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Abstract

Motion of the myocardium deteriorates the quality and quantitative accuracy of cardiac PET 

images. We present a method for MR-based cardiac and respiratory motion correction of cardiac 

PET data and evaluate its impact on estimation of activity and kinetic parameters in human 

subjects. Three healthy subjects underwent simultaneous dynamic 18F-FDG PET and MRI on a 

hybrid PET/MR scanner. A cardiorespiratory motion field was determined for each subject using 

navigator, tagging and golden-angle radial MR acquisitions. Acquired coincidence events were 

binned into cardiac and respiratory phases using electrocardiogram and list mode-driven signals, 

respectively. Dynamic PET images were reconstructed with MR-based motion correction (MC) 

and without motion correction (NMC). Parametric images of 18F-FDG consumption rates (Ki) 

were estimated using Patlak’s method for both MC and NMC images. MC alleviated motion 

artifacts in PET images, resulting in improved spatial resolution, improved recovery of activity in 

the myocardium wall and reduced spillover from the myocardium to the left ventricle cavity. 

Significantly higher myocardium contrast-to-noise ratio and lower apparent wall thickness were 

obtained in MC versus NMC images. Likewise, parametric images of Ki calculated with MC data 

had improved spatial resolution as compared to those obtained with NMC. Consistent with an 

increase in reconstructed activity concentration in the frames used during kinetic analyses, MC led 

to the estimation of higher Ki values almost everywhere in the myocardium, with up to 18% 

increase (mean across subjects) in the septum as compared to NMC. This study shows that MR-

based motion correction of cardiac PET results in improved image quality that can benefit both 

static and dynamic studies.

INTRODUCTION

Motion associated with respiratory and cardiac functions is a well-known source of image 

quality degradation in cardiac Positron Emission Tomography (PET) studies. The magnitude 

of regular heart displacements is indeed substantial, particularly when viewed in comparison 

to the ~4–5 mm intrinsic spatial resolution of PET cameras. For example, respiration 

typically shifts the heart by more than 10 mm along the superior-inferior direction [1], 

whereas cardiac contraction moves the base of the myocardium toward the apex by an 

average of ~12.8 mm [2] and at the same time thickens the myocardium wall by 4.0–6.1 mm 
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[3]. The continuous movement of the heart during scanning introduces artifacts that alter 

quantification of tracer concentration in cardiac tissues and deteriorate the diagnostic quality 

of PET images. Two types of image artifacts directly result from motion: One presents as a 

spatially-dependent blurring of the reconstructed activity distribution that can lead to 

underestimation of the local tracer uptake and even impair the detection of small lesions in 

some cases. The second type of artifact, resulting from spatially inconsistent emission and 

attenuation distributions, manifests primarily in regions adjacent to large attenuation 

gradients (e.g. at heart/lung or liver/lung interfaces) and can introduce artefactual myocardial 

defects. Its impact on image diagnostic quality has been extensively documented in cardiac 

PET/CT [4], [5].

Motion correction of cardiac PET has been an area of active research for more than two 

decades [6]–[11] (see reviews in [12], [13]). It is hoped that artifact-free PET images will 

translate into more accurate assessment of myocardial perfusion, metabolism and cardiac 

function, leading to improved diagnosis and staging of cardiovascular diseases [14], [15]. 

For studies performed on standalone PET or PET/CT systems, motion has generally been 

tackled using the following multistep framework: First, the measured emission data are 

gated, i.e. assigned to specific cardiac and respiratory phases based on surrogate signals 

measured with external sensors (e.g. EKG, respiratory bellows, optical tracking) or the PET 

data themselves [16]. Second, an image volume is reconstructed for each motion phase. 

Third, motion vector fields (i.e. dense sets of 3-D displacements) mapping the voxel-to-

voxel correspondence between every motion phase and a reference phase are estimated by 

registration of the gated PET volumes. Fourth, the motion fields are used to correct the PET 

data for motion by being either applied to the gated images directly [17] or modeled within 

motion-compensated image reconstruction [18]. A well-known limitation of this approach, 

however, is the fact that motion estimation relies on gated PET volumes, which are 

characterized by their low signal-to-noise ratio (SNR) especially when dual (i.e. cardiac + 

respiratory) gating is employed. Furthermore, image registration is generally complicated by 

the overall lack of anatomical landmarks in cardiac PET images: for instance, certain 

intramural components of contractile motion (e.g. torsion) are nearly impossible to track 

accurately due to the uniformity of myocardium in PET images [6]. Finally, low tracer 

accumulation in diseased cardiac tissues could further confound local estimation of the 

motion field with PET images.

In addition to its clinical potential in cardiovascular imaging [19], [20], a unique feature of 

hybrid PET and Magnetic Resonance Imaging (MRI) is that it provides a robust solution to 

the problem of motion in PET. Indeed, owing to its lack of ionizing radiation, excellent soft-

tissue contrast, high SNR and good spatiotemporal resolution, MRI has ideal characteristics 

for measuring organ motion. In simultaneous PET/MR scanners, the acquired motion 

information can be leveraged to correct the PET data for motion. MR-based motion 

correction of PET has been investigated extensively over the past few years, with 

applications in imaging of malignancies [21]–[30], brain [31]–[33] and heart [14], [25], 

[34]–[41] (refer to [42]–[46] for comprehensive reviews on the topic). In their vast majority, 

these works have focused on static (i.e. single time-point) PET scanning and have evaluated 

the impact of motion correction on various semi-quantitative image metrics such as target-

to-background ratio or SUV. However, much less attention has been given to evaluating MR-
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based motion correction in the context of fully quantitative cardiac PET studies based on 

dynamic imaging.

We have previously presented and evaluated a method for MR-based motion correction of 

dynamic PET data in a pre-clinical porcine model of myocardial perfusion [25]. Cardiac 

motion correction only was performed in that study, due to the small amplitude of 

respiration-induced myocardium motion in this animal model. Here, we extend the method 

to human subjects and perform MR-guided correction of both cardiac and respiratory motion 

of dynamic 18F-FDG PET data. The impact of the technique on PET image quality and 

estimates of myocardial 18F-FDG consumption rates was evaluated in healthy subjects.

