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We recently showed that blunt chest trauma reduced the expression of the myocardial oxytocin receptor (Oxtr), which was further
aggravated by genetic deletion of the H2S-producing enzyme cystathionine γ-lyase (CSE). Exogenous H2S supplementation
restored myocardial Oxtr expression under these conditions. Early life stress (ELS) is a risk factor for cardiovascular disease by
affecting vascular and heart structures. Therefore, we tested the hypotheses that (i) ELS affects cardiac Oxtr and CSE expressions
and (ii) Oxtr and CSE expression patterns depend on the duration of stress exposure. Thus, two stress paradigms were
compared: long- and short-term separation stress (LTSS and STSS, respectively). Cardiac Oxtr expression was differentially
affected by the two stress paradigms with a significant reduction after LTSS and a significant increase after STSS. CSE
expression, which was significantly reduced in Oxtr-/- knockout hearts, was downregulated and directly related to Oxtr
expression in LTSS hearts (r = 0:657, p = 0:012). In contrast, CSE expression was not related to Oxtr upregulation in STSS.
Plasma Oxt levels were not affected by either ELS paradigm. The coincidence of LTSS-induced reduction of cardiac Oxtr and
reduced CSE expression may suggest a novel pathophysiological link between early life adversities and increased risk for the
development of cardiovascular disorders in adulthood.

1. Introduction

Maternal separation (MS) is a robust and widely used animal
model for inducing early life stress (ELS), a paradigm that is
applied using different protocols, especially regarding the
duration and time point of stress exposure [1, 2]. Depending
on the type of ELS exposure, rodents showed adaptive
responses resulting in resilience to stressors encountered
later in life, ultimately resulting in psychological and physio-

logical well-being [3, 4]. Our previous studies in mice
revealed that “mild” short-term separation stress (STSS)
induced by MS during postnatal days (PND) 14-16 resulted
in reduced depressive-like behavior in adulthood [5] and epi-
genetically regulated activation of synaptic plasticity gene
expression in the hippocampal formation, which was paral-
leled by an increase in dendritic complexity and number of
excitatory spine synapses [6]. In contrast, we observed that
“chronic” long-term separation stress (LTSS) induced by
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MS from PND 1 to PND 21 and subsequent social isolation
increased depressive-like behavior in adult males with ele-
vated hippocampal Oxtr gene expression upon an adult stress
challenge [5, 7]. Another study demonstrated that intra-
cerebroventricular Oxt injections protected against the devel-
opment of ELS-induced depressive-like behaviors through
modulation of hippocampal mitochondrial function and
neuroinflammation [8].

It is well established that Oxt acts not only as a neuromo-
dulator, released from hypothalamic neurons, regulating
social-emotional behavior [9], e.g., mother-child relation-
ship [10], but also as a peripheral hormone. Beyond pro-
motion of parturition and lactation [11], Oxt also
critically influences peripheral organ functions [12]. In par-
ticular, Oxt exerts cardioprotective effects via negative chron-
otropic and inotropic properties [13], release of nitric oxide
[14], anti-inflammatory and antioxidative properties [15],
and modulating glucose utilization [16]. Since ELS, such as
childhood maltreatment, may provide a critical programing
factor for the development of coronary artery disease
(CAD), diabetes [17], and hypertension [18] at later life
periods, it is tempting to speculate that these effects might
at least in part be mediated by ELS-induced changes of Oxt
function. This hypothesis is supported by studies in animal
models showing that MS results in cardiac changes including
cardiomyocyte hypertrophy as well as cardiac fibrosis [19].
More data is available showing that MS results in changes
on the vascular level by misprogramming of resistance artery
smooth muscles [20], increased vasoconstriction [21], and
blood pressure [22, 23]. These alterations are induced by
superoxide production and endothelial dysfunction [24],
inflammation [25], and sensitizing of the renal and sympa-
thetic systems [26].

