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Abstract

Introduction: The trigeminal ganglion is unique among the somatosensory ganglia regarding its 

topography, structure, composition and possibly some functional properties of its cellular 

components. Being mainly responsible for the sensory innervation of the anterior regions of the 

head, it is a major target for headache research. One intriguing question is if the trigeminal 

ganglion is merely a transition site for sensory information from the periphery to the central 

nervous system, or if intracellular modulatory mechanisms and intercellular signaling are capable 

of controlling sensory information relevant for the pathophysiology of headaches.

Methods: An online search based on PubMed was made using the keyword “trigeminal 

ganglion” in combination with “anatomy”, “headache”, “migraine”, “neuropeptides”, “receptors” 

and “signaling”. From the relevant literature, further references were selected in view of their 

relevance for headache mechanisms. The essential information was organized based on location 

and cell types of the trigeminal ganglion, neuropeptides, receptors for signaling molecules, 

signaling mechanisms, and their possible relevance for headache generation.

Results: The trigeminal ganglion consists of clusters of sensory neurons and their peripheral and 

central axon processes, which are arranged according to the three trigeminal partitions V1–V3. 

The neurons are surrounded by satellite glial cells, the axons by Schwann cells. In addition, 

macrophage-like cells can be found in the trigeminal ganglion. Neurons express various 

neuropeptides, among which calcitonin gene-related peptide is the most prominent in terms of its 

prevalence and its role in primary headaches. The classical calcitonin gene-related peptide 

receptors are expressed in non-calcitonin gene-related peptide neurons and satellite glial cells, 

although the possibility of a second calcitonin gene-related peptide receptor in calcitonin gene-

related peptide neurons remains to be investigated. A variety of other signal molecules like 

adenosine triphosphate, nitric oxide, cytokines, and neurotrophic factors are released from 

trigeminal ganglion cells and may act at receptors on adjacent neurons or satellite glial cells.
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Conclusions: The trigeminal ganglion may act as an integrative organ. The morphological and 

functional arrangement of trigeminal ganglion cells suggests that intercellular and possibly also 

autocrine signaling mechanisms interact with intracellular mechanisms, including gene expression, 

to modulate sensory information. Receptors and neurotrophic factors delivered to the periphery or 

the trigeminal brainstem can contribute to peripheral and central sensitization, as in the case of 

primary headaches. The trigeminal ganglion as a target of drug action outside the blood-brain 

barrier should therefore be taken into account.
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Introduction

The paired trigeminal ganglion (TG), also called the semilunar or Gasserian ganglion, is 

unique among primary afferent ganglia both in structural and functional aspects. It is located 

inside the head and gives rise to three main peripheral nerves providing nearly all intra-and 

extracranial structures with nerve fibers of various somatosensory functions. Some of these 

structures, like the cornea and the cranial dura, are mainly or exclusively innervated by thin 

A-delta and C-fiber afferents with putative nociceptive functions (1,2,3). The so-called 

trigeminovascular system of the meninges, denoting the afferent fibers closely associated 

with intracranial blood vessels, is regarded as the structural substrate of headache 

generation. Notwithstanding, this system keeps amazing secrets; for example, the fact that 

stimulation of the densely innervated pial blood vessels does not cause any sensation (4).

Location, anatomical structure and compartments of the trigeminal 

ganglion

The TG is located in the Meckel’s cave, a cavern in the petrosal part of the temporal bone on 

the floor of the middle crania fossa, formed by a pocket of dura mater. From the rostro-

lateral border of the TG, three large nerves arise, the ophthalmic (V1), the maxillary (V2), 

and the mandibular (V3) nerve (Figure 1(a)). In rodents, at their origin V2 and V3 form one 

thick bundle that divides more rostrally. On the caudal border, the trigeminal ganglion passes 

into the trigeminal root or so-called trigeminal nerve, which contains the central processes of 

trigeminal fibers that enter the brainstem at the pontine level. In addition, a thin bundle of 

trigeminal motor fibers passing through the ganglion accompanies the trigeminal nerve 

(root) medially and the mandibular nerve rostrally from the ganglion (5). After retrograde 

tracing of the rat spinosus nerve, an afferent nerve in the dura mater arising from the 

mandibular area, nerve fibers lit up in the ganglion, which obviously had no contact to any 

cell body. These fibers are presumably proprioceptive afferents of head muscles that pass the 

ganglion on their way to the mesencephalic nucleus in the brainstem, where their somata are 

located (6).

