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Abstract. Schistosomiasis control programs rely heavily on mass drug administration (MDA) campaigns with prazi-
quantel for preventative chemotherapy. Areaswhere the prevalence and/or intensity of schistosomiasis infection remains
high even after several rounds of treatment, termed “persistent hotspots” (PHSs), have been identified in trials of MDA
effectiveness conductedby theSchistosomiasisConsortium forOperational Research andEvaluation (SCORE) inKenya,
Mozambique, Tanzania, and Côte d’Ivoire. In this analysis, we apply a previously developed set of criteria to classify the
PHS status of 531 study villages from five SCORE trials. We then fit logistic regression models to data from SCORE and
publically available georeferenced datasets to evaluate the influence of local environmental and population features, pre-
intervention infection burden, and treatment scheduling on PHS status in each trial. The frequency of PHS in individual
trials ranged from 35.3% to 71.6% in study villages. Significant relationships between PHS status and MDA frequency,
distance to freshwater, rainfall, baseline schistosomiasis burden, elevation, land cover type, and village remotenesswere
each observed in at least one trial, although the strength and direction of these relationships was not always consistent
among study sites. These findings suggest that PHSs are driven in part by environmental conditions that modify the risk
and frequency of reinfection.

INTRODUCTION

Schistosomiasis is a parasitic disease caused by infection
with trematode flukes of the genus Schistosoma and is esti-
mated to affectmore than200million people globally.1 Human
infection occurs through contact with freshwater sources
containing live cercariae, which enter the body by penetrating
the skin. The transmission cycle continues when eggs ex-
creted in the urine or stool of infected humans enter a fresh
water source, hatch, and penetrate a permissive snail host,
where they develop into cercariae before being released into
the aquatic environment. Chronic egg-induced inflammation
due to eggs retained in the tissues of the human host often
result in morbidity, with sites of lesions varying between
Schistosoma species1; Schistosoma haematobium primarily
affects the urogenital system, whereas intestinal schistoso-
miasis is associated with Schistosoma mansoni and Schis-
tosoma japonicum. Repeated childhood infections contribute
significantly to anemia, undernutrition, and impaired physical
and cognitive development.2–5

Schistosomiasis control programs can include improving
access to cleanwater and sanitation,6 reducingpopulations of
snail hosts,7 and implementing campaigns of mass drug ad-
ministration (MDA) with praziquantel (PZQ) for preventive
chemotherapy, with MDA being the most widely used strat-
egy.1 In areas of active transmission, the WHO recommends
that school-aged children receive MDA with PZQ at different
intervals depending on the prevalence of infection in that
population, with MDA for adults also recommended under
certain conditions.8 In 2017, 81.8million school-aged children
and 16.9 million adults received preventative therapy with

PZQ, representing 68% of WHO’s Neglected Tropical Dis-
ease (NTD) Roadmap coverage target.9

Although MDA with PZQ reduces the average prevalence
and intensity of Schistosoma infection, areas where the
schistosomiasis burden remains high despite repeated
rounds of MDA, known as “persistent hotspots” (PHSs), have
been documented in multiple settings.10–13 Possible causes
of PHSs include insufficient treatment coverage, reduced
rates of infection cure (or egg count reduction) among those
treated,13,14 sustained transmissionwithin and fromuntreated
populations, environmental conditions, and socioeconomic
conditions that lead to frequent human contact with con-
taminated water sources.15–17 A better understanding of how
these and other factors shape PHS risk would enable the
more efficient allocation of interventions for schistosomiasis
control.
A number of studies have used statistical models to quantify

the impact of environmental and socioeconomic factors on
the prevalence of human schistosomiasis in the absence of
MDA.18–22 Findings from these analyses, which were con-
ducted across a variety of geographic scales and settings,
suggest that prevalence is negatively associated with the
distance to freshwater, altitude, and barren land cover, al-
though the effects of temperature and rainfall on prevalence
are complex, nonlinear, and mediated by the species of both
the Schistosoma parasite and its specific snail host. By suc-
cessfully identifying correlates of schistosomiasis trans-
mission and the areas capable of supporting it, these studies
demonstrate the potential of ecological assessments that link
population-level measures of infection with open-source
georeferenced datasets. However, we are not aware of stud-
ies that have attempted to statistically model potential envi-
ronmental drivers of PHSs.
Between 2012 and 2016, the Schistosomiasis Consortium for

Operational Research and Evaluation (SCORE) implemented
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multiyear cluster randomized trials of MDA regimens with PZQ
in five African countries.23 In these trials, villages were randomly
assigned to receive one of several MDA regimens, which varied
in terms of the number ofMDAs received during the study period
and whether treatments were school-based or community-
wide. The prevalence and intensity of infection in each village
were assessed before each MDA during the study period, and
early analyses revealed variation in the response of these
measures to MDA within trials.10,11

Kittur et al. evaluated several definitions of PHSs in an
analysis based on the first 3 years of SCORE data from Kenya
and Tanzania and subsequently applied one of these defini-
tions to describe the frequency and distribution of PHSs in the
SCORE study.11,24 Using this definition, we combined data
from the SCORE studies with publicly available data related to
geography, human population patterns, and climate to model
characteristics that distinguish PHS villages from responders.