Hydrogen sulfide (H2S) produced by vascular and cardiac
activity of CSE [27] is another factor known to exert protec-
tive effects in the cardiovascular (CV) system by relaxation of
vascular smooth muscles, thereby inducing vasodilation and
reduction of blood pressure [28]. Interestingly, these effects
are also reported for the Oxtr system [14]. Finally, both the
H2S [29] and oxytocin [30] systems exert their protective
effects via antioxidant properties. However, this data might
only suggest a possible interaction between the cardiac H2S
and Oxtr system in ELS. The H2S-releasing salt NaHS atten-
uated the ELS-induced colonic epithelial damage, oxidative
stress, and inflammation [31]. We have recently shown that
the slow-releasing H2S donor GYY4137 restored the myocar-
dial Oxtr expression in mice lacking the H2S-generating
enzyme cystathionine γ-lyase (CSE) that had undergone cig-
arette smoke exposure to induce chronic obstructive pulmo-
nary disease (COPD) prior to blunt chest trauma [32].
Hence, we hypothesized that ELS affects cardiac Oxtr expres-
sion and that these changes are dependent on the dose or
duration of stress exposure. To test these hypotheses, we
measured circulating Oxt plasma levels and cardiac tissue
Oxtr protein expression in two different ELS paradigms:
“chronic” LTSS and “mild” STSS. These measurements were
complemented by analysis of the cardiac CSE expression,
guided by the hypothesis that CSE is linked to stress-
induced Oxtr changes in the heart.

2. Material and Methods

2.1. Animal Models

2.1.1. Housing Conditions. C57BL/6 mice were used for the
present study. All experimental animals were bred in our ani-
mal facility and housed on a 12h light-dark cycle with food
and water provided ad libitum. During pregnancy, the home
cages were cleaned once a week to minimize pregnancy
stress. After delivery of the pups (day of birth=postnatal
day, PND 0), the home cages were not cleaned for the first
16 PND to minimize stress for the mother and her pups.
To prevent potential litter effects, a split litter design was
used, andmales from different litters were randomly assigned
to the four different experimental groups, two different stress
groups, and the respective control groups (see below). Ani-
mals for the respective experiments were derived from at
least 7 litters per group, with the exception of the Oxt plasma
concentration analysis in the LTSS animals. Litter size was
between 6 and 8 animals with random distribution of male : -
female ratio; however, only litters with near-equal male : -
female ratio were used for experiments. All animals were
handled in accordance with the German guidelines for the
care and use of animals in laboratory research. The protocols
were approved by the ethics committee of the government of
the state of Saxony-Anhalt (§8 TSchG; AZ: 42502–2-1272).

2.2. “Chronic” Long-Term Separation Stress (LTSS)

2.2.1. LTSS Paradigm. Pups of this group were exposed to
daily MS from PND 1 to PND 21 by removing them from
the home cage and individually placing them in isolation
boxes (13 × 13 cm, covered with paper bedding) for 3 h each
day (9:00–12:00), which allowed olfactory and auditory but
no visual or body contact with their separated siblings. Dur-
ing the first week, the isolation boxes were placed in a humid-
ified incubator at 32°C. The dam remained undisturbed in
the home cage. Prior to the return of the pups, fresh nesting
material was provided in order to distract the mother from
“overmothering” her pups during reunion. After weaning
on PND 21, the animals were housed individually until the
time of the respective experiment.

2.2.2. Control Animals (CON). Animals of this control group
lived undisturbed with their mother and littermates. After
weaning on PND 21, they were group housed with a maxi-
mum of 6 same-sex individuals until the time of the respective
experiment on PND 64. Each experiment was conducted with
a parallel individual control group. The control group used
was identically treated as described here [7].