The mass of nerve fibers is thus occupying a major volume within the ganglion. The 

fascicles of nerve fibers separate aggregations of neurons that belong to the three partitions, 

V1–V3, which can be fairly distinguished according to their location within the ganglion. In 
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horizontal sections through the rodent TG, the ophthalmic division is located rostro-

medially, the maxillary division rostro-laterally, and the mandibular division forms a 

protrusion at the caudal lateral border (Figure 1(a)). The ganglion and the three peripheral 

nerves are ensheathed by a tough layer of collagenous tissue, a duplication of the dura mater, 

while the trigeminal root is only equipped with some sparse connective tissue, which may 

render it vulnerable to mechanical impact.

The functional organization of cutaneous afferents within the TG is quite well-known from 

lesion experiments (7) and electrophysiological recording studies in the cat (8) and the 

monkey (9), but there is not much information about the topographical distribution of 

neurons innervating intracranial structures. The problem is that the innervation territories of 

cutaneous afferents only roughly map the territories of meningeal afferents in humans. 

Furthermore, the areas of headache sensations are in no way helpful in this problem; early 

intraoperative experiments have shown that headache can be referred to areas that may be far 

from the meningeal sites of stimulation (10). Thus, it is not known which neurons are 

involved in headache generation and it is completely unknown if these neurons are in any 

morphological or functional aspect different to the neurons innervating facial skin and other 

cranial organs.

Morphological characteristics of cell types in the trigeminal ganglion

The TG consists mainly of primary afferent neurons of the pseudo-unipolar type and glial 

cells. In human trigeminal ganglia, 20,000–35,000 neurons and about 100 times more non-

neuronal cells have been counted (11). The neurons can unequivocally be identified by their 

nearly round and centrally located nucleus, in which nucleoli and chromatin particles may 

be visible (12). In the rat, the diameters of neurons range from about 10 to 55 μm, with more 

than 90% being small to medium-sized neurons measuring 15–35 μm in diameter (13,14). 

The size of the somata is loosely correlated with the diameters of the nerve fibers. In some 

sections, one or even both processes of a neuron can be visualized but it is not entirely clear 

if both have the same origin, according to the classical pseudo-unipolar type, which is 

certainly the case in dorsal root ganglion neurons (15), or if they arise independently from 

the cell body close to one another (Figure 1(b)). This question is of considerable functional 

importance because, in the latter case, at least parts of the cell body membrane are 

necessarily depolarized when action potentials travel through the neuronal processes.

The TG cell bodies are surrounded by a more or less tight single layer of satellite glial cells. 

In the embryonic trigeminal ganglion, each neuroblast is already accompanied by 2–4 glial 

cells (16). The distal and central afferent processes are wrapped by Schwann cells. The 

Schwann cells can be either non-myelinating or can form a myelin sheath, as in the case of 

Aβ and Aδ fibers. In addition to glia, the TG contains fibroblasts forming collagen fibers, 

small blood vessels (mainly capillaries), and several types of immune cells, such as resident 

microglia-like macrophages (17). A functional crosstalk between neurons and macrophages 

via purinergic P2X3 receptors and/or satellite glial cells via P2Y receptors is assumed at 

least in pathological states, like in temporomandibular inflammation (18,19).
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Neuropeptides in the trigeminal ganglion

The trigeminal ganglion expresses a wide range of neuropeptides. The neuropeptides 

calcitonin gene-related peptide (CGRP) and substance P (SP) have been localized in 

trigeminal ganglia of different species by immunohistochemistry (20,21,22) (Figure 1(c), 

(f)). These and other trigeminal neuropeptides are an increasingly important subject of 

investigation (23). Immunostaining studies have revealed many additional neuropeptides, 

such as neurokinin A (NK-A), cholecystokinin (CCK), galanin (GAL), somatostatin (SOM), 

and opioid peptides, in the TG; a comprehensive review has been published by E Lazarov 

(24). Most of the peptide-expressing neurons are small or medium-sized, which corresponds 

to neurons innervating intracranial (dural) structures (25,26) and are thus very likely 

nociceptive neurons. According to more recent data from immunostaining and RT-PCR, 

additional neuropeptides such as enkephalins (27), nociceptin (28), growth-associated 

protein GAP-43 (29), pituitary adenylate-cyclase activating polypeptide (PACAP) (30) and 

even angiotensin II (31) are present in the TG and can be co-localized with SP or CGRP. The 

ratio of neurons found to produce CGRP and SP seems to depend on the species and 

differences in staining; however, there is agreement that CGRP is the most prominent 

neuropeptide with about 40–50% of neurons being CGRP-immunoreactive (14,32). This 

proportion is in the same range as in dorsal root ganglia (33); however, in neurons 

innervating intracranial blood vessels, CGRP has been found to be enriched compared to 

neurons innervating facial skin (34), which seems to be a general principle regarding 

visceral afferent innervations (35).