MATERIALS AND METHODS

Schistosomiasis Consortium for Operational Research
and Evaluation field studies. This analysis uses data from
five field trials ofmassPZQ administration for schistosomiasis
prevention and control. These studies were carried out by
SCORE inassociationwith local partners, and aredescribed in
greater detail elsewhere.23 Three studies, based in Tanzania,
Kenya, and Mozambique, implemented the gaining control of
the schistosomiasis protocol, in which ∼150 villages with a
Schistosoma prevalence ³ 25% in an eligibility screening
sample of 13- to 14-year-olds were randomly assigned to one
of six treatment arms corresponding to different schedules of
community-wide therapy, school-based therapy (SBT), and
drug holidays (Table 1). Two additional trials, based in Kenya
and Côte d’Ivoire, implemented the sustaining control of the
schistosomiasis protocol, in which 75 villages with a
S. mansoni prevalence between 10% and 24% in an eligibility
sample basedon13- to 14-year-oldswere randomly assigned
to one of three study arms. In all trials, data on the prevalence
and intensity of Schistosoma infection in a sample of 9- to 12-
year-olds were collected before each treatment round and in
the final year of the trial.With theexceptionof theMozambique
gaining control study, which targeted S. haematobium,
S. mansoni was the Schistosoma species of interest in the
other four trials. For trials with S. mansoni as the target spe-
cies, three consecutive daily stool samples were collected
from each child and analyzed for egg counts using the dupli-
cate Kato–Katz technique.25 For the Mozambique gaining

control of S. haematobium trial, a single mid-day urine spec-
imen was taken from each child, separated into two 10-mL
samples, and filtered. The two filters were finally analyzed for
egg counts under microscopy by two different technicians.26

The presence and density of eggs in these sampleswere used
to calculate the prevalence and intensity (per gram of stool for
S. mansoni, or per 10-mL of urine for S. haematobium) of
schistosomiasis in the study population at each village. After
the MDA trial was completed, final treatment was provided to
all study participants found to be infected during the year 5
round of data collection. Participants testing positive in prior
years received treatment through the trials’ scheduled school-
based or community-wide MDA delivery (Table 1). Cleaned
village-level data from each of the SCORE studies, including
GPS coordinates and annual measures of prevalence and
intensity among 9- to 12-year-old children, were put into a
standardized datasets and provided for use in this study.
These datasets will be released in the future through the
ClinEpiDB database.
Persistent Hotspot Status and Predictor Data For the

purpose of this analysis, villages were classified as PHSs if,
over the study period, prevalence declined < 35% relative to
the value observed in year 1 and/or intensity declined < 50%.
Villageswere classified as “responders” if a decline exceeding
the threshold was observed in both measures.24

To supplement SCORE data on different treatment
schedules and baseline infection prevalence and intensity,
we derived data on a number of geographic and environ-
mental features for each village, which are described in
Table 2. All data-processing and subsequent statistical
analysis were conducted in version 3.5.1 of the R software
environment. Spatial data were handled using the “raster”
package. We derived two distinct precipitation products,
absolute and relative rainfall over the study period, using
the National Oceanic and Atmospheric Administration-
produced Africa Rainfall Climatology 2.0 dataset, which uses
satellite and weather station data to provide daily rainfall esti-
mates over the African continent at 0.1 decimal degree reso-
lution from 1983 to the present.27 For absolute rainfall, we
calculated theaverage3-month rainfall over thestudyperiod for
January–March, April–June, July–September, and October–
December. To derive these predictors, we extracted the esti-
mated daily rainfall at the location of each study village for each
day in 2012–2016, summed to calculate the total rainfall within
each consecutive 3-month period of each year, and averaged
across years. Meanwhile, for relative rainfall, we calculated the
median Z-score of 3-month rainfall over the study period froma

TABLE 1
Treatment arms of the Schistosomiasis Consortium for Operational Research and Evaluation gaining control and sustaining control of schisto-
somiasis trials
Study protocol Treatment arm Year 1 Year 2 Year 3 Year 4 Year 5