2.3. “Mild” Short-Term Separation Stress (STSS)

2.3.1. STSS Paradigm. Pups of this group were separated from
their mother on PND 14-16 using the same separation condi-
tions as described for the LTSS group (see above). After the
last separation session on PND 16, the pups remained undis-
turbed until weaning on PND 21. On PND 21, the animals
were reared in groups with a maximum of 6 individuals until
the onset of the experiments on PND 64.
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2.3.2. Control Animals (CON). Animals of the control group
were treated and housed as described for the control animals
of the LTSS experiment.

2.4. Homozygous and Heterozygous Oxtr Knockout. Male
Oxtr-/- and Oxtr+/- knockout mice were maintained on a
mixed 129 × C57BL/6J genetic background as described by
Takayanagi et al. [33]. For immunohistochemical analyses,
two animals were used, and for Western blot analyses, one
animal was used.

2.5. Immunofluorescence. Control hearts were embedded in
Tissue-Tek O.C.T.™. Cryosections (7μm) were acetone-
fixed and immunolabeled with the following antibodies:
rabbit anti-Oxtr (1 : 1000, Sigma-Aldrich, St. Louis), mouse
anti-smooth muscle actin (SMA, 1 : 100, Dako, Agilent, Santa
Clara), Alexa Fluor goat anti-rabbit 488 (1 : 1000, Invitrogen,
Carlsbad), and Alexa Fluor goat anti-mouse 555 (1 : 1000,
Invitrogen, Carlsbad). Images were captured with a Leica
DMI6000B microscope and edited with ImageJ 1.46.

2.6. Immunoblotting. On PND 64, mice were sacrificed by
decapitation. Hearts were dissected, perfused with PBS, and
immediately frozen in liquid nitrogen. For the lysate fraction-
ing, whole hearts were mechanically homogenized in RIPA
buffer containing phenylmethanesulfonyl fluoride (PMSF).
Total lysates were obtained by centrifugation for 15min at
4°C with 1000 × g. The membrane fraction used for Oxtr/-
Gapdh Western blot analyses was gained by centrifugation
of total lysates for 30min at 4°C with 12,000 × g. In prelimi-
nary tests, this fraction showed the highest protein expres-
sion level. Protein concentrations were measured using
BCA assay (Pierce BCA Protein Assay Kit, Thermo Fisher
Scientific, Waltham). 50μg protein was separated in a 12%
sodium dodecyl sulfate-polyacrylamide gel and blotted to a
polyvinylidene fluoride (PVDF) membrane (Membrane
Hybond-P, GE Healthcare, Chalfont St. Giles). Visualization
was performed using a ChemiDoc MP imaging system
(Bio-Rad Laboratories, Hercules). The following antibodies
were used: rabbit anti-Oxtr (1 : 1000, Sigma-Aldrich, St.
Louis), mouse anti-Gapdh (1 : 500, Thermo Scientific, Wal-
tham), horseradish peroxidase (HRP) goat anti-mouse
(1 : 10,000, Invitrogen, Carlsbad), and HRP swine anti-rabbit
(1 : 1000, Dako, Agilent, Santa Clara). Optical densities of pro-
tein bands were determined using ImageJ 1.46. Oxtr was nor-
malized to the housekeeping gene Gapdh.

2.7. Immunohistochemistry. Additional groups of LTSS and
STSS and their respective control animals as well as Oxtr-/-

knockout hearts were formalin-fixed and paraffin-
embedded. 4μm sections were stained with the following
antibodies: rabbit anti-Oxtr (1 : 50, Proteintech, Manchester),
rabbit anti-CSE (1 : 1000, Proteintech, Manchester), and sec-
ondary alkaline phosphatase- (AP-) conjugated goat anti-
rabbit IgG (1 : 25, Jackson ImmunoResearch Europe Ltd.,
Cambridgeshire). The chromogen used for the AP reaction
was AP red (Dako REAL Detection System, Dako,
Denmark). Images were captured with a 10x lens using a
Zeiss Axio Scope A1 microscope, and four 800,000μm2 sec-
tions per animal were quantified with Zeiss AxioVision Rel.

