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ABSTRACT
Lung cancer is the top cause of carcinoma-associated deaths worldwide. RNA binding
proteins (RBPs) dysregulation has been reported in various malignant tumors, and that
dysregulation is closely associatedwith tumorigenesis and tumor progression.However,
little is known about the roles of RBPs in lung adenocarcinoma (LUAD). In this study,
we downloaded the RNA sequencing data of LUAD from The Cancer Genome Atlas
(TCGA) database and determined the differently expressed RBPs between normal and
cancer tissues. We then performed an integrative analysis to explore the expression
and prognostic significance of these RBPs. A total of 164 differently expressed RBPs
were identified, including 40 down-regulated and 124 up-regulated RBPs. Pathway and
Gene ontology (GO) analysis indicated that the differently expressed RBPs were mainly
related to RNA processing, RNA metabolic process, RNA degradation, RNA transport,
splicing, localization, regulation of translation, RNA binding, TGF-beta signaling
pathway, mRNA surveillance pathway, and aminoacyl-tRNA biosynthesis. Survival
analysis revealed that the high expression of BOP1 or GNL3 or WDR12 or DCAF13
or IGF2BP3 or IGF2BP1 were associated with poor overall survival (OS). Conversely,
overexpression of KHDRBS2/SMAD predicted high OS in these patients. ROC curve
analysis showed that the eight hub genes with a better diagnostic accuracy to distinguish
lung adenocarcinoma. The results provided novel insights into the pathogenesis of
LUAD and the development of treatment targets and prognostic molecular markers.

Subjects Bioinformatics, Computational Biology, Oncology, Respiratory Medicine, Data Mining
and Machine Learning
Keywords Lung adenocarcinoma, RNA binding proteins, Post-transcriptional regulation,
Prognostic value, Integrated bioinformatics analysis

INTRODUCTION
RNA-binding proteins (RBPs) are generally recognized as proteins that bind to a variety
of RNAs, such as rRNAs, miRNAs, snRNAs, ncRNAs, mRNAs, snoRNAs, and tRNAs.
Currently, there are more than 1,500 experimentally validated RBP coding genes in
human genome, accounting for about 7.5% of all protein-coding genes (Gerstberger,
Hafner & Tuschl, 2014). They can interact with other proteins or RNAs to form
ribonucleoprotein complexes that regulate mRNA stability, RNA localization, export,
processing, splicing, degradation, and translation (Masuda & Kuwano, 2019). The RBP
decides the function and durability of each transcript and maintains cellular homeostasis
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(Masuda & Kuwano, 2019). Since the RBPs play pivotal roles in post-transcriptional
gene expression, it is not surprising that differentially expressed RBPs are closely
associated with the pathogenesis and progression of various diseases. Mutations in
RBP LIN28A cause embryonic stem cell developmental defects and a Parkinson’s
disease-related phenotype (Chang et al., 2019). ZFP36L1 is an RBP protect against
Osteoarthritis pathogenesis by regulating theHSP70 familymembers to inhibit chondrocyte
apoptosis (Son et al., 2019). Besides, previous studies have shown that the RBPs such as
SRSF1, HuR, Rbm38, and QKI, as critical post-transcriptional regulators, play essential
roles in the occurrence and development of cardiovascular diseases (De Bruin et al., 2017;
Sonnenschein et al., 2019). AlthoughRBPs be closely related to the initiation andprogression
of human diseases, the general roles of RBPs in tumor are still unclear.

To date, more and more studies have revealed that RBPs were dysregulated in tumors,
which influence RNAmodification and protein translation, involved in cancer development
and progression (Legrand, Dixon & Sobolewski, 2019; Wang et al., 2020; Chatterji &
Rustgi, 2018). For instance, RBP CELF6 served as a potential tumor suppressor. It is
transcriptional silencing in human breast cancer due to hypermethylation modification
of its promoter (Pique et al., 2019); RBP SORBS2 inhibit liver cancer carcinogenesis
and metastasis by regulating the stability of RORA (Han, Huang & Zhang, 2019); AGO2
promote tumor development by up-regulating the expression of oncogenicmiR-19b (Zhang
et al., 2019); RBP KHSRP promotes lung cancer cell proliferation, migration, and
invasion (Yan et al., 2019); HuR by regulating related mRNA stability to induce tumor
cell proliferation and metastasis of stomach carcinoma (Xie et al., 2019b). However, the
functions of most RBPs have not yet been determined in cancers. A systematic functional
analysis of RBPs will help us thoroughly investigate its role in tumors.