MATERIALS AND METHODS

Overview of motion correction methodology and enabling assumptions

Dynamic 18F-FDG PET and MRI data were simultaneously acquired during free-breathing 

in three healthy human subjects. The PET events for each dynamic frame were reconstructed 

in two different ways: with the proposed MR-based cardiac/respiratory motion correction 

(MC) method and without motion correction (NMC). Improvement in cardiac PET image 

quality was assessed by quantifying the apparent thickness of the myocardium wall as well 

as the myocardium contrast-to-noise ratio (CNR) in a late dynamic frame. The Patlak 

analysis method [47], [48] was applied to both MC and NMC dynamic sets to estimate 

voxel-wise 18F-FDG uptake rate constants (Ki) in cardiac tissues.

Overview of proposed methodology—The motion correction method for dynamic 

scan data comprises four key components: (1) Surrogate signals for the cardiac and 

respiratory cycles that are acquired continuously during the experiment and are used to 

assign a cardiac and respiratory phase index to every measured coincidence event. (2) A 

deforming cardiorespiratory tissue motion model which assigns a given cardiorespiratory 

motion phase (i.e. paired cardiac and respiratory phase) index to a specific 3-D deforming 

motion vector field. The motion field for a specific phase encodes the movement of each 

voxel of tissue between said phase and a chosen reference one. As detailed hereinafter, the 

model is constructed by means of navigator, tagging and golden-angle radial MR 

acquisitions. Importantly, the MRI motion tracking measurements are performed while also 

collecting surrogate signals, allowing us to establish the correspondence between the 

surrogate signals and motion fields. (3) A motion-dependent attenuation model (i.e. one 

attenuation map per motion phase), generated by deforming an acquired attenuation map 

with the motion model. (4) A motion-compensated PET reconstruction algorithm which 

incorporates the motion fields and motion-dependent attenuation data to produce a motion 

corrected image volume for each frame. Importantly, all coincidences detected during a 

frame are used to form the final image and therefore the reconstruction method preserves the 

SNR in each frame. A detailed description of each component is provided afterwards.

Enabling assumptions—Several assumptions are made to simplify the measurement of 

heart motion and facilitate motion correction of dynamic scan data. One, we assume that 

myocardium motion due to cardiac contractions is superimposed on top of the respiration 

motion. Accordingly, one can measure each component separately and subsequently 
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compose the two vector fields to obtain the complete cardiorespiratory motion model. Two, 

we assume that the positions of tissues are the same for a given state of both the cardiac and 

respiratory surrogate signals at any time during the dynamic experiment. Therefore, the 

motion model can be used to correct any acquired event throughout the scan based on the 

knowledge of surrogate signals only. This implies that cardiac and respiratory motion do not 

change significantly during the scan and that bulk body motion is absent or negligible.

Imaging data acquisition

Imaging protocol—Figure 1 presents a schematic timeline of the imaging protocol. All 

scans were acquired on a Siemens Biograph mMR, a whole-body integrated 3T PET/MR 

system. The characteristics and imaging performance of the system have been described 

elsewhere [49]. Approval for the studies was obtained from the Institutional Review Board 

at Massachusetts General Hospital and all the subjects provided written informed consent. 

Study subjects were instructed to fast for 6 hours prior to the start of the experiment. At 

about 45 min prior to tracer administration, the subjects were instructed to drink a glucose-

rich beverage to promote 18F-FDG uptake in the myocardium. Subjects were prepared for 

PET/MR imaging, equipped with a 3-lead Electrocardiogram (EKG) system and positioned 

head first supine on the scanner’s bed. Subjects were then sent in the scanner gantry after a 

flexible receiving surface coil was placed on the chest. Acquisition of imaging data 

commenced with the vendor’s MR-based attenuation correction sequence (MRAC) during a 

breath-hold at end-exhalation to measure an attenuation map. Shortly afterwards, a bolus of 
18F-FDG (average radioactivity: ~10 mCi) was administered intravenously and a 50-min list 

mode PET acquisition was initiated. Subjects were instructed to relax and breath freely 

during the scan. At about 10 min after the start of PET acquisition, MR pulse sequences 

(described afterwards) were played sequentially to track motion due to cardiac contraction 

and respiration. Four venous blood samples were drawn at 30, 35, 40 and 45 min after tracer 

administration. After the scan ended, concentrations of radioactivity in the whole-blood and 

plasma samples were measured on a well counter.

Measurement of cardiac contractile motion—We employed a navigated, cardiac-

gated MRI tagging sequence [25], [37] to measure the contractile motion of the myocardium 

during free breathing. “Tagging” is a magnetization preparation technique which consists in 

perturbing the magnetization in a spatially-dependent manner before the acquisition of MR 

imaging data to create temporary fiducial markers (“tags”) within tissues. Because tags 

result from perturbations of the magnetization of the tissue itself, changes in the shape of 

tags during imaging reflect the movement of the underlying tissue [50], [51]. The tagging 

sequence acquires line-tagged, multi-slice cardiac cine MR data sets using SPAMM [52] and 

a gradient recalled echo acquisition method. Imaging data acquisition is performed at a 

chosen respiratory phase (end-exhalation in this case) using a pencil-beam navigator 

intersecting the right lung-diaphragm interface in the superior-inferior direction. Each time 

an R-wave is detected, a navigator is measured (acquisition time: ~20 msec), and the 

diaphragm position is calculated; if the position is within a predefined range, the sequence 

proceeds to acquire the imaging data in all cardiac phases; if not, acquisition remains on 

standby until the next R-wave. To track motion in 3D, acquisition of line-tagged data was 

repeated three times, each with a different line tag orientation, corresponding to the three 
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orthogonal Cartesian axes. Two of the three tag acquisitions were performed with transverse 

slices and the other with sagittal slices, ensuring that tag lines orthogonally intersect the 

imaging plane. Ten volumes corresponding to ten cardiac phases were acquired for each 

orientation with the following parameters: TE = 1.97 ms, TR = 4.8–10.2 ms, flip angle = 5–

7°, in-plane resolution = 2.3×2.3 mm2, acquisition matrix = 128×104, slice thickness = 8 or 

10 mm, tag line distance = 8 mm and number of slices = 10. Data acquisition for each tag 

line orientation took ~1.5–2 min, depending on the subject’s cardiac and respiratory rate.