Do peptidergic neurons constitute a structurally and functionally separate group of TG 

neurons? Nociceptive afferents are traditionally grouped into two different populations 

according to their expression of vanilloid-sensitive transient receptor potential (TRPV1) 

channels or their isolectin B4 (IB4) binding. The first group containing the peptidergic 

neurons is sensitive to nerve growth factor (NGF), while the second group is sensitive to 

glial cell-line derived neurotrophic factor (GDNF) during development (36,37). However, 

Price and Flores (38), using immunofluorescence, found considerable co-localization of 

TRPV1 and IB4 binding in primary afferent neurons of rat and mouse, particularly in the rat 

TG. The question whether differences in these expression types are causative for functional 

differences between TG and DRGs is not yet clear; after all, Price and Flores (38) found 

significantly more CGRP-immunoreactive neurons colocalized with TRPV1 

immunoreactivity (70 %) in the TG compared with the DRGs.

On this background, CGRP release from isolated TGs or TG cell cultures has long been used 

as a measure for mass activation of TG neurons to examine nociceptive signaling and 

intracellular mechanisms (39,40,41), keeping in mind that this signal is predictive only for 

the peptidergic fraction of neurons. Release experiments from the intact trigeminal ganglion 

using microdialysis has been probed but was restricted to smaller molecules like substance P 

(42).
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Neuropeptide receptors in the trigeminal ganglion

Similar to the large variety of neuropeptides expressed in the TG, multiple components 

forming receptors for neuropeptides have been found expressed on the mRNA level or by 

immunohistochemistry. Functional neuropeptide receptors within the ganglion may be 

involved in intraganglionic signaling, as will be discussed later.

CGRP receptors are heteromers composed of a seven transmembrane-spanning protein 

called calcitonin receptor-like receptor (CLR), a single membrane-spanning protein called 

receptor activity-modifying protein 1 (RAMP1), and an intracellular component, the 

receptor component protein (RCP) (43). RCP links the membrane components to the 

intracellular Gs protein that activates adenylate cyclase to increase cyclic AMP levels (44). 

RAMP proteins are necessary for the trafficking of CLR to the cell membrane, and specific 

RAMPs define the ligand specificity of the calcitonin receptor family (45). In the trigeminal 

ganglion of several species examined so far, neurons of mainly medium sizes and glial cells 

(Schwann cells and satellite cells) have been found immunopositive for both CLR and 

RAMP1 CGRP receptor components (14,46). Indicated by immunostaining, there is only a 

very small overlap of TG neurons that express both CGRP and CGRP receptor proteins 

(14,47) (Figure 1 (e)–(g)). In an elegant study, an antibody specifically recognizing a fusion 

protein of the extracellular domains of RAMP1 and CLR, which comprise the CGRP 

binding pocket, was used to identify the distribution of CGRP receptors in the TG of 

monkey and man. The study confirmed the location of CGRP receptors on neurons and 

satellite glial cells (48).

In addition to the canonical CLR/RAMP1 CGRP receptor, the presence of a second CGRP 

receptor in the trigeminal ganglion must also be considered. This second receptor is 

comprised of the calcitonin receptor (CTR) and RAMP1 (49). It is localized in a distinct 

group of trigeminal ganglion neurons different from those expressing the canonical CLR 

receptor (49). The CTR/RAMP1 complex was originally identified as an amylin receptor, 

hence it is called the AMY1 receptor. Interestingly, the expression pattern of the AMY1 

receptor is suggestive of co-localization with CGRP, as discussed below, although this 

remains to be demonstrated. AMY1 receptors are also present in vascular smooth muscle 

based on immunostaining (49) and suggested by functional data from cell culture studies 

(50).

Thus, CGRP receptor expression in the TG is possibly involved in signaling mechanisms, 

including positive feedback loops that may be important for sensitization in facial pain and 

headache. Effects of CGRP receptor blockade in models of meningeal nociception and 

therapeutic effects in migraine, along with a possible site of action within the TG, are 

discussed below.

The existence of neurokinin-1 (NK1) receptors, receptors for substance P, has been 

indirectly shown by functional studies in the rat TG. The activity of spinal trigeminal 

neurons with afferent input from inflamed temporomandibular joint and facial skin was 

decreased by injection of an NK1 receptor antagonist into the TG (51). However, it is not 

likely that NK1 receptors in the TG are crucially involved in the generation of migraine pain, 
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since NK1 receptor antagonists turned out to be inefficient in migraine therapy or prevention 

(52,53).