4.9.1 image analysis software. Results are presented as densi-
tometric sum red.

2.8. Plasma Collection and Oxt Plasma Determination. After
decapitation, 500μl blood was collected and 10μl EDTA
solution (0.8mg/ml EDTA, Carl Roth, Karlsruhe) was added.
Next, 7.5μl of aprotinin solution (10mg/ml aprotinin,
Sigma-Aldrich, St. Louis) was added to 500μl of EDTA blood
and centrifuged at 4°C for 5min at 1600 × g. The supernatant
was stored at -80°C until measurement. Oxt plasma levels
were determined via radioimmunoassay (RIA, RIAgnosis,
Sinzing, Germany).

2.9. Statistics. The statistical analysis was processed using
SPSS software packages (Version IBM SPSS Statistics 24).
For quantitative analyses, data are presented as median and
interquartile range, if not stated otherwise. Data were tested
for normal distribution using a Kolmogorov-Smirnov test.
Due to the small sample size, nonparametric tests were used.
The Mann-Whitney U test was performed for group com-
parisons. Correlations between Oxtr and CSE expressions
were calculated using the Spearman rho test. Results were
defined as significant at p ≤ 0:05.

3. Results

3.1. Localization of Oxtr in Cardiac Tissue of Oxtr-/-, Oxtr+/-

Knockout, and Wild-Type Mice. Oxtr immunohistochemical
staining was performed in left ventricular (LV) heart tissues
(Figures 1(a), 1(b), 1(e), and 1(f)). Oxtr was visible in cardi-
omyocytes. The lack of Oxtr immunoreactivity in Oxtr-/-

knockout mice and Western blot analyses in cardiac tissue
of Oxtr-/-, Oxtr+/- knockout, and wild-type mice confirmed
the specificity of our antibody. Oxtr protein was significantly
downregulated in cardiac tissue of both Oxtr-/- and Oxtr+/-

mice compared to wild-type mice (Figures 1(a), 1(b),
1(e), 1(f), and 1(i)). Immunofluorescence microscopy with
costaining of Oxtr and smooth muscle actin (SMA) revealed
that Oxtr is located in smooth muscle cells of the arterioles
(Figure 2).

3.2. CSE Expression in LV Heart Tissue of Oxtr-/- Knockout
and Wild-Type Mice. CSE staining in LV heart tissue in
Oxtr-/- knockout mice showed a reduction of CSE protein
compared to LV tissue of wild-type animals (Figures 1(c),
1(d), 1(g), and 1(h)).

3.3. Cardiac Oxtr and CSE Expression Is Downregulated after
LTSS Exposure. Quantitative Western blot analyses revealed
a significant reduction of Oxtr protein expression in cardiac
tissue of LTSS-exposed mice normalized to their unstressed
controls (p < 0:001; Figures 3(a) and 3(b)). These results were
corroborated by immunohistochemical stainings which con-
firmed the significant downregulation of Oxtr in cardiac tis-
sue of LTSS-exposed animals compared to their controls
(p = 0:038; Figures 3(c) and 3(d)). Immunohistochemistry
revealed a significant downregulation of CSE protein in ani-
mals exposed to LTSS compared to their respective controls
(p = 0:038; Figures 3(e) and 3(f)).
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3.4. Cardiac Oxtr Expression Is Upregulated after STSS.
Quantitative Western blot analyses revealed an upregulation
of cardiac Oxtr protein expression after exposure to STSS
normalized to controls (p < 0:001; Figures 4(a) and 4(b)).
These results were in line with immunohistochemical stain-
ings that confirmed elevated Oxtr in the heart of STSS-
exposed mice compared to unstressed controls (p = 0:022;
Figures 4(c) and 4(d)). Immunohistochemistry revealed that
CSE protein expression remained unchanged in animals

exposed to STSS compared to their respective controls
(p = 0:710; Figures 4(e) and 4(f)).