Measurement of respiratory motion—We used a free-breathing, navigated multi-slice 

radial sequence with a golden-angle spoke acquisition scheme [28], [53] to measure 

respiratory motion. For each TR, the sequence first acquires a 1D slice-projection navigator 

oriented along the superior-inferior direction and intersecting the right lung-diaphragm 

interface to track the diaphragm position. Afterwards, the same spoke (i.e. with the same in-

plane orientation) is acquired in all the prescribed slices. From one TR to the next, spoke 

orientation is incremented according to the golden-angle formula [54]. The imaging 

parameters were: TE = 1.53 ms, TR = 3.49 ms, flip angle = 30°, in-plane resolution = 

2.3×2.3 mm2, acquisition matrix = 128×128, slice thickness = 6 mm, image plane = coronal 

and number of slices = 24. We let the sequence ran until a total of 5120 spokes per slice 

were acquired for a total acquisition time of ~7.5 min. During data post-processing, the 

navigator, acquired for each TR, was used to assign a respiratory phase index to each 

acquired spoke. The golden-angle encoding scheme provides pseudo-uniform coverage of 

the k-space for an arbitrary number of acquired spokes, thereby enabling flexible a posteriori 

binning of spokes into respiratory bins.

Data processing

Tagged MRI—For each subject, the tag data sets comprise three image volumes (two 

transverse and one sagittal), each with orthogonal tag line directions, for every cardiac 

phase. To estimate cardiac motion in 3D, the three volumes for each phase were re-oriented 

and resampled onto the same spatial grid (isotropic 2×2×2 mm3 voxels) and then summed. 

This procedure yielded ten cardiac volumes tagged along all three Cartesian axes. Note that 

the tagged volumes depict tissues in the end-exhalation respiratory phase.

Golden-angle radial MRI—The following procedure was employed to process the 

golden-angle MR data: First, we used the slice-projection navigators to obtain a respiratory 

trace by tracking the diaphragm position over time. The trace was obtained by selecting a 

reference navigator signal and by calculating Pearson correlation coefficients between the 

reference and all other time points. We then applied a previously proposed histogram-guided 

navigator sorting technique [28] to the trace to assign the acquired spokes to five respiratory 

bins. The sorting method adapts the amplitude of each bin to obtain approximately the same 

number of spokes in each bin. Next, iterative reconstruction of the MR data was performed 

for each bin. Let mrk
 denote the set of spokes corresponding to respiratory bin (or ‘phase’) 

rk, k ∈ [1; R] (R=5 in this study). The reconstruction of each slice in each phase was 

performed by preconditioned conjugate gradient-based minimization of a cost-function 

comprised of a data consistency term including the non-uniform fast Fourier transform 
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(NUFFT) operator [55], and a total-variation regularization term that helps reduce streak 

artifacts and noise in the reconstructed images [56]:

Irk
= arg min

λrk

F ⋅ C ⋅ Irk
− mrk 2

2 + β S ⋅ Irk 1 Eq. 1

where Irk
 denotes the 2-D MR image for respiratory phase rk, F is the NUFFT operator, C 

are the estimated 2-D coil sensitivity maps, ‖∗‖1 and ‖∗‖2 denote the L-1 and L-2 norms, 

respectively, S is the total-variation operator [57] and β is a regularization parameter 

(scalar). This procedure yielded five respiratory-resolved MR volumes that were 

subsequently used to determine the respiratory motion fields. Note that because cardiac 

gating was not applied during data reconstruction, the reconstructed MR volumes 

represented an average cardiac position.

Surrogate signals—As mentioned earlier, the motion correction method relies on 

surrogate signals to monitor the respiratory and cardiac cycles of the subject during the 

dynamic scan. EKG is a straightforward and robust approach to monitor the cardiac cycle. 

Throughout the PET acquisition, the scanner’s physiological monitoring unit inserts a 

trigger event in the list mode data stream each time an R-wave is detected by the EKG 

sensor. These trigger events can then be retrieved in the list mode file and a specific cardiac 

phase can be assigned to each event based on its relative time of arrival with respect to a 

directly preceding R-wave event. Monitoring of respiration, however, is not as 

straightforward: for instance, MR navigators are considered as one of the most accurate 

approaches to monitoring breathing, since unlike respiratory bellows or other external 

sensors, they can directly measure the position of internal organs (e.g. diaphragm) with high 

temporal resolution. The disadvantage of using navigators, however, is the fact that their 

measurement interferes with the MR acquisition and it is therefore impractical to use 

navigators for continuously monitoring respiration during a long PET acquisition. In this 

study, we opted for a previously proposed list mode-driven approach to monitor respiration 

during the dynamic scan [16], and directly compared the method to diaphragmatic navigator 

acquisitions. First, we obtained a “raw” respiratory curve by counting the total number of 

coincidences detected within a non-overlapping 100-ms sliding window. Because rapid 

changes in tracer distribution during the early frames of the scan can deteriorate the quality 

of the gating signal, this procedure was only applied to events detected after the first-pass 

delivery of 18F-FDG, i.e. starting from 1 min after tracer injection. The respiratory trace was 

obtained by filtering the raw curve using a band-pass filter with cutoff frequencies at [0.1–

0.4] Hz. The cutoffs were selected to remove slow trends in the data (e.g. radioactive decay, 

tracer washout) as well as high frequency components (e.g. counting noise, cardiac 

contraction), while at the same time preserving the expected frequency range of respiratory 

fluctuations.

PET data—The list mode data for each subject were sorted into a series of 20 time frames 

(8 × 15 sec, 4 × 60 sec and 8 × 300 sec) covering a total of 46 min acquisition. The prompt 

events for each of the last sixteen frames (i.e. after 18F-FDG first-pass) were binned into 10 

cardiac phases and 5 respiratory phases using the surrogate signals (i.e. EKG and list mode-
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driven respiratory curve), resulting in a total of 50 sinograms per frame. Cardiac phases were 

defined by dividing each cardiac cycle (i.e. R-R interval) in temporal bins of equal duration. 