RT-PCR and immunohistochemistry suggested the presence of all three receptor subtypes of 

the VIP/PACAP receptor family, VPAC1, VPAC2 and PAC1 in small-diameter neurons in rat 

and human TG (54,55). Release of PACAP within the TG could thus initiate communication 

between neighboring trigeminal sensory neurons. Furthermore, immunohistochemistry and 

in situ hybridization revealed the presence of somatostatin receptors (sst2A) (56) and galanin 

receptors (GALR1) (57) in small to medium-sized neurons in the rat TG. Binding sites for 

cholecystokinin (CCK) have been localized in the TG of different species (58). Delta opioid 

receptors have been shown in the TG by immunohistochemistry (59) and were upregulated 

following experimental inflammation of the tooth pulp (60). It is unknown if somatostatin, 

galanin and opioid receptors, which are usually linked to an antinociceptive function, have a 

local role in the TG, where the respective ligand peptides could be released.

Other neuropeptides, which may have a signaling function in the TG but originate most 

likely from other sources, are orexins and oxytocin. Orexin receptor (OX1R and OX2R) 

mRNA has been detected in rat TG neurons, and inhibition of both receptors reduced the 

expression of downstream proteins associated with sensitization of peripheral nociception in 

a model of temporomandibular joint inflammation (61). Oxytocin receptor immunoreactivity 

has also been found in rat trigeminal neurons, the majority of which also co-expressed 

CGRP (62). In a recent study, oxytocin suppressed TG neuronal hyperexcitability after nerve 

injury, which interestingly was mediated by modulation of K+ channels through activation of 

vasopressin-1-receptors, immunoreactivity for which has also been found in TG neurons 

(63).

Receptors for other signal molecules expressed in the trigeminal ganglion

In addition to the large variety of neuropeptide receptors in the TG, multiple receptors for 

neurotrophic factors and other receptors involved in sensory transduction and transmission 

have been found expressed on the mRNA level or by immunohistochemistry (24). In 

addition, evidence for functional receptor types comes primarily from classical 

pharmacological approaches. Many of these functional studies have been performed on 

cultured TG cells. Hence, neuronal cell bodies are frequently regarded as a model for their 

peripheral or central terminals where the sensory transduction processes or presynaptic 

mechanisms of neurotransmission, respectively, take place. Furthermore, functional 

receptors within the ganglion may be involved in intercellular signaling, as will be discussed 

later.

Receptors for classical neurotransmitters are abundantly expressed in the TG. Using 

immunohistochemistry, receptor proteins for all types of glutamate receptors, AMPA, 

kainite, N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors (mGluR), 

have been localized in rat TG neurons (64,65,66); mGluR proteins have also been found in 

satellite glial cells (67). Besides their role in neurotransmission, NMDA receptors may 

functionally interact with transient receptor potential (TRPV1) receptor channels (see below) 

contributing to mechanical hyperalgesia (68).
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Subunits of nicotinergic (nAchR) and muscarinergic acetylcholine receptors (mAchR) have 

been found on the mRNA level and with immunohistochemistry expressed in the rat TG 

(69,70). Recently, Shelukina et al. (71) measured calcium transients in cultured TG neurons 

and found that considerable proportions of neurons responded to carbachol and nicotine with 

calcium transients, suggesting that both nAchR and mAchR are functional. This finding is 

possibly relevant for the hypothesis of a peripheral activating effect of parasympathetic 

nerve fibers on trigeminal afferents promoting trigeminal autonomic cephalalgias and 

migraine with cranio-autonomic symptoms (72,73).

Using immunohistochemistry, about 70% of rat TG neurons and also satellite cells have 

been found to be GABAergic, while with RT-PCR and in situ hybridization various subtypes 

of GABA receptor subunits have been localized to ganglion neurons (74). GABA was 

released by strong depolarizing stimuli (high molar K+ solution), and Cl− currents recorded 

in whole cell patches showed that the subunits form functional GABA receptors. The authors 

speculated that GABA may modulate somatic inhibition of neurons within the TG. Glycine 

receptor protein was also found in rat TG using immunohistochemistry (75).

Serotonin (5-hydroxytryptamine, 5-HT) binds to several types of 5-HT receptors (5-HT1–7), 

which are all G-protein-coupled except the 5-HT3 receptor, which forms a cation channel. 

Three subtypes of the Gi-protein-coupled 5HT1 receptors, which are relevant as targets of 

antimigraine triptans (5HT1B/1D/1F), have been found by immunohistochemistry in the rat 

TG (76). Interestingly, there was no difference in receptor density compared to dorsal root 

ganglia, showing that the 5HT1 receptor equipment is not specific for the trigeminal system. 