Lung cancer is a very harmful disease with an average 5-year relative survival rate of
only 18% (Siegel, Miller & Jemal, 2018). In recent years, numerous diagnostic molecular
markers related to lung tumor have been identified (Xie et al., 2019a; Bao et al., 2017;
Tepeli et al., 2012; Jan et al., 2019; Sun et al., 2019), but it is difficult to achieve accurate
early-stage detection. This is probably the most important cause of high mortality in lung
cancer patients. Therefore, there is a pressing need to develop an effective means for early
detection and diagnosis to improve the treatment of lung cancer. The large-scale tumor
genome project provides a wealth of gene expression data, which gives us an excellent
opportunity to identify potential tumor molecular markers. Herein, we obtained LUAD
RNA-sequencing data with corresponding clinical information from the cancer genome
atlas (TCGA) database. Then, a series of bioinformatics methods were used to identify the
differential expression of RPBs in tumor and normal tissues and to analyze the potential
functional and clinical significance of these RBPs. Our results have displayed a number of
RBPs associated with the pathogenesis of LUAD, which might be potentially helpful for
developing diagnosis and prognosis biomarkers.
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MATERIAL AND METHODS
Data acquisition and processing
The RNA-sequencing information of 524 LUAD samples and 59 normal lung tissue
samples with corresponding clinical information were obtained from TCGA database
(https://portal.gdc.cancer.gov/). The DESeq2 package (http://www.bioconductor.org/
packages/release/bioc/html/DESeq2. html) was used to preprocessed raw data and excluded
genes with an average count value less than 1. Besides, we also used DESeq2 package to
identify the differently expressed RBPs in view of |log2 fold change (FC)| ≥1 and false
discovery rate (FDR)<0.05. The GSE30219 dataset were downloaded fromGene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and used as a validation cohort.

GO and pathway enrichment analysis
In order to explore the function of the differently expressed RBPs, GO enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed
using WEB-based Gene Set Analysis Toolkit (WebGestalt, http://www.webgestalt.
org/) (Liao et al., 2019). Both P and FDR values were less than 0.05 were considered
statistically significant.

Protein–protein interaction (PPI) network construction and module
selecting
The PPI network is an effective means for exploring the association between proteins
in various organisms. In this study, the STRING database (http://www.string-db.
org/) (Szklarczyk et al., 2019) were used to identify protein-protein interaction information
of the differently expressed RBPs. The PPI pairs identified by STRING database were
imported into the Cytoscape 3.7.0 software to build a PPI network. The key modules and
hub genes were identified by using Molecular Complex Detection (MCODE) plug-in with
both MCODE score and node counts number more than 5. All P ≤ 0.05 were chosen as
the significant threshold.

Survival analysis
The prognostic value of key genes screed from important modules in PPI network were
analyzed by using an online database, GEPIA (http://gepia.cancer-pku.cn/), which included
gene expression data and corresponding survival information of 478 LUAD patients (Tang
et al., 2017b). All LUAD patient samples were divided into low or high expression group
according to median expression, then analyze the overall survival (OS) by GEPIA. Log-
Rank test was used to assess the prognostic value and logrank P ≤ 0.05 was considered as
a significant difference.

Hub genes selection and efficacy evaluation
Given that the ten key genes from modules analysis were all up-regulated genes, we also
run a survival analysis of the top 10 high expressed genes and top 20 low expressed genes,
respectively. Taking together, the genes with P ≤ 0.05 in survival analysis were determined
as real hub genes. Subsequently, the expression of these hub genes was verified at the
translation and transcription levels by utilized the Human Protein Atlas (HPA) databases
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and GEPIA databases (http://www.proteinatlas.org/) (Uhlen et al., 2015). The receiver
operating characteristic (ROC) curve was calculated with Graphpad prism 7.0 software
to assess the capability to distinguish normal lung and LUAD tissue. Multivariate Cox
regression analysis was performed on these hub genes to calculate a risk score of each
patient. Subsequently, a RBPs-related prognostic signature based on the coefficient value
of these hub genes was evaluated in TCGA and GSE30219 cohorts.