Respiratory phases were defined by applying the histogram-guided sorting method to the list 

mode-driven respiratory trace [28]. A sinogram of delayed events for each frame was also 

obtained for correction of random coincidences.

Calculation of cardiorespiratory motion model

The tagging and golden-angle MR volumes were used to measure motion due to cardiac and 

respiratory functions, respectively. For both data sets, motion field estimation was performed 

using a nonrigid registration method based on a 3-D tensor product B-spline parametric 

model [58], [59]. Given two image volumes to register, the algorithm seeks to estimate a 

diffeomorphic nonrigid transformation by conjugate gradient-based optimization of a cost-

function comprised of a standard sum-of-squared-differences data consistency term and a 

quadratic regularization term. To improve convergence speed and robustness, the algorithm 

employs a bilevel multiresolution scheme in both image and transformation domains. For 

both tag and golden-angle MR data sets, rather than directly registering the volume of each 

phase to the reference phase, we registered consecutive pairs of volumes for estimation of 

inter-phase (or “partial”) motion fields. The reference phases for cardiac and respiratory 

motion were chosen as end-diastole and end-exhalation, respectively. The complete cardiac 

and respiratory motion fields were computed by accumulating the displacements from the 

partial fields. Let cn, n ∈ [1; C] and rk, k ∈ [1; R] denote indices for cardiac and respiratory 

phases, respectively, and vector 
cn
rk

 denote a cardiorespiratory phase. For simplicity, end-

diastole and end-exhalation (i.e. reference phases for cardiac and respiration motion) are 

indexed with n, k = 1. The procedure described earlier yielded two distinct fields:

•

D c1
r1

cn
r1

card

n = 1…C

, the cardiac displacement field estimated using tagged MRI 

data, which encodes the 3-D displacement of each voxel between 

cardiorespiratory phases 
c1
r1

 and 
cn
r1

.

• Dr1 rk
resp

k = 1…R
, the respiratory displacement field estimated using the golden-

angle MRI data, which encodes the 3-D displacement of each voxel between 

respiratory phases r1 and rk. Note that since no cardiac gating was used during 

data acquisition and reconstruction, these MR volumes represent an average 

cardiac position. However, we assume that the estimated respiratory motion field 

apply to any cardiac phase.

We obtain the complete cardiorespiratory motion model by first resampling the two fields on 

a common voxel grid and then sum the results:
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D c1
r1

cn
rk

resp + card ≅ D c1
r1

cn
r1

card + D r1 rk
resp , n ∈ [1, C], k ∈ [1, R]

Eq. 2

The combined motion field model Dresp+card describes the 3-D displacement of each voxel 

between the end-diastolic, end-exhalation phase 
c1
r1

 and all other cardiorespiratory phases. 

The fields were then converted to a set of 3-D image warping operators {W1→m}, m ∈ [1, 

M = R × C] for incorporation within PET reconstruction.

Attenuation correction

The vendor’s MRAC method was used to acquire an attenuation map during an end-

exhalation breath-hold. MRAC employs Dixon acquisition and tissue segmentation to 

produce a 4-classes attenuation map (air, lung, fat, soft-tissue). The following procedure was 

used to generate a motion-dependent attenuation map from breath-hold MRAC scans: First, 

we non-rigidly registered the water volume produced by MRAC to the end-exhalation 

golden-angle MR volume using mutual-information based B-spline registration. Second, the 

estimated transformation was applied to the 4-classes attenuation map to ensure spatial 

consistency between the motion model and the attenuation map. Third, the cardiorespiratory 

warping operators were used to deform the resulting attenuation map to all other motion 

phases.

PET reconstruction

The dynamic PET data for each subject were reconstructed with and without motion 

correction on a frame-by-frame basis. As mentioned earlier, the prompt events detected in 

each of the last sixteen dynamic frames were binned into cardiac and respiratory phases, 

yielding a total of M=50 sinograms per frame. Let yf
m ∈ ℝI denote the sinogram of prompt 

events with I bins in dynamic frame f and motion phase m ∈ [1; M]. It is assumed that the 

elements of yf
m = {yf

i, m}i = 1…I are realizations of statistically independent Poisson random 

variables with expected values yf
m = {yf

i, m}i = 1…I. Accordingly, the forward PET model for 

multi-phase sinogram data in a given temporal frame is:

yf
1

⋮
yf

M
=

Δf
1SA1GW1 1

⋮
Δf

MSAMGW1 M

xf +
sf
1

⋮
sf
M

+
rf

1

⋮
rf

M
Eq. 3

where yf
m, sf

m and rf
m all ∈ ℝI are sinograms of expected prompt, scattered and random 

coincidences, respectively, xf ∈ ℝJ is the motion-corrected image (i.e. distribution of 18F-

FDG at end-diastole/end-exhalation) with J voxels that we seek to estimate from the 

sinograms, W1 m ∈ ℝJ × J is an image warping operator that deforms the PET image in the 
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reference phase to phase m (note that W1→1 = I), G ∈ ℝI × J is the geometric probability 

matrix, Am ∈ ℝI × I is a diagonal matrix containing the attenuation coefficients for phase m, 

S ∈ ℝI × I is a diagonal matrix containing the sensitivity coefficient for each sinogram bin, 

and Δf
m is a scalar corresponding to the ratio between the number of events detected in phase 

m and the total number of events detected in the frame. Image reconstruction for each frame 

was performed by maximizing the corresponding Poisson log-likelihood density function 

using ordered subset expectation maximization [60]. For reconstruction without motion 

correction (NMC), the forward model in Eq. 3 was modified by setting 

W1 m m = 1…M = I and Am = A1 (i.e. no motion warping and motion dependent 

attenuation correction performed). For both MC and NMC reconstructions, sinograms of 

scattered coincidences were calculated using the single scatter simulation technique [61] and 

sinograms of randoms using the smoothed delayed window approach. The distributions of 

scatters and randoms were assumed to be independent of motion, i.e. 

sf
m

m = 1..M = Δf
msf m = 1..M and rf

m
m = 1..M = Δf

mrf m = 1..M, where sf and rf represent 

scatter and random sinograms estimated using all events in the frame regardless of motion. 