However, one caveat is that immunohistochemistry does not necessarily reflect functional 

receptors. For example, the 5HT1D receptor is held in internal stores and only translocated 

to the cell surface of dorsal root ganglia neurons following neural stimulation (77). In human 

trigeminal ganglia, 5-HT1B and 5-HT1D receptor immunoreactivity was found 

predominantly in medium-sized neurons, colocalized with CGRP, substance P, or nitric 

oxide synthase, confirming a close association of 5-HT1 activation and inhibition of 

neuropeptide release (78).

Purinergic receptors binding ATP and other purines are either G-protein coupled (P2Y) or 

form cation channels (P2X). Immunohistochemically, expression of different subtypes of 

P2X receptors has been described in rat TG neurons of small and medium size, with a 

predominance of P2X2 and P2X3 receptors that are frequently co-expressed with 

neuropeptides (79,80,81). P2X3 receptor expression in cultured TG neurons is enhanced by 

CGRP and nerve growth factor (82,83) and functionally downregulated by brain natriuretic 

peptide (84). Functional data show that P2X3 receptors are involved in trigeminal 

neuropathic and inflammatory pain (85,86). Immunohistochemical and functional data 

suggest that P2Y receptors are expressed by glial cells in rodent TGs (87). Cell cultures 

imply a bidirectional signaling between neurons and glia cells via ATP (88), which seems to 

be enhanced in Ca(v)2.1 a1 R192Q mutant knock-in mice as a model of familial hemiplegic 

migraine type 1 (89). Since it has been shown that TG neurons can not only release 

neuropeptides, but also ATP upon noxious chemical stimulation (42), purinergic signaling 

within the ganglion seems possible (see below).
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Significant proportions of TG neurons express receptors of the transient receptor potential 

(TRP) family, which in peripheral sensory endings act as transduction channels and are 

possibly also involved in synaptic processes at the central afferent terminals (90). 

Immunoreactivity for the TRP vanilloid type 1 receptor channel (TRPV1) was found 

colocalized with CGRP in most of the TG neurons (78). This nonspecific cation channel can 

be activated by exogenous substances like capsaicin or resiniferatoxin, noxious heat, acidic 

pH (pH < 5.3), and different endogenous compounds including membrane-derived lipid 

metabolites like the endocannabinoid anandamide (91). CGRP release from trigeminal 

ganglia or TG cell cultures induced by capsaicin is frequently used as a measure for 

trigeminal activation (92,93). Another member of the TRP receptor family is the transient 

receptor potential ankyrin 1 (TRPA1) channel, which is highly colocalized with and 

functionally linked to TRPV1 receptors in trigeminal neurons. TRPA1 is activated by 

irritating substances like mustard oil and cannabinoids (94,95). This receptor channel can 

also be activated by volatile constituents such as umbellulone of the “headache tree” (96). Its 

functional role in trigeminal nociception is controversial, since recent experimental evidence 

exists for both a cooperative effect with TRPV1 in meningeal afferents (97) and a dual 

nociceptive-antinociceptive effect in the trigeminal system (98). Immunohistochemistry 

showed that TRP receptor channels of the melastatin type 8 (TRPM8) are also expressed in a 

subset of small diameter neurons in the TG, partly co-expressed with TRPV1 or CGRP 

immunoreactivity (99), but very few of them seem to innervate the rodent dura mater (100). 

Functional data from dissociated TG neurons and a mouse corneal preparation imply that 

TRPM8 receptor channels can operate as osmosensors (101). Recently, TRPM8 activation 

was shown to reverse the increase in facial sensitivity to heat in a rat model, and in a TG 

cell-based assay TRPM8 activation inhibited TRPV1 effects, leading the authors to speculate 

that TRPM8 activation may be rather antinociceptive in migraine (102).

Apart from TRP receptor channels, acid sensing ion channels (ASICs), predominantly the 

ASIC3 subtype responding to low pH, have been identified in TG neurons labeled from 

cranial meninges and are suggested to contribute to headache under acidic or inflammatory 

conditions (103). Acidic metabolites released under ischemia as a consequence of cortical 

spreading depression during the aura phase of migraine have been speculated to contribute to 

the generation of migraine pain (104).