Mutations and copy-number alterations analysis of key genes
The mutations and copy-number alterations information of all hub genes from were
determined by utilizing segmentation analysis and GISTIC algorithm in cBioPortal
(https://www.cbioportal.org/). Then, we conducted the co-expression analysis and
constructed the network according to the cBioPortal’s instruction. In addition, functional
enrichment analysis of hub genes alterations was evaluated by WebGestalt.

RESULTS
Identifying the differently expressed RBPs in lung adenocarcinoma
patients
Total 1542 RBPs (Gerstberger, Hafner & Tuschl, 2014) were included in this study, and 164
RBPs were identified as differentially expressed genes between tumors and normal samples
(P < 0.05, |log2FC)| ≥1.0), including 40 down-regulated RBPs and 124 up-regulated RBPs
(Table S1). The expression distribution of these differently expressed RBPs was showed in
Fig. 1.

Functional and pathway enrichment analysis of the differently
expressed RBPs
We uploaded all differently expressed RBPs to the online toolWebGestalt for GO categories
and KEGG pathways analysis. GO analysis results indicated that downregulated RBPs were
significantly enriched in the biological processes (BP) related to mRNA processing,
regulation of translation, regulation of cellular amide metabolic processes, and metabolic
processes (Table 1). The upregulated RBPs were significantly enriched in biological
processes, including amide biosynthetic processes, RNA processing, translation, peptide
metabolic processes, peptide biosynthetic processes, and ncRNA metabolic processes
(Table 1). For molecular function (MF), the downregulated RBPs were significantly
enriched in RNA binding, single-stranded RNA binding, mRNA 3′-UTR AU-rich
region binding and mRNA 3′-UTR binding (Table 1), while the upregulated RBPs were
significantly enriched in RNA binding, catalytic activity acting on RNA, mRNA binding,
and poly-pyrimidine tract binding (Table 1). The GO cellular component (CC) analysis
showed that the decreased differently expressed RBPs were enriched in RNA cap binding
complex, and ribonucleoprotein complex, and upregulated RBPs were mainly enriched
in ribonucleoprotein complex, ribonucleoprotein granule, cytoplasmic ribonucleoprotein
granule, nucleolus, and P granule (Table 1). In addition, results of KEGG pathway analysis
indicated that downregulated RBPs were mainly enriched in TGF-beta signaling pathway,
while upregulated RBPs were mainly enriched in pathways of mRNA surveillance pathway,
RNA degradation, RNA transport, and aminoacyl-tRNA biosynthesis (Table 1).
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Figure 1 The differentially expressed RBPs in lung adenocarcinoma.Green: down-regulation with a
fold change of more than 2; black: unchanged genes; red: up-regulation with fold change of more than 2.

Full-size DOI: 10.7717/peerj.8509/fig-1

Protein-protein interaction network construction and key modules
screening
According to the information in the STRING database, we constructed a PPI network with
103 nodes and 360 edges by using Cytoscape software (Fig. 2A). Ten genes were screened
as candidate hub genes by computing degree and betweenness, including BOP1, GNL3,
WDR12, NOP2, BYSL, BRIX1, DCAF13, TFB2M, NSUN2 and DKC1. Furthermore, the
MODE plugin was used to identify possible key modules from the co-expression network
and the top 2 significant modules were screened (Figs. 2B–2C). Function enrichment
analysis revealed that the RBPs involved in module 1 were related to ncRNA processing,
ncRNA metabolic process, ribosome biogenesis, ribonucleoprotein complex biogenesis,
RNA binding, RNA methyltransferase activity and snoRNA binding, while the RBPs
in module 2 were associated with translational elongation, mitochondrial translational
elongation, cellular amide metabolic process, peptide biosynthetic process, structural
molecule activity, and structural constituent of ribosome.

Survival analysis of candidate hub RBPs
We obtained the hazard ratio (HR) of each candidate hub gene to OS by using GEPIA.
The results showed that high expression of BOP1 (HR = 1.5, P = 0.011), GNL3 (HR =
1.6, P = 0.002), WDR12 (HR = 1.4, P = 0.028), and DCAF13 (HR = 1.5, P = 0.009) were
significantly related to poor OS (Figs. 3A–3D). Considering that the candidate hub genes
from PPI network were all up-regulated genes, we also executed survival analysis of the
top ten over-expressed RBPs and top twenty down-expressed RBPs. We found that high
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Table 1 GO enrichment and KEGG pathway analysis of differently expressed RBPs.

