations) after lysis by sev-
eral freeze-thaw cycles at —30 /37 °C and a final centrifuga-
tion step (4000 x g 15 min) to deplete platelet fragments.

Culture of BeWo cell line

BeWo cells were purchased from the European
Collection of Cell Cultures (ECACC) and were cultured
as previously described [48]. In brief, BeWo cells were
cultured in DMEM/F12 (1:1, Gibco, life technologies;
Paisley, UK) supplemented with 10% FCS (Gibco),
penicillin/streptomycin (Gibco), and L-glutamine
(Gibco) in a humidified atmosphere of 5% CO, at
37 °C. Cells between passage 10 and 20 were used
for in vitro experiments. In case of forskolin treatment,
cells (2x10° cells/well) were plated in 12-well dishes
(Nunc Lab-Tek, Thermo Fisher; NY, USA) one day pri-
or to experimental start in the above described culture
medium. Next day, the culture medium was exchanged
with a medium including forskolin (Tocris, Bio-techne,
Abingdon, UK) at a final concentration of 20 uM
(20 mM stock in DMSO) supplemented with or without
10% pHPL. DMSO served as the vehicle control for
forskolin and was applied at a final concentration of
0.1% (v/v).

For inhibitor experiments, BeWo cells were pre-incubated
for 1 h at the following concentrations: 10 uM for SB431542
(Sigma-Aldrich), 10 uM for SIS3 (Tocris, Bio-techne, UK),
and 20 uM for C646 (Sigma). After pre-incubation, culture
medium was exchanged with medium supplemented with or
without 20 uM forskolin or solvent control, 10% pHPL and
inhibitors, respectively, as indicated. Cell culture experiments
were repeated three times or more (as indicated in the figure
legends), using different cell passages.

gPCR analysis

Total RNA was isolated with peqGOLD TriFast (VWR,
Radnor, Pennsylvania, USA) according to the manufacturer’s
instructions. Quality check was followed by reverse transcrip-
tion of 1 pg total RNA per reaction using High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) ac-
cording to manufacturer’s manual. qPCR was performed with
Universal SYBR Green Supermix (Bio-Rad, Hercules, CA,
USA) using a Bio-Rad CFX96 cycler as previously described
[49] with specific primers and the run protocol shown in
Suppl. Table 4. Cq values were automatically determined
using single thresholds and normalized expression (AACq
analysis) was automatically generated by the CFX Manager
2.0 Software (Bio-Rad). The expression of GAPDH, CYCl,
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and YWHAZ was used as reference, according to a previous
evaluation of housekeeping genes in placental tissue [S0].

Measurement of secreted BhCG

Culture media were collected at indicated time points and
centrifuged at 1500 rpm for 5 min. Supernatants were stored
at — 80 °C and subjected in groups to routine immunoassay
analyses (Dimension Xpand; Dade Behring Inc., Deerfield,
Illinois). Obtained values were normalized to total cell and
tissue protein, respectively, and controls were set to 1.

Immunoblotting

After incubations, cells and placental explants were
washed with PBS and homogenized in RIPA buffer
(Sigma-Aldrich) including protease inhibitor cocktail
(Roche Diagnostics; Mannheim, Germany) and
phosSTOP (Roche Diagnostics). Homogenates were cen-
trifuged at 8000 x g and 4 °C for 10 min. Concentration of
total protein was determined in clear supernatants accord-
ing to Lowry method. Twenty micrograms total protein
were applied to precast 10% Bis-Tris or 3-8% Tris-
Acetate gels (NuPAGE, Novex; lifetechnologies).
Proteins were blotted on a 0.45-pum nitrocellulose mem-
brane (Hybond, Amersham Biosciences, GE Healthcare
Life Sciences, Little Chalfont, UK) and blotting efficiency
was determined with Ponceau staining (Ponceau S solu-
tion, Sigma Aldrich). Membranes were cut in horizontal
strips at molecular weight ranges for target proteins.
Primary antibodies were diluted as described in Suppl.
Table 3 and incubated on membranes overnight at 4 °C.
HRP conjugated goat anti-mouse and goat anti-rabbit IgG
(1:3000, Bio-Rad) were used as secondary antibodies
and incubated on membranes for 2 h at RT.
Immunodetection was performed with a chemilumines-
cent immunodetection kit (Amersham ECL Prime
Western blotting detection Reagent) according to the man-
ufacturer’s instructions. Images were acquired with
FluorChem Q System (Alpha Innotech, Cell Bioscienes,
Santa Clara, CA, USA) and iBright CL 1000 Imaging
System (Thermo Fischer Scientific) and band densities
were analyzed with Li-Cor Image Studio Lite 5.2.
Results are presented as a ratio of band densities of target
protein and reference proteins GAPDH and vinculin with
control samples set to one.

Scanning electron microscopy

BeWo cells were seeded in 12-well culture dishes containing
round cover slips (15 mm, Thermo Fischer Scientific) at a
density of 2 x 10° cells/well. Next day, cells were stimulated
with forskolin (20 uM) and incubated in the absence or
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presence of pHPL as described above. DMSO served as the
vehicle control for forskolin and was applied at a final con-
centration of 0.1% (v/v). After 48 h culture, cells were washed
in PBS and fixed in 2% paraformaldehyde and 2.5% glutaral-
dehyde solved in 0.1 M sodium phosphate buffer (pH 7.4).
After rinsing in sodium phosphate buffer, specimens were
post-fixed in 2% osmium tetroxide (Electron Microscopy
Sciences) solved in 0.1 M sodium-phosphate buffer (pH 7.4)
and rinsed again. Each step was performed for 30 min at RT.
After dehydration in a graded series of ethanol and critical
point drying (CPD 030; Bal-Tec, Balzers, Liechtenstein), sam-
ples were sputter coated with gold palladium (SCD 500; Bal-
Tec, Balzers, Liechtenstein). Images were acquired using a
Zeiss Sigma 500 field emission scanning electron microscope
(Zeiss, Oberkochen, Germany), operated at an acceleration of
3 kV with an Everhart-Thornley-secondary electron detector.

Analysis of intracellular cAMP and pCREB levels

cAMP levels were measured in BeWo cell lysates in
duplicates without acetylation step using the Direct
cAMP ELISA kit (Enzo Life Sciences, Switzerland),
according to the manufacturer’s manual. pCREB levels
were measured in BeWo cell lysates using Human
Phospho-CREB (S133) DuoSet IC ELISA (R&D
Systems, Bio-techne, Abingdon, UK) according to the
manufacturer’s protocol.

Statistical analysis

Data were analyzed using GraphPad Prism Version 8.1.0 and
are presented as means + SEM. Data were subjected to
Normality test (D’Agostino and Pearson omnibus normality
test) and equal variance test. In case of normally distributed
data differences between groups were tested using two-tailed ¢
test. Otherwise Wilcoxon’s signed rank test was applied. For
multiple comparison procedure, one-way analysis of variance
was followed by Tukey’s multiple comparisons test to isolate
groups that differ from the others. One sample 7 test was used
when controls were set as 1. A p value of less than 0.05 was
considered statistically significant.
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