Intercellular signaling by CGRP and other factors within the trigeminal 

ganglion

In recent years, a close functional interplay between neurons and glia within the trigeminal 

ganglion involving CGRP has been elucidated. CGRP released from neurons can stimulate 

surrounding satellite glial cells, leading to an enhancement of ATP-gated purinergic P2Y 

receptors in satellite glial cells (89) and P2X3 receptors in neurons (82,83), and release of 

nitric oxide (105) and cytokines (92,106) (Figure 2). New immunohistochemical and 

functional data show that ATP-gated P2X7 receptor channels are also expressed in different 

types of glial cells including satellite glial cells in the TG (107). CGRP increased ATP (and 

ADP) levels in trigeminal cultures, which induced intracellular Ca2+ transients in neurons 

and glial cells, in the latter operating via P2X7 receptors (108) (Figure 2). Several of these 
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signals can also feed back to activate CGRP synthesis and further release by paracrine 

mechanisms, as well as by a possible autoregulatory autocrine mechanism, as described 

below. Together, these intraganglionic signals could serve to sustain peripheral sensitization 

in migraine.

Regarding the purinergic P2X3 receptor, the control by CGRP is of particular interest since 

it involves two mechanisms, which could come into play during migraine (Figure 2). First, 

CGRP could directly act on neurons to initiate a cAMP-signaling cascade that activates the 

P2X3 gene. Second, CGRP can indirectly act via activation of the neurotrophin brain-

derived neurotrophic factor (BDNF) gene and BDNF release from satellite glia (109), which 

can then upregulate P2X3 expression in neurons. Like CGRP, BDNF is elevated during 

migraine (110), suggesting the possibility of a combinatorial activation of purinergic 

receptors in migraine. Whether BDNF or P2X3 receptors then feed back to increase CGRP 

synthesis is not known, but it seems likely given that they activate pathways known to 

increase CGRP gene transcription (111,112,113). The end-result of this interplay would be 

to promote depolarization of trigeminal afferents and transmission of nociceptive stimuli 

(114).

Treatment of primary trigeminal ganglia cultures with CGRP has been shown to regulate the 

expression of multiple mitogen-activated protein (MAP) kinases and to increase the level of 

cytokines such as IL-1β (92,106) as well as the expression of inducible NO synthase (iNOS) 

in satellite glial cells with subsequent release of the gaseous transmitter nitric oxide (NO) 

(105). Subsequently, IL-1β as well as a NO donor stimulated the release of the inflammatory 

mediator pros-taglandin E2 (PGE2), mediated mainly by upregulation of the inducible form 

of cyclooxygenase (COX2) in satellite glial cells (115) (Figure 2). Conversely, the cytokine 

TNF-α was shown to increase CGRP gene transcription and CGRP secretion from TG 

neurons (116). Likewise, culture medium from satellite cells activated by either IL-1β or NO 

augmented the evoked release of CGRP from trigeminal neurons (115).

The CGRP releasing effect of NO donors on TG neurons was shown earlier to be caused by 

activation of the CGRP promoter activity, which, remarkably, could partly be suppressed by 

sumatriptan (40). In vivo, infusion into the rat of glycerol trinitrate (GTN), which mimics 

NO regarding the activation of the intracellular receptor for NO, soluble guanylate cyclase 

(sGC) (117), was followed by an increase in neurons showing CGRP immunoreactivity and, 

surprisingly, also immunoreactivity for the neuronal form of NOS (nNOS) (118) (Figure 2). 

The same treatment increased immunoreactivity for RAMP1, the rate-limiting component of 

the CGRP receptor, while sGC immunoreactivity in trigeminal ganglion neurons was 

decreased (119). Following chronic tooth pulp inflammation in rat, the number of TG 

neurons showing immunostaining for iNOS and nNOS increased after some days (120). The 

effects of NO, a radical, is probably not restricted to the activation of sGC with downstream 

activation of protein kinase G (PKG), possibly followed by the activation of different ion 

channels (121) and ERK phosphorylation (122). In addition, NO together with the gaseous 

transmitter H2S forms nitrosyl (NO−), a direct TRPA1 receptor-activating sibling of NO, 

which may play a role in the ganglia by increasing the release of CGRP (123,124).
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In summary, these observations indicate that CGRP could function as a paracrine factor to 

stimulate nearby glial cells and neurons, which in turn could feed back to further stimulate 

CGRP synthesis and release. Direct autocrine regulation of the CGRP gene in trigeminal 

ganglia was demonstrated in primary cultures (113). Likewise, in cultured DRG cells, 

immunohistochemical data showed that CGRP, through cAMP increase, caused 

phosphorylation of cAMP response element binding (CREB) protein, suggesting that CGRP 

can regulate gene expression involving protein kinase A and mitogen-activated protein 

kinase/extracellular receptor kinase kinase (125) (Figure 2). Similar signaling mechanisms 

have been demonstrated in the trigeminal system (113,126). Autocrine regulation of CGRP 

transcription has also been speculated to occur in the cerebellar Purkinje neurons (127). 