All PET images were reconstructed on a 2.08×2.08×2.03 mm3 voxel grid with 4 iterations 

and 12 subsets.

PET images analyses

Evaluation of image quality—For each subject, we evaluated the quality of MC and 

NMC images by comparing myocardium contrast-to-noise ratio (CNR) and apparent 

myocardial wall thickness in a late (40 min after injection) 5-min frame. Activity images 

were first re-sliced in short axis orientation and five evenly spaced planes sampling the heart 

from apex to base were selected. For each plane, four regions of interest (ROI) were 

manually positioned in the septal, lateral, anterior and inferior walls (see Figure 2 A). A 

spherical ROI (4 mm radius) was also drawn in the mid left-ventricular blood cavity. Next, 

CNR [9] was calculated for each ROI as:

CNR =
Mean MyocROI − Mean LVROI

SD LVROI
Eq. 4

where Mean and SD are the voxel-wise mean and standard deviation of activity values in a 

ROI, MyocROI and LVROI refer to ROIs taken in the myocardium and left-ventricle blood 

bool respectively. To measure the apparent thickness of the myocardium in septal, lateral, 

anterior and inferior walls, we extracted line profiles in short axis (SA), horizontal long axis 

(‘HLA’, approximating the four-chamber view [62]) and vertical long axis (‘VLA’, approx. 

the two-chamber view) planes, as illustrated in Figure 2 B. More specifically, we extracted 

20 profiles along the septal, lateral, anterior and inferior walls in 5 SA slices spread-out 

evenly over the length of the myocardium, 10 profiles in the septal and lateral walls in the 

selected HLA plane, and 10 profiles in the anterior and inferior walls in the VLA plane. The 

exact same slices were selected for MC and NMC images. This procedure yielded a total of 

40 profiles for each volume. Thickness of the wall was quantified as the full-width at half 

maximum of a 1-D Gaussian function fitted to each profile.
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Calculation of myocardial 18F-FDG uptake rates—Parametric images of net 18F-

FDG influx rate (Ki, with units of min−1) were calculated by applying the Patlak plot 

method [63] to the last 40 min of the dynamic acquisition. The first frames were omitted 

during the analysis to obtain steady-state equilibrium between the reversible and plasma 

compartments. To compute input functions for kinetic modeling, we extracted a whole-blood 

time-activity curve (TAC) in a spherical ROI (4 mm radius) located in the base of the left 

ventricle blood pool in both MC and NMC image sets. Next, arterial plasma input functions 

were computed by scaling whole-blood TACs to the plasma activity concentrations 

measured in the four blood samples. Patlak analysis was then applied on a voxel-wise basis 

for both MC and NMC dynamic sets using the corresponding input functions. The 

operational equation for the Patlak model is defined according to:

CT(t)
Cp(t) = Ki

∫ 0
t Cp(t)dt
Cp(t) + Vb Eq. 5

where CT(t) and Cp(t) are instantaneous concentrations of activity in myocardium tissue and 

arterial plasma, respectively, and Vb is the intercept. Parameters of the Patlak model were 

estimated for each voxel by linear least-square regression. The resulting parametric images 

were resliced to short-axis view using the transformation parameters applied to the activity 

images. Average Ki values were then calculated in the previously defined 20 myocardium 

ROIs. According to Eq. 5, an increase in reconstructed myocardium activity concentration 

following motion correction should translate into higher Ki values.

Statistical Analysis—All statistical tests were performed using a two-tailed paired t-test. 

A p-value lower than 0.05 was considered significant.

RESULTS

Figure 3 presents examples of images and displacement fields obtained using tagging and 

golden-angle radial MR acquisitions for various cardiac and respiratory phases. The motion 

fields estimated with tagged MRI (Figure 3 A) depict the movement of the myocardium 

between the reference end-diastolic phase (C1) and all other cardiac phases. Note that due to 

T1 recovery, the contrast of the tag lines progressively decreases towards the end of the 

cardiac cycle, which may impact the accuracy of motion estimation in the late cardiac 

phases. The displacement fields overlaid on top of the respiratory-gated radial MRI slices 

(Figure 3 B) show the movement of thoracic tissues, including heart and liver, between the 

reference end-exhalation phase (R1) and other respiratory phases. Note that non-rigid 

registration techniques, such as the one employed in this work cannot guarantee accurate 

estimation of motion in areas with uniform intensities such as the left-ventricle blood pool.

Figure 4 compares the traces obtained using the list mode-driven method and the MR 

navigator measured during the golden-angle radial scan for all three subjects. There was a 

strong correlation between the navigator and list mode-driven signals for all subjects, in 

agreement with findings from other groups [64]. Figures 5 and 6 display five evenly spaced 

short-axis and horizontal long-axis images of a late dynamic frame reconstructed with MC 

and NMC for subject 1 and 2, respectively. MC images showed visibly higher spatial 
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resolution than NMC images as evidenced by the improved delineation of papillary muscles 

(red arrows), higher myocardium wall signal (white arrows), reduced spillover of activity 

from the myocardium to the left-ventricle blood pool (yellow arrows) and thinner wall. 

Visually, the impact of motion correction was most substantial in the septum, especially at 

the basal level.

Table 1 presents CNR and wall thickness values extracted in MC and NMC images for 

different sectors of the myocardium for all three subjects. Figure 7 plots percent differences 

in myocardium CNR and thickness between MC and NMC (i.e. (MC − NMC)
NMC × 100%). For all 

subjects, MC yielded significantly higher myocardium CNR (all p<0.05) and lower apparent 

wall thickness than NMC (all p<0.05). CNR increased by an average of up to 20.1% in the 

septal wall and 16.4% in the anterior wall for MC compared to NMC. Apparent wall 

thickness decreased by an average of 18.9% in the inferior wall and 18.4% in the septal wall 

as compared to NMC. Overall, the impact of motion correction was lower in subject 3 than 

in the other two subjects. One possible reason for this is the lower quality of the list mode-

based respiratory gating curve for this subject, which was noisier and exhibited a weaker 

correlation with the navigator-based signal. The lower performance of event-based gating 

may have been caused by the relatively lower apparent 18F-FDG myocardium uptake in 

subject 3 compared with the other subjects.