GO term P value FDR

Down-regulated RBPs
mRNA processing 3.68E−09 <0.0001
mRNA metabolic process 2.43E−10 2.2102E−06
RNA processing 1.86E−08 0.0001
regulation of translation 2.60E−08 0.0001
regulation of cellular amide metabolic process 9.26E−08 0.0002
RNA cap binding complex 1.14E−06 0.0007
ribonucleoprotein complex 1.19E−06 0.0007
RNA binding <0.0001 <0.0001
mRNA binding 5.88E−11 5.52E−08
single-stranded RNA binding 8.12E−10 5.08E−07
mRNA 3′-UTR binding 1.65E−08 7.6E−06
mRNA 3′-UTR AU-rich region binding 2.02E−08 7.6E−06
TGF-beta signaling pathway 0.0004 0.0376

Up-regulated RBPs
RNA processing <0.0001 <0.0001
peptide metabolic process <0.0001 <0.0001
amide biosynthetic process <0.0001 <0.0001
peptide biosynthetic process <0.0001 <0.0001
translation <0.0001 <0.0001
ncRNA metabolic process <0.0001 <0.0001
ribonucleoprotein complex <0.0001 <0.0001
ribonucleoprotein granule <0.0001 <0.0001
cytoplasmic ribonucleoprotein granule 2.22E−16 8.70E−14
nucleolus 8.46E−13 2.45E−10
P granule 1.46E−12 2.45E−10
RNA binding <0.0001 <0.0001
catalytic activity, acting on RNA <0.0001 <0.0001
mRNA binding <0.0001 <0.0001
poly-pyrimidine tract binding 5.45E−08 <0.0001
translation regulator activity 1.39E−07 <0.0001
mRNA surveillance pathway <0.0001 <0.0001
RNA degradation <0.0001 <0.0001
RNA transport <0.0001 <0.0001
Ribosome 0.0001 0.0001
Aminoacyl-tRNA biosynthesis 0.0079 0.0079

expression of IGF2BP3 (HR = 1.6, P = 0.002) or IGF2BP1 (HR = 1.4, P = 0.016) was
related to unfavorable prognosis of LUAD patients (Figs. 3E–3F), while the expression
of KHDRBS2 (HR = 0.61, P = 0.001) or SMAD9 (HR = 0.62, P = 0.002) was negatively
associated with OS (Figs. 3G–3H). These findings suggested that BOP1, GNL3, WDR12,
DCAF13, IGF2BP3, IGF2BP1, KHDRBS2 and SMAD9 played a pivotal function in the
development of lung adenocarcinoma.
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Figure 2 Protein–protein interaction network andmodules analysis. (A) Protein–protein interaction
network of RBPs; (B) critical module 1 from PPI network; (C) critical module 2 from PPI network. Green:
down-regulation with a fold change of more than 2; orange: up-regulation with fold change of more
than 2.