While colocalization of CGRP and CGRP receptor elements was only rarely seen in the cell 

bodies of the ganglia (32,14,128), autocrine regulation cannot be ruled out given the 

discovery of a second CGRP receptor and given the reported plasticity of RAMP1 

expression. With respect to the second receptor, as mentioned earlier, the AMY1 receptor is 

localized primarily in small and medium diameter trigeminal ganglion neurons (49) (Figure 

2), which is in contrast to localization of the CLR/RAMP1 receptor primarily in large 

diameter neurons (32,14). However, whether CGRP and AMY1 receptors are indeed 

colocalized remains to be tested. With respect to receptor plasticity, this possibility is 

supported by the finding that the migraine trigger NO increased the number of cell bodies 

expressing the RAMP1 subunit in rats (129). Furthermore, dynamic regulation of CGRP 

receptor subunits by other migraine-relevant stimuli (e.g. stress and hypoxia) has also been 

reported (130). Thus, there is the possibility of increased CGRP synthesis in response to 

migraine triggers via paracrine and autocrine positive feedback loops.

Last, but not least, it is important to consider signaling mechanisms between primary 

afferent neurons, satellite glial cells (SGCs) and immune cells that does not directly involve 

neuropeptides. Intraganglionic signaling involving ATP has been reviewed by Goto et al. 

(131). Neurons may signal via ATP to other neurons and to SGCs, and these to microglia/

macrophage-like cells (MLCs). SGCs and MLCs may signal back to neurons via cytokines 

and neurotrophic factors, thus inducing a positive loop of sensitization (Figure 2). Likewise, 

glutamate can be a neuro-glial transmitter within sensory ganglia. In rat trigeminal ganglia, 

KCl stimulation released glutamate when glutamate uptake by satellite glial cells (SGCs) 

was inhibited. Calcium imaging showed that neurons and SGCs respond to AMPA, NMDA, 

kainate and mGluR agonists, and selective antagonists blocked this response, which is 

indicative of functional glutamate receptors of all types (132). Inflammation by complete 

Freund’s adjuvant caused expression of MAPK (pERK1/2, pp38) and NF-κB in the TG 

involving both neurons and glia, which again points to possible neuron-glia interactions. 

Administration of the NMDA-receptor antagonists, kynurenic acid, inhibited these 

responses, indicating the importance of intraganglionic NMDA receptors (133).

Significance of the trigeminal ganglion for peripheral and central 

nociceptive functions

Experiments on dissociated ganglion cells or intact primary afferent ganglia are restricted 

systems, which lack the peripheral and central extensions of primary afferents. In these 
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experiments, the cell bodies are often used as a model of their peripheral or central endings 

to study their structural and functional properties; that is, mechanisms of sensory 

transduction or transmission. Thus, to a certain degree, data collected from ganglia or 

isolated ganglion neurons can be interpreted in terms of mechanisms occurring at the 

peripheral or central afferent terminals, taking into account that most of the molecules 

expressed in the somata are packed, frequently together in the same vesicles (134) and 

delivered by axonal transport to the periphery and/or the central nervous system (135). For 

example, there is no doubt that CGRP and other neuropeptides are transported to and 

released from the peripheral terminals, where they induce processes of neurogenic 

inflammation like arterial dilatation, and to the central terminals, where they likely act as 

neuromodulators (Figure 2). Receptors are transported as well and integrated into the 

terminal cell membrane, for example 5-HT1B/D receptors, the activation of which 

counteracts the release of neuropeptides and thereby their peripheral and central effects. For 

some receptors, a more or less unidirectional transport can be assumed, as indicated by 

morphological and functional findings. For example, confocal immunohistochemistry has 

shown CGRP receptor components co-localized with axonal markers only in the central but 

not the peripheral processes of rat trigeminal afferents, indicating a unilateral transport into 

the central terminals (14), although there is conflicting data regarding this issue (136). The 

5-HT1B/D agonist naratriptan suppressed evoked CGRP release from medullary slices, but 

not significantly, from the mouse dura mater, indicating a preferential functional presence of 

these receptors at the central terminals (137). Thus, changes in gene expression or transport 

of molecules can have consequences for peripheral and central functions. Another example 

is BDNF, the expression of which in cultured trigeminal neurons has been shown to be 

enhanced by CGRP (138) (Figure 2). BDNF can be released from central presynaptic 

terminals and may act on pre- and postsynaptic tyrosine kinase (TrkB) receptors to facilitate 

nociceptive transmission (139). Similarly, CGRP receptors integrated into the presynaptic 

membrane of central trigeminal terminals may be activated by CGRP released from central 

terminals of other trigeminal afferents to facilitate neurotransmitter release and synaptic 

transmission (140). This scenario is most relevant in the light of the recent discussion about 

big molecules like monoclonal antibodies, which are assumed to act outside the blood-brain 

barrier to inhibit CGRP signaling and reduce trigeminal functions involved in migraine 