Figure 8 shows the same transverse slice in the various dynamic frames reconstructed using 

NMC and MC methods for subject 2. Supplementary Figure 1 presents the same data for 

subject 1. In general, we found that for the frames acquired up to ~4 min after administration 

of 18F-FDG (frame #5 to 10), MC led to a slightly lower reconstructed myocardium activity 

concentration as compared to NMC, which is consistent with reduced spillover effects from 

the blood cavity to the myocardium. When the activity distribution is uniform (e.g. frame 

#11 and 12), with similar blood and myocardium signals, MC does not seem to have much 

effect, which is likewise consistent with expectations. The impact of the correction becomes 

more pronounced for the later frames (e.g. frame #13–20) as the tracer accumulates in the 

myocardium and the contrast between myocardium and blood increases.

Parametric images of 18F-FDG influx rate (Ki, with units of min−1) were calculated as 

described in Methods for all three subjects. Figures 9 and 10 display short and horizontal 

long-axis Ki slices computed with MC and NMC data for subjects 1 and 2, respectively. 

Note that the presented slices correspond to those shown in Figures 5 and 6. As can be seen, 

MC dynamic data yielded Ki maps with overall higher values in the myocardium and 

improved spatial resolution as compared to NMC images. Figure 11 shows examples of 

Patlak plots for MC and NMC in one ROI taken in the basal section of the septum, where 

motion correction was found to have the most impact.

Table 2 shows MC and NMC Ki values for the different myocardium regions in all three 

subjects. Figure 12 displays box plots of Ki percent differences between MC and NMC. 

Motion correction yielded significantly higher Ki values for all subjects as compared to 

NMC (all p<0.05). Higher Ki values were obtained everywhere, especially in the septum 

where average Ki increased by 18% as compared to NMC.
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DISCUSSION

Motion of the myocardium deteriorates the spatial resolution and quantitative accuracy of 

cardiac PET images. We developed a methodology for MRI-based cardiac and respiratory 

motion correction of PET data and evaluated its impact on image quality as well as 

quantification of myocardial 18F-FDG uptake rates in three healthy subjects. The results 

obtained suggest that the proposed correction method alleviates motion artifacts in PET 

images, resulting in visibly improved spatial resolution, increased recovery of activity in the 

myocardium and reduced spillover of activity from the myocardium to the left ventricle 

cavity. As a result, significantly higher CNR (up to 20.1% mean CNR increase in septum 

across subjects) and lower apparent wall thickness (up to 18.9% mean thickness decrease in 

inferior wall) were obtained in the resulting motion corrected images as compared to non-

corrected ones. Likewise, motion correction yielded parametric images of 18F-FDG uptake 

rates (Ki) with improved spatial resolution. The correction led to the estimation of higher Ki 

values almost everywhere in the myocardium, with up to 18% increase in septal Ki (mean 

across subjects) as compared to non-corrected data. Overall, the impact of motion correction 

was the greatest in the basal regions of the myocardium in all subjects.

A key component of the correction technique is the recording of respiration as a function of 

scanning time. In this study, we used a previously proposed sensitivity-based event-driven 

method to derive a surrogate signal for the respiratory cycle. In agreement with works from 

other groups [22], a strong correlation was obtained for all subjects between the obtained 

respiratory curves and diaphragm position readouts using navigators (see Figure 4). 

Therefore, the event-driven signal was considered accurate enough to bin PET events into 

the different respiratory phases. It is important to highlight that, in a dynamic PET scan, the 

raw signal extracted using the sensitivity method (i.e. number of counts as a function of 

time) will be correlated not only to respiratory and cardiac motion, but also to decay and 

tracer kinetics. The latter factor can produce either high or low frequency components in the 

signal depending on timing with respect to tracer injection: typically, it is expected that 

tracer kinetics will introduce high frequency changes in early frames (first-pass of the tracer) 

and lower frequency contributions (e.g. tracer washout) in later frames. In this study, to 

minimize the influence of tracer kinetics, event-driven gating was applied after the first-pass 

of 18F-FDG and band-pass Fourier filtering was used to isolate the respiratory component. 

Further investigations are needed to study the accuracy of event-driven gating methods in 

early frames, especially in the context of cardiac blood flow studies.

We employed a combination of sequential tag and golden-angle MR acquisitions to obtain a 

cardiorespiratory motion field for each subject. MR tagging is considered as one of the most 

accurate approaches to measure cardiac contractile motion in that it provides “features” in 

cardiac tissues that non-tagged MRI lacks and thereby facilitates estimation of intramural 

motion. Another advantage of tagging is that it naturally offers contrast between heart 

muscle and blood cavity, as tagging of blood protons rapidly vanishes with blood circulation 

within the ventricles during the cardiac cycle. A drawback of 3D MR tagging, however, is 

the long time needed to acquire the data. Here, to limit scan times, the acquisition of the 

three tagged MRI data sets was performed using a relatively coarse slice resolution (8–10 

mm), which will necessarily impact the accuracy of the motion fields. Parallel imaging or 
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compressed sensing could be employed to drastically accelerate data acquisition without 

significantly degrading motion field accuracy [37]. T1 recovery-induced tag line fading, 

which can be appreciated by inspecting the tagged images in Figure 3 A, is another well-

known limitation of tagged MRI that can lead to a deterioration of the quality of the motion 

field estimates, especially in the late cardiac phases. Nevertheless, since the largest 

displacements occur during the first phases of the cardiac cycle which exhibit good tag 

contrast, the impact of fading on the motion corrected PET images should remain relatively 

small. Moreover, our tagged MRI sequence assumes that the subject’s respiratory phase, 

determined by a navigator readout prescribed immediately after each R-wave, does not 

change during the R-R interval length whose duration is typically ~0.7–1.0 sec in resting 

conditions. In reality, however, the respiratory phase may change during this time period, 

which can introduce respiratory motion artifacts, especially towards the end of the cardiac 

cycle. Lastly, in the current version of the sequence, the duration of the data acquisition 

window after R-wave detection is fixed and must be pre-defined by the operator based on the 

average cardiac cycle rate of the subject. Therefore, difficulties could arise when imaging a 

patient with a very irregular cardiac cycle.