Full-size DOI: 10.7717/peerj.8509/fig-2

Hub RBPs verification and efficacy assessment
In accordance with the immunohistochemistry results from the Human Protein Atlas
database, we found that the expression of hub RBPs BOP1, GNL3, WDR12, DCAF13,
IGF2BP3, and IGF2BP1 were obviously elevated in lung carcinoma compared with normal
lung tissues, while KHDRBS2 and SMAD9 were significantly decreased in tumor tissues
(Fig. 4). Furthermore, we validated the expression level of the hub RBPs at transcription.
The results indicated that the eight hub RBPs were deregulated in both TCGA and
GSE30219 LUAD patient cohorts (Fig. 5). Moreover, the expression of the eight hub RBPs
were significantly associated with tumor stage (Fig. 6). In addition, the ROC curve was
used to assess the ability of eight hub RBPs to discriminate tumor tissue and normal
lung tissue. The area under the curve (AUC) of hub genes BOP1 (AUC = 0.95, 95%CI
[0.9357–0.9700], P<0.0001), GNL3 (AUC = 0.96, 95%CI [0.9509–0.9827], P<0.0001),
WDR12 (AUC = 0.9614, 95%CI [0.9459–0.9769], P <0.0001), DCAF13 (AUC = 0.9747,
95%CI [0.9616–0.9879], P <0.0001), IGF2BP3 (AUC = 0.7949, 95%CI [0.7565–0.8334],
P <0.0001), IGF2BP1 (AUC = 0.7754, 95%CI [0.7565–0.8334], P < 0.0001), KHDRBS2
(AUC = 0.9018, 95%CI [0.8767–0.9270], P < 0.0001), and SMAD9 (AUC = 0.9120,
95%CI [0.8855–0.9386], P < 0.0001) were greater than 0.7, suggesting that the eight hub
genes with a better diagnostic accuracy for LUAD (Fig. 7). To further assess whether the
eight hub genes can be used as one gene signature to predict the prognosis of LUAD
patients, the risk score of every patient was calculated based on the coefficient value of the
eight genes. Then, all patients were divided into high-risk and low-risk groups with the
median risk score, and patients of high-risk were with poor OS compared with those of
low-risk in both TCGA and GSE30219 cohorts (Fig. 8).
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Figure 3 Survival analysis of hub RBPs. (A) BOP1, (B) GNL3, (C)WDR12, (D) DCAF13, (E) IGF2BP3,
(F) IGF2BP1, (G) KHDRBS2, (H) SMAD9. The dotted lines represent the 95% confidence interval.

Full-size DOI: 10.7717/peerj.8509/fig-3

Functions and pathways analysis of the alterations in candidate hub
genes and their frequently changed neighbor genes in LUAD patients
The mutations and copy-number alterations analysis of the key genes BOP1, GNL3,
WDR12, NOP2, BYSL, BRIX1, DCAF13, TFB2M, NSUN2, DKC1, IGF2BP3, IGF2BP1,
KHDRBS2 and SMAD9 were carried out by using cBioPortal. We found that the 14
key genes altered in 223 samples out of 507 LUAD patients (Figs. 9A–9B). Then we
constructed the interaction network contains 64 nodes, including 14 key genes and the 50
most frequently altered neighbor genes (Fig. 9C). The functions and pathways analysis of
candidate hub genes and the genes significantly associated with hub genes alterations were
conducted by usingWebGestalt. The results showed that response to growth factor, enzyme
linked receptor protein signaling pathway, TGF-beta signaling pathway, telomerase RNA
binding, transmembrane receptor protein serine/threonine kinase signaling pathway, Th17
cell differentiation, and Hippo signaling pathway were significantly regulated by the hub
genes alterations in LUAD (Fig. 10).
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Figure 4 Validation the protein expression of hub genes in normal lung tissue and LUAD by the Hu-
man Protein Atlas database. (A–B) BOP1, (C–D) GNL3, (E–F) WDR12, (G–H) DCAF13, (I–J) IGF2BP3,
(K–L) IGF2BP1, (M–N) KHDRBS2, (O–P) SMAD9.

Full-size DOI: 10.7717/peerj.8509/fig-4

Figure 5 Validation the mRNA expression of hub RBPs in normal lung tissue and LUAD. (A) TCGA
LUAD patients cohort; (B) GSE30219 LUAD patient cohort; T: tumor tissue; N: normal tissue.

Full-size DOI: 10.7717/peerj.8509/fig-5
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Figure 6 Correlation between eight hub RBPs expression and tumor stage in LUAD patients. (A)
BOP1, (B) GNL3, (C) WDR12, (D) DCAF13, (E) IGF2BP3, (F) IGF2BP1, (G) KHDRBS2, (H) SMAD9.

Full-size DOI: 10.7717/peerj.8509/fig-6

Figure 7 ROC analysis of eight hub RBPs based on TCGA database. (A) BOP1, (B) GNL3, (C)WDR12,
(D) DCAF13, (E) IGF2BP3, (F) IGF2BP1 , (G) KHDRBS2, (H) SMAD9.

Full-size DOI: 10.7717/peerj.8509/fig-7

DISCUSSION
Despite advances in diagnostic and treatmentmethods over the past few decades, the overall
mortality rates of lung carcinoma remained largely unchanged. Thence, understanding
the etiology and molecular mechanism of lung carcinogenesis is necessary to improve
the survival rate of patients. In recent years, many studies have shown that RBPs play a
pivotal role in the development and progression of various human tumors (Pereira, Billaud
& Almeida, 2017; Wu et al., 2019; Lujan, Ochoa & Hartley, 2018). However, the specific
functional role of most RBPs in the process of tumorigenesis remains unclear (Chen et al.,
2019). In this study, a total of 164 differently expressed RBPs between LUAD and normal
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Figure 8 Prognostic risk assessment of integrated eight-hub genes for LUAD patients. (A) TCGA co-
hort, (B) GSE31219 cohort.