(141), as reviewed elsewhere (142,143). Thus, substances that act within the trigeminal 

ganglion – which is outside the blood-brain barrier – to change signaling within or between 

trigeminal ganglion neurons, can by this way have considerable impact on the peripheral and 

central functions of nociceptive transduction and transmission.
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Article highlights

• The TG is composed of primary afferent neurons and other cell types that can 

interact by intercellular signaling mechanisms.

• Possible signal molecules are neuropeptides (CGRP), ATP, nitric oxide, 

cytokines and neurotrophic factors (BDNF).

• Gene expression following intercellular signaling can modulate sensory 

information and contribute to peripheral and central sensitization.

• The TG as a target of drug actions outside the blood-brain barrier should be 

considered regarding 5-HT mechanisms (triptans) and CGRP signaling 

(monoclonal antibodies).
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Figure 1. 
Histological characteristics of rat trigeminal ganglion. (a) Horizontal section (haematoxilin-

eosin staining) showing aggregations of primary afferent somata in the ophthalmic (V1), 

maxillary (V2) and mandibular division (V3). In rodents, the ophthalmic and maxillary 

branches originate close together, while the mandibular branch is clearly separated. (b) 

Trigeminal ganglion neurons stained by fluorescent tracer DiI applied to the spinosus nerve 

near the mandibular division of the ganglion. Courtesy of Markus Schueler, Erlangen. (c), 

(d) Neurons immunostained for CGRP and neuronal NO synthase (nNOS), same section. 

Some neurons show both markers (arrows). Courtesy of Anne Dieterle, Erlangen. (e)–(g) 

Neurons immunostained for CGRP and the CGRP receptor component CLR, same section. 

Most CGRP-immunoreactive neurons are small to medium sized (red in (f)), CLR-

immunoreactive neurons are mostly of middle size (green in (e)). Neurons can show both 

CGRP and CLR immunoreactivity (yellow in (g)) but neurons showing CGRP and all CGRP 

receptor components are extremely rare. Courtesy of Jochen Lennerz, Boston.
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Figure 2. 
Representation of receptor expression and signaling processes in and between trigeminal 

ganglion cells. Coloured arrows denote diffusing or transported signal molecules or receptor 

proteins, inflected broken arrows through the nucleus indicate gene expression. Small 

neurons (mostly with unmyelinated fibers, right hand, C) expressing CGRP may signal to 

satellite glial cells (SGCs) and to middle-sized neurons (typically with myelinated, rarely 

unmyelinated fibers, left hand, Aδ/C) expressing CGRP receptors (144). CGRP release by 

Ca2+-dependent exocytosis can be induced by activating Ca2+-conducting ion channels like 

TRPA1, for example by nitroxyl (NO−) (117). Autocrine activation by CGRP may occur via 

CGRP-binding amylin receptors (49). CGRP and amylin receptors may activate intracellular 

cascades involving cAMP response-element binding protein (CREB) or mitogen-activated 

protein kinase (MAPK) to induce gene expression of purinergic (P2X3) receptor channels in 
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neurons (145) and P2X7 channels (107) as well as purinergic (P2Y) receptors in SGCs 

(146), enzymes like nitric oxide synthase (NOS) (105), cytokines like interleukin 1β (IL-1β) 

(106) as well as growth factors like brain-derived neurotrophic factor (BDNF) (109). Nitric 

oxide (NO), cytokines and BDNF may signal back to neurons facilitating expression of 

purinergic receptor channels (145), CGRP (147) and CGRP receptor components like 

RAMP1 (118). In addition, ATP, possibly released from neurons under the influence of 

CGRP (108), may activate SGCs (148) and macrophage-like cells (MLC), which can signal 

back to neurons by cytokines like tumor necrosis factor (TNFα). Other neuropeptides like 

PACAP may also be involved in intercellular signaling (54). Many of the gene products like 

CGRP, CGRP receptor proteins and BDNF can crucially influence neuronal transduction 

and synaptic transmission, because they are delivered by axonal transport through the 

neuronal processes (surrounded by Schwann cells, SC) to the peripheral and/or central 

terminals of trigeminal afferents.
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