Respiratory motion was tracked in each subject using a navigated, golden-angle based radial 

MR sequence. As mentioned earlier, we let the sequence run until a total of 5,120 spokes per 

slice (and thus 5,120 navigators) were acquired, leading to a ~7.5 min scan. All acquired 

spokes were then binned into 5 respiratory phases based on the navigator-measured 

diaphragm position. As a result, the reconstruction of each slice in each respiratory phase 

was performed using ~1,000 spokes, which is about 5-fold higher than the number of spokes 

prescribed by the Nyquist sampling criterion. Therefore, it is important to underline that 

while we deliberately chose to acquire a large number of spokes in this study in order to 

obtain a robust estimate of the correlation between the navigator and event-driven respiratory 

curves, the scan time for measuring respiratory motion using this sequence could be 

drastically shortened in practice. Furthermore, because the main components of respiratory 

motion are along head-feet and antero-posterior directions [65], the use of sagittally-oriented 

slices should be more optimal for capturing respiratory motion. Here, we chose to acquire 

coronal rather than sagittal orientation because it allows for imaging, and hence motion 

estimation, of the whole thorax using a relatively smaller number of slices, while keeping 

the primary motion component (head-feet) within the imaging plane. It is indeed important 

that the cardiorespiratory motion model includes not only the heart but also other moving 

tissues (e.g. liver) within the PET field-of-view for accurate motion correction of projection 

measurements. Finally, it should be noted that irregular breathing patterns and large 

variations in respiratory motion amplitude would make the measurement and correction of 

respiratory motion more challenging. Further investigations are needed, especially in 

patients with cardiovascular diseases, to understand how the current approach should be 

modified to account for such effects.

The proposed motion tracking and modeling method relies on the assumption that cardiac 

motion is superimposed on top of respiratory motion and that the two motions can therefore 

be measured separately. A limitation of this approach is that it does not account for possible 

variations in cardiac motion patterns in the different respiratory phases. Furthermore, it is 

known that respiratory motion can show hysteretic effects in some subjects [66], [67], 
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whereby the same diaphragm position corresponds to different heart positions at inspiration 

and expiration. Although this has not been explored in the present study, it is in principle 

possible to account for hysteresis by assigning the PET and MR data to different phases 

according to the respiratory state (i.e. inspiration or expiration).

Although motion correction generally led to a decrease in apparent wall thickness and an 

increase in CNR and Ki as compared to no motion correction, it should be noted that this 

was not the case everywhere, as in some areas, MC images exhibited similar or even slightly 

lower CNR and Ki values as well as greater apparent wall thickness than NMC images (see 

box plots in Figure 7 and 12). A possible reason for this might be local errors in the 

cardiorespiratory motion field that may deteriorate the quality of the correction in relevant 

areas.

In general, by alleviating spillover from myocardium to blood and vice-versa in 

reconstructed PET images, motion correction (MC) is expected to reduce bias in estimates 

of activity concentration and kinetic parameters. In this population of healthy subjects, 

motion correction led to an increase in reconstructed myocardium activity in the frames used 

for kinetic modeling, which resulted in the estimation of overall higher Ki values as 

compared to non-corrected data. However, it should be noted that motion correction of 

dynamic cardiac PET scan data may not always translate into an increase in estimated Ki 

values. For instance, in diseased myocardium with low tracer uptake, one expects motion 

corrected images to exhibit lower activity concentration in the defect as compared to non-

corrected images [35], which might lead to the estimation of lower Ki values in relevant 

segments [41].

To evaluate the relative impact of respiratory and cardiac motion correction, Supplemental 

Figures 2–5 compare images of activity and Ki obtained without motion correction to those 

obtained by applying respiratory-only, cardiac-only and ‘dual’ (i.e. respiratory and cardiac, 

as used throughout the paper) motion correction. Overall, we found that correcting 

respiratory or cardiac motion effects alone lead to noticeable improvement in image quality 

as compared to no motion correction. By visual inspection of the estimated activity and Ki 

images, it is clear that correction of both cardiac and respiratory motion had the most impact 

on image quality (e.g. compare delineation of papillary muscles and septal wall in left-most 

HLA slice in Supplemental Figures 2 and 4).

Long dynamic scans are associated with an increased likelihood of body movement during 

the acquisition, especially in patients with cardiac disease. Body motion is unpredictable and 

can occur for numerous reasons including subject discomfort, coughing or deep breathing. 

Such motion can have a severe impact on image quality and confound kinetic parameter 

estimation [68], [69]. In principle, estimates of body motion (e.g. obtained using registration 

of dynamic PET images [70]) could be employed to adapt the cardiorespiratory motion 

model to each dynamic frame based on patient position. This will be part of future technical 

developments.

Another potential issue that comes along with extended PET scans is the possibility of 

changes in cardiac and respiratory motion patterns that could result in inaccurate modeling 
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and correction of motion for some portions of the scan. Further works are needed to 

investigate how the motion model could be modified to account for such variation. 

Nevertheless, the fact that motion correction led to estimation of parametric images with 

improved resolution suggests that the motion model was relatively accurate for the whole 

dynamic scan in this study.

Myocardial perfusion imaging protocols typically involve the acquisition of two PET scans, 

one in resting conditions and the other during pharmacological stress. The administration of 

vasodilators (e.g. regadenoson) for stress imaging will cause an increase heart rate and may 

also substantially change the breathing pattern of the patient [11]. Therefore, it is possible 

that distinct cardiorespiratory motion models need to be obtained for both scanning 

conditions, although this warrants further investigations.

The number of subjects in this study was small as we only scanned three subjects. Another 

limitation of this work is the lack of motion-free reference standard for validation of the 

motion correction methodology. Indeed, due to the drastic increase in noise associated to 

rejecting events in dynamic frames, we did not apply kinetic modeling to dual-gated PET 

images. Nevertheless, comparisons of motion corrected vs. non-corrected results could 

demonstrate the effectiveness of the method and its impact on activity and kinetic parameter 

quantification. However, further investigations in patients with cardiac diseases are needed 

to determine whether motion correction improves the diagnostic value of cardiac PET.