Full-size DOI: 10.7717/peerj.8509/fig-8

Figure 9 Hub RBPs expression and alteration a nalysis in lung adenocarcinoma. (A) Total alteration
frequency; (B) genetic alteration of each hub gene; (C) co-expression network of hub RBPs and the 50
most frequently altered neighbor genes.

Full-size DOI: 10.7717/peerj.8509/fig-9

lung tissue were screened, consisting of 124 up-regulated RBPs and 40 down-regulated
RBPs. Then, we systematically explored the potential functional pathways and constructed
a PPI network of these differently expressed RBPs. Moreover, the module analysis, survival
analysis, ROC analysis and copy-number alterations analysis of hub RBPs were performed
to further explore their biological functions and clinical significance. These findings may
contribute to develop novel biomarkers for the diagnosis and prognosis of LUAD patients.

Li et al. (2020), PeerJ, DOI 10.7717/peerj.8509 11/19

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31219
https://doi.org/10.7717/peerj.8509/fig-8
https://doi.org/10.7717/peerj.8509/fig-9
http://dx.doi.org/10.7717/peerj.8509


Figure 10 Functional enrichment analysis of key RBPs and genes significant associated with their al-
terations. (A) Biological process; (B) molecular function; (C) cellular components; (D) KEGG pathway.

Full-size DOI: 10.7717/peerj.8509/fig-10

The function enrichment analysis demonstrated that the differently expressed RBPs were
significantly related to RNA processing, RNA metabolic process, RNA binding, peptide
biosynthetic process, regulation of translation, regulation of cellular amide metabolic
process, catalytic activity acting on RNA, single-stranded RNA binding, poly-pyrimidine
tract binding, RNA cap binding complex, ribonucleoprotein complex, mRNA 3′-UTR
binding, ribonucleoprotein granule, and nucleolus. Previous studies have shown that
RNA metabolism and RNA processing have been increasingly recognized in various
diseases (Martinez-Terroba et al., 2018; Hinkle et al., 2019; Jain et al., 2019). RBPs can
bind to mRNAs to form ribonucleoprotein complexes and regulate their expression by
increasing mRNA stability, which play important roles in the development of many
diseases. A recent study has revealed that RNA-binding protein SRSF1 promote tumor
cell proliferation and progression by increasing LIG1 mRNA stability in non-small cell
lung cancer (Martinez-Terroba et al., 2018). RNA binding proteins in the nucleus play key
effects in regulated mRNA alternative splicing process and lead to alter in the expression
of tumor-associated genes (Shao et al., 2019). Additionally, ribonucleoprotein granule is
an important area that implements protein synthesis. The mutation of ribonucleoprotein
regulates the translation process and associated with tumor development (Goudarzi &
Lindstrom, 2016). It has been reported that heterogeneous nuclear ribonucleoprotein A2B1
is over-expressed in tissues and blood of patients with lung cancer, and which contributes
to lung tumorigenesis (Dowling et al., 2015). The KEGG pathways analysis suggested that
the differently expressed RBPs regulate the occurrence and development of lung cancer by
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affecting RNA degradation, TGF-beta signaling pathway, RNA transport, aminoacyl-tRNA
biosynthesis, and mRNA surveillance pathway.