3.5. Oxtr and CSE Interaction Effects in LTSS and STSS. Cor-
relation analyses between cardiac Oxtr and CSE expression
yielded a linear correlation for LTSS and their respective con-
trols (r = 0:657, p = 0:012; Figure 5(a)), whereas no statisti-
cally significant relation could be detected for STSS and
their controls (r = −0:033, p = 0:553; Figure 5(b)).
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Figure 1: Immunohistochemical staining of Oxtr and CSE in the LV heart tissue in an Oxtr-/- knockout heart and a wild-type heart (×10 and
×40). Expression of Oxtr was absent in Oxtr-/- knockout heart (a, e) and clearly visible in wild-type myocardial tissue (b, f). CSE was
significantly reduced in Oxtr-/- knockout hearts (c, g) compared to wild-type tissue (d, h). Western blot of Oxtr-/-, Oxtr+/- knockout, and
control hearts confirming the specificity of the Oxtr antibody. Oxtr protein expression was substantially reduced in Oxtr-/- and Oxtr+/-

knockout heart tissue compared to controls (i). LV: left ventricular; Oxtr: oxytocin receptor; CSE: cystathionine γ-lyase.
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Figure 2: Immunofluorescence of the LV stained for Oxtr and SMA. Oxtr colocalized with SMA in a large arteriole indicating that Oxtr was
highly expressed in arteriolar resistance vessels. LV: left ventricle; Oxtr: oxytocin receptor; SMA: smooth muscle actin.
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3.6. Adult Oxt Plasma Levels Remain Unchanged after LTSS
or STSS.No significant differences in the Oxt plasma concen-
trations were found between mice exposed to LTSS (5 pg/ml
(4 pg/ml; 11 pg/ml); n = 4) and their respective controls
(7 pg/ml (4 pg/ml; 16 pg/ml); n = 6; p = 1:0). In addition, no
difference was found between mice exposed to STSS
(62 pg/ml (45 pg/ml; 77 pg/ml); n = 18) and their respective
controls (54 pg/ml (48 pg/ml; 89 pg/ml); n = 19; p = 0:964).

4. Discussion

The present study tested the hypotheses (i) whether two dif-
ferent ELS paradigms, i.e., “chronic” LTSS and “mild” STSS,

affect the Oxtr and CSE expression in adult cardiac tissue,
(ii) if this effect is “dose”-dependent, and (iii) whether ELS-
induced changes of Oxtr and CSE expression are correlated.
In line with these hypotheses, we found that early postnatal-
induced changes of adult cardiac Oxtr expression were criti-
cally dependent on the “dose” of ELS exposure, while LTSS
resulted in reduced Oxtr expression in adult cardiac tissue
compared to controls; the opposite was found after STSS, i.e.,
upregulation of Oxtr expression. Finally, our study provides
further evidence for an interaction between the CSE/H2S and
oxytocinergic systems: in LTSS-exposed animals, reduced Oxtr
expression was directly correlated with the CSE expression,
which may indicate a functional interaction of these systems.
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Figure 3: Western blot and immunohistochemical analyses of cardiac Oxtr and CSE expression in the LTSS paradigm. Representative
Western blot of Oxtr protein expression (a) and quantitative results (b) revealed significantly reduced Oxtr expression in cardiac tissue of
LTSS-exposed animals. Oxtr (d) and CSE (f) expression was significantly reduced in LTSS-exposed animals compared to their respective
controls in immunohistological staining. Corresponding exemplary pictures of the LV myocardium are shown in (c, e). Data given as box
plots (median, interquartile range, minimum, and maximum). +Extreme value; Oxtr: oxytocin receptor; CSE: cystathionine γ-lyase; LTSS:
long-term separation stress; CON: control; LV: left ventricular.
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Recently, we showed in adult mice that combining ciga-
rette smoke exposure with acute blunt chest trauma (physical
trauma) markedly reduced cardiac Oxtr expression [32]. The
present study revealed that neonatal chronic psychological
trauma due to ELS exposure (LTSS paradigm) also leads to
a long-term reduction in cardiac Oxtr expression. Interest-
ingly, we found that these effects were dependent on the
“stress-dose”: while “chronically” stressed LTSS animals
displayed decreased Oxtr protein expression, “mild” STSS-
exposed mice showed the opposite response, i.e., increased
Oxtr expression. Applying the same stress paradigms, we