CONCLUSION

In this work, we presented a method for MR-based cardiac and respiratory motion correction 

of cardiac 18F-FDG PET data and evaluated its impact on quantification of activity and 

kinetic parameters in healthy volunteers. The method was shown to substantially improve 

the spatial resolution and contrast of cardiac 18F-FDG images. Motion correction yielded 

parametric images with improved spatial resolution and produced a significant increase in Ki 

estimates, consistent with increased reconstructed myocardial activity in the frames used 

during kinetic analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic timeline of data acquisition. MR-AC: MR-based attenuation correction sequence, 

‘tMR_x’: tagged MRI sequence with tag lines orientation parallel to x-axis.
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Figure 2: 
Illustration of positioning of (A) ROIs for one short-axis plane and (B) line profiles for 

calculation of myocardium CNR and apparent wall thickness, respectively.
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Figure 3: 
Examples of images and motion fields estimated using tagged (A) and golden-angle radial 

(B) MR acquisitions in subject 1. Tagged and golden-angle images are shown in transverse 

and coronal orientations, respectively. The motion fields estimated with tagged (resp. 

golden-angle radial) MRI capture the movement of voxels between the reference end-

diastolic (resp. end-exhalation) phases and all other cardiac (resp. respiratory) phases. The 

blue arrow in (B) indicates the placement of the navigator. LV: left ventricle, RV: right 

ventricle.
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Figure 4: 
Respiratory traces generated for all three subjects using list mode and MR navigator-based 

techniques. The left panels show plots of the two curves for a 150-sec window, while the 

right panels show the corresponding scatter plots.
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Figure 5: 
Short-axis and horizontal long-axis images of a late dynamic frame reconstructed with MC 

and NMC for subject 1. White arrows indicate locations where reconstructed wall activity is 

clearly higher in MC compared to NMC. Red arrows point to papillary muscles whose 

structure is more visible in MC images, indicating improved spatial resolution. Orange 

arrows indicate areas where spillover from the myocardium to the left-ventricle cavity is 

visibly reduced in MC images.
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Figure 6: 
Short-axis and horizontal long-axis images of a late dynamic frame reconstructed with MC 

and NMC for subject 2. White arrows indicate locations where reconstructed wall activity is 

clearly higher in MC compared to NMC. Red arrows point to papillary muscles whose 

structure is more visible in MC images, indicating improved spatial resolution. Orange 

arrows indicate areas where spillover from the myocardium to the left-ventricle cavity is 

visibly reduced in MC images.
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Figure 7: 
Percent changes in myocardium CNR and wall thickness between MC vs. NMC images for 

all three subjects. Overall, MC images have higher CNR and lower wall thickness than NMC 

in all four myocardium sectors.
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Figure 8: 
Same transverse slice across dynamic frames for NMC and MC methods (subject 2). Note 

that, to facilitate comparison of NMC and NMC images, the display range was adapted 

specifically for each dynamic frame. The first 4 frames after injection are not included in the 

figure as they were not corrected for motion. TOI = time of injection.
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Figure 9: 
Short-axis and horizontal long-axis Ki slices obtained using MC and NMC dynamic images 

for subject 1. MC yielded higher Ki values than NMC, especially in regions evidenced by 

white arrows. Structures such as papillary muscles are also easier to delineate in MC Ki 

maps (see red arrows).
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Figure 10: 
Short-axis and horizontal long-axis Ki slices obtained using MC and NMC dynamic images 

for subject 2. MC yielded higher Ki values than NMC, especially in regions evidenced by 

the white arrows. Structures such as papillary muscles are also easier to delineate in MC Ki 

maps (see red arrows).
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Figure 11: 
Examples of Patlak plots for MC and NMC in one ROI taken in the base of the septum. 

(normalized time: integrated plasma activity over [0-t] / plasma activity (t)).
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Figure 12: 
Percent differences in myocardium Ki for MC vs. NMC for all three subjects. Motion 

correction yields higher Ki values almost everywhere but especially in the septum.
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Table 1.

Contrast-to-noise-ratio (CNR) and apparent thickness of the inferior, lateral, anterior and septal walls for the 

two reconstruction methods (mean ± SD)

Subject no.
CNR Thickness (mm)

MC NMC MC NMC

1

inferior 16.2±2.3 14.7±2.1 15.5±3.9 18.7±4.3

lateral 21.0±3.7 19.2±4.3 14.7±2.7 15.4±2.6

anterior 17.8±2.8 14.9±2.6 11.8±2.9 14.1±3.4

septal 14.6±2.4 12.0±1.2 13.6±2.8 16. 2±4.5

2

inferior 17.3±0.8 16.1±1.4 16.1±4.4 19.3±5.8

lateral 22.9±3.5 21.1±4.9 14.8±4.5 15.7±4.5

anterior 19.9±2.9 16.9±4.9 11.5±1.6 13.6±2.8

septal 17.3±0.9 14.0±1.8 14.8±3.2 15.8±3.8

3

inferior 6.9±0.6 6.4±0.7 16.2±3.1 20.2±7.1

lateral 9.0±0.85 8.5±1.1 16.7±4.8 17.5±5.7

anterior 8.8±1.4 7.9±0.7 15.1±1.9 16.9±4.1

septal 5.1±0.7 4.5±1.2 15.6±3.4 19.4±6.7
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Table 2.

Ki values in the inferior, lateral, anterior and septal walls for the two reconstruction methods (mean±SD)

Ki (min−1)

Subject no. MC NMC

1

inferior 0.031±0.004 0.029±0.004

lateral 0.038±0.007 0.035±0.007

anterior 0.031±0.005 0.027±0.005

septal 0.027±0.002 0.023±0.001

2

inferior 0.034±0.002 0.029±0.006

lateral 0.035±0.006 0.030±0.004

anterior 0.035±0.006 0.029±0.009

septal 0.033±0.006 0.027±0.010

3

inferior 0.050±0.005 0.048±0.005

lateral 0.063±0.007 0.061±0.010

anterior 0.064±0.011 0.060±0.006

septal 0.037±0.008 0.033±0.008
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