Furthermore, we constructed a PPI network of these differently expressed RBPs and
got the top ten hub genes including BOP1, GNL3,WDR12, NOP2, BYSL, BRIX1, DCAF13,
TFB2M, NSUN2 and DKC1. Among these genes, NOP2, also known as p120, is found
highly expressed in lung adenocarcinoma tissue and negatively associated with patients
prognosis (Saijo et al., 2001; Uchiyama et al., 1997). Despite the correlation between most
RBPs and LUAD still unclear, several RBPs have been reported to be closely associated
with other cancers. BOP1 as Wnt/β-catenin target gene involved in induced migration,
EMT, and metastasis of colorectal carcinoma (Qi et al., 2016). GNL3 is upregulated in
colon carcinoma cell and tissue, and facilitate tumor cell epithelial-mesenchymal transition
by activating the Wnt/β-catenin signaling pathway (Tang et al., 2017a). WDR12 as a new
oncogene contributes to liver cancer spread (Yin et al., 2018). DCAF13 is upregulated in
liver cancer and significantly related to poor survival (Cao et al., 2017; Qiao et al., 2019).
NSUN2 as a tRNAmethyltransferase, is significantly related to cancer progression in several
tumors, such as esophageal squamous cell carcinoma (Li et al., 2018), breast cancer (Yi
et al., 2017), and ovarian cancer (Yang et al., 2017). DKC1 is deregulated in glioma and
knockdown ofDKC1 restrain cancer cell proliferation, invasion and migration (Miao et al.,
2019). By executingmodule analysis of PPI network, we found that LUAD is associated with
RNA metabolic process, ribosome biogenesis, cellular amide metabolic process, peptide
biosynthetic process, and translational elongation.

In addition, the survival analysis showed that 8 RBPs are obviously related to survival
of LUAD patients. Increased expression of BOP1, GNL3, WDR12, DCAF13, IGF2BP3 and
IGF2BP1 were related to poor overall survival, while overexpression of KHDRBS2 and
SMAD were related to better overall survival. Subsequently, we verified the expression
patterns of these eight hub RBPs on translation and transcription level by using the Human
Protein Atlas database and GEPIA database, the results showed that BOP1, GNL3, WDR12,
DCAF13, IGF2BP3 and IGF2BP1 were upregulated, and KHDRBS2 as well as SMAD were
downregulated in LUAD tissues. These findings suggested that BOP1, GNL3, WDR12,
DCAF13, IGF2BP3 and IGF2BP1 may have potential carcinogenic effects, KHDRBS2 and
SMAD role as tumor suppressor genes. Previous study has reported that the expression
IGF2BP3 or IGF2BP1 can predict poor overall survival in lung cancer patients (Shi et al.,
2017), which were consistent with our results. Two other studies also showed that DCAF13
was increased in hepatocellular carcinoma or breast cancer, and obviously associated with
poor overall survival (Cao et al., 2017;Wang et al., 2019). The ROC curve analysis revealed
that these 8 RBPs with better diagnostic accuracy for distinguishing LUAD patients from
healthy people, which could be used as potential diagnostic molecular markers in the
future. Besides, we found that the eight hub genes can be used as one gene signature to
predict the prognosis of LUAD patients in TCGA and GSE30219 cohorts.

Finally, we analyzed the hub genes alterations and constructed the co-expression network
by using the cBioPortal online tool for LUAD. The results showed that amplification of
NSUN2 was the most common alterations in all copy number variations of these RBPs.
A study revealed that NSUN2 gene copy number was elevated in colorectal and oral
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carcinoma (Okamoto et al., 2012).We also found that DCAF13 and BOP1 have high
copy number gain frequency in patients with LUAD. Previous studies have shown that
DCAF13 is amplified in various tumors, such as hepatocellular carcinoma (Cao et al., 2017),
breast cancer (Wang et al., 2019), and osteosarcoma (Chen et al., 2018). Another research
has demonstrated that dosage increase of the BOP1 was a frequent event in colorectal
carcinoma and related to cancer occurrence (Killian et al., 2006). By constructing a protein
co-expression network of key 14RBPs and the 50most frequently altered neighbor genes, we
found that the alterations of hub RBPs in LUAD were involved in regulating enzyme linked
receptor protein signaling pathway, telomerase RNA binding, TGF-beta signaling pathway,
Hippo signaling pathway, and transmembrane receptor protein serine/threonine kinase
signaling pathway. These results indicated that mutations and copy-number alterations of
RBPs were play important roles in lung carcinogenesis and progression.

In conclusion, the current study conducted a comprehensive bioinformatics analysis of
differently expressed RBPs to identify the potential biomarkers and predict progression
of LUAD. The results showed that the expression of BOP1, GNL3, WDR12, DCAF13,
IGF2BP3, IGF2BP1, KHDRBS2 and SMAD were significantly related to prognosis of LUAD
patient. These findings have the potential to provide new therapeutic targets prognostic
markers for LUAD.
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