previously demonstrated that LTSS increased depressive-
like behavior in adulthood, an effect that was associated with
alterations of the Oxtr expression in the hippocampus [7]. In
contrast, STSS attenuated depressive-like behavior, paralleled
by dendritic length, dendritic complexity, and spine number
in the hippocampus, thus suggesting stress-induced adapta-
tions of neuronal structures [5, 6]. Therefore, we conclude
that “chronic” LTSS aggravates vulnerability, whereas “mild”
STSS yields an opposite response by inducing adaptive pro-
cesses that may promote resilience. In view of the CV protec-
tive functions of the Oxt/Oxtr system, it is tempting to
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Figure 4: Western blot and immunohistochemical analyses of the cardiac Oxtr and CSE expression in the STSS paradigm. Representative
Western blot of Oxtr protein expression in the STSS paradigm (a) and quantitative results (b) revealed significantly elevated Oxtr
expression in STSS-exposed animals. Immunohistochemistry of Oxtr and CSE expression in the STSS-exposed animals compared to their
respective controls revealed upregulated Oxtr expression after STSS (d). No significant changes in CSE expression were detectable after
STSS (f). Corresponding exemplary pictures of LV myocardium are shown in (c, e). Data given as box plots (median, interquartile range,
minimum, and maximum). Oxtr: oxytocin receptor; CSE: cystathionine γ-lyase; STSS: short-term separation stress; CON: control; LV: left
ventricular.
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speculate that LTSS-induced long-term reduction of cardiac
oxytocinergic functions may confer a risk for developing
CV dysfunctions. In fact, it was shown that low Oxtr expres-
sion in infarcted LV tissue coincided with aggravated myo-
cardial injury [15] underlining that Oxtr reduction leads to
adverse CV health, whereas elevated Oxtr expression induced
by exposure to “mild” STSS might reflect cardioprotective
effects. This hypothesis is supported by studies showing that
increased Oxtr expression dampens atherosclerosis and
protects against myocardial infarction [15, 34].

The lack of changes in Oxt plasma levels which we found
in mice exposed to LTSS or STSS is in contrast to other stud-
ies reporting increased Oxt plasma levels after stress expo-
sure in rodents [35, 36]. However, in these studies, Oxt
plasma levels were measured 5 to 30min after stress exposure
whereas our analyses presented here were performed weeks
after stress exposure at resting conditions. Due to its short
circulating half-life [37], basal Oxt plasma levels might have
normalized in adulthood after ELS exposure. In fact, our
finding is in good agreement with our previous study in
women with CM experiences, whose basal Oxt plasma levels
were unchanged in adulthood [38], and another study also
showing that Oxt plasma levels are independent of the dose
of maltreatment [39]. Nevertheless, this does not exclude that
ELS may exert a “programming” effect on acute Oxt release
during stress challenges at later life periods.

The Oxtr is expressed in cardiomyocytes [40], in endo-
thelial cells [41], and in the vascular wall of large vessels
[42] where it exerts both negative ino- and chronotropic
[13], antihypertrophic [43], and vasodilatatory effects, the
latter via NO activation [41]. Our experiments presented
here show that the Oxtr is expressed not only in smooth
muscles of large vessels and isolated primary cells but also
in smooth muscle cells of arterioles. Arterioles as the main
regulators of vascular resistance contribute to blood pres-
sure regulation via smooth muscle-mediated changes in
vessel diameter. Follow-up analyses will assess if ELS
induces additional changes in Oxtr expression directly in
the arteriolar system.

We also showed reduced cardiac CSE expression in LTSS
animals. Moreover, this reduction was positively correlated

with the degree of Oxtr downregulation, which might suggest
a direct interaction between the oxytocinergic and CSE/H2S
systems in the heart, which is altered in response to LTSS.
Similar to the Oxtr, CSE is also expressed in cardiomyocytes,
endothelial and smooth muscle cells and, consequently, is
involved in blood pressure regulation via H2S action [44].
Evidence for an interaction between Oxtr and CSE was pro-
vided in our previous study, which showed that CSE-/- knock-
out mice displayed a reduced cardiac Oxtr expression, which,
in turn, was restored to the level of the control myocardial tis-
sue by application of exogenous H2S [32]. In the present
study, the reduced CSE expression observed inOxtr-/- knock-
out mice further confirms a link between myocardial CSE
and Oxtr expression. Moreover, the downregulation of Oxtr
and CSE expression observed in the LTSS-exposed animals
may contribute to CV pathology. In view of a possible recip-
rocal regulation between the Oxtr and CSE systems and the
fact that mice lacking CSE show reduced endothelial-
mediated vasorelaxation [45], this provides further evidence
for a crucial role of Oxtr in blood pressure regulation. This
view is further supported by the fact that Oxtr activation
enhances baroreceptor sensitivity and, thus, enhances the
capacity of blood pressure control [46, 47]. Finally, in ovari-
ectomized spontaneously hypertensive rats, Oxtr blockade
causes adverse cardiac remodeling [48] and monocrotaline-
induced pulmonary hypertension leads to right ventricular
Oxtr downregulation [49]. In contrast to the findings after
LTSS, CSE expression was unchanged in the STSS animals.
This suggest that any CSE-Oxtr interplay may be more
relevant for vulnerable changes after LTSS but not for
STSS, where, e.g., the dopaminergic system may be more
involved [5].

5. Limitations of the Study

As methodological consideration, it should be pointed out
that there was a substantial difference in the immunohisto-
chemical CSE and Oxtr expression and in plasma Oxt con-
centrations in the two control groups for the two ELS
paradigms. Since the two stress paradigms were run consec-
utively, two separate control cohorts were mandatory to
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Figure 5: Regression analysis of Oxtr and CSE in the LV myocardium of LTSS- and STSS-exposed animals. Positive linear correlation
between the Oxtr and CSE expression was detected in the LTSS paradigm (a). No significant correlation between Oxtr and CSE was found
in the STSS paradigm (b). Oxtr: oxytocin receptor; CSE: cystathionine γ-lyase; LTSS: long-term separation stress; STSS: short-term
separation stress; LV: left ventricular.
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obtain separate baseline data for each ELS paradigm. As pre-
viously shown [5], control animals from different cohorts
may be divergent in basal parameters, as it is apparent in
our study as well. Similar 10-20-fold variations of baseline
plasma Oxt levels have been reported in a study on murine
Oxt plasma levels using the same method as in the present
experiment [50]. Furthermore, our data do not directly prove
the causality between CSE and Oxtr since our experimental
design allows only a first description of this relationship.
Further studies will elucidate if both factors are pathophysio-
logically linked to each other.

6. Conclusion

Taken together, we show here for the first time that “chronic”
ELS results in long-term reductions of myocardial Oxtr and
CSE expression, which last until adulthood and which might
be indicative of a biological interaction between the oxytoci-
nergic and H2S systems. These alterations may reflect sub-
stantial biological pathways underlying microvascular and
CV dysregulation in later life and may be viewed as “mal-
treatment” scar, i.e., a long-term negative outcome of ELS.
The “chronic” LTSS stress paradigm provides a suitable
model system, in which the cellular mechanisms underlying
ELS-related CV disorders can be identified and characterized
under experimentally controlled conditions.
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