Gaining control Arm 1 Data collection, CWT Data collection, CWT Data collection, CWT Data collection, CWT Data collection
Arm 2 Data collection, CWT Data collection, CWT Data collection, SBT Data collection, SBT Data collection
Arm 3 Data collection, CWT Data collection, CWT Drug holiday Drug holiday Data collection
Arm 4 Data collection, SBT Data collection, SBT Data collection,SBT Data collection,SBT Data collection
Arm 5 Data collection, SBT Data collection, SBT Drug holiday Drug holiday Data collection
Arm 6 Data collection, SBT Drug holiday Data collection, SBT Drug holiday Data collection

Sustaining control Arm 1 Data collection, SBT Data collection, SBT Data collection, SBT Data collection, SBT Data collection
Arm 2 Data collection, SBT Data collection, SBT Drug holiday Drug holiday Data collection
Arm 3 Data collection, SBT Drug holiday Data collection, SBT Drug holiday Data collection

CWT = community-wide therapy; SBT = school-based therapy.
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historic baseline. For each 3-month period, a time series of tri-
monthly rainfall between 1983 and 2018 (36 observations, one
annually)wasderived at each village location. At each village, the
Z-scores of observations during study years (2012–2016) were
thenderivedandsummarizedby themedian. Thesemeasuresof
how extreme rainfall levels were during the study period, relative
to historic patterns at the same location, replaced absolute
rainfall variables in supplementary models.
Statistical analysis.Using the predictor variables described

earlier and PHS status as the binary response, we fit one mul-
tivariate and several univariate fixed-effect logistic regression
models to data from each of the five trials. To avoid potentially
unrealistic assumptions of linearity, all numeric predictor vari-
ables were categorized into bins based on median and tercile
valueswithin each of the five sets of villages (one for each of the
five trials) before model fitting. To assess the association be-
tween predictor variables and village PHS status, odds ratios
and corresponding 95% CIs were extracted from each logistic
regressionmodel.The thresholdused forstatistical significance
was set at P < 0.05 in all cases unless stated otherwise.

RESULTS

Observed frequency of persistent hotspots. In the gain-
ing control trials, the observed frequency of PHS villages
ranged from 35% in the Kenya study to 72% in the Tanzania
study (Table 3). In the sustaining control trials, 45% and 55%

of villages were classified as PHSs at the Côte d’Ivoire and
Kenya study sites, respectively. The proportion of villages
classified as PHSs was significantly lower (P < 0.0001) in the
Kenya gaining control trial (35%) than in the Tanzania and
Mozambique gaining control trials (72% and 65%, re-
spectively). Differences in the proportion of PHS villages be-
tween the Tanzania and Mozambique gaining control trials
(72% versus 65%) and between the Kenya and Côte d’Ivoire
sustaining control trials (55% versus 45%) were not statisti-
cally significant (P = 0.32 and P = 0.33, respectively).
Descriptive analysis. Distance to freshwater. In the three

gaining control studies and the Kenya sustaining control study,
most of the villages were located within 4 km of a freshwater
body, whereas villages at the more arid Côte d’Ivoire study site
had a median distance to water of 7.3 km, with some villages
located up to 18 km from a freshwater body (Figure 1A). At all
study sites, the distance to water was generally greater for re-
sponder villages than for PHS villages, and this relationshipwas
strongest at the Kenya and Mozambique gaining control study
sites.
Cropland cover. A high proportion of the land around study

villageswas frequently devoted to agriculture,with themedian
percentage of the area within 1 km of villages classified as
cropland ranging from 58.3% in the Mozambique gaining
control study to 100% in the Kenya and Côte d’Ivoire sus-
taining control studies (Figure 1B). Persistent hotspot villages
appeared to be associated with lower levels of cropland

TABLE 2
Village-level enviro-geographic, baseline epidemiological, and treatment features

Predictor Source Data processing

Treatment arm Schistosomiasis Consortium for
Operational Research and Evaluation
standardized dataset

Year 1 prevalence (%)
Year 1 infection intensity (mean eggs per
gram of stool (S. mansoni) or 10-mL
urine (S. mansoni)

Distance to freshwater (km) Kummu et al.28 Mean value within 1 km of village
coordinates computed

Travel time to a major* urban center
(hours)

Weiss et al.29 Mean value within 1 km of village
coordinates computed

Population density (population per km2) WorldPop30 Mean value within 1 km of village
coordinates computed

Agricultural land cover (%) GlobCover31 Value within 1 km of village coordinates
computed

Altitude (m) NASA SRTM32 Mean value within 1 km of village
coordinates computed

Absolute rainfall: average 3-month rainfall
(mm), 2012–2016

Africa Rainfall Climatology (ARC) 2.027 Methods described in text. Spatially
accurate within 0.1 decimal degrees,
the resolution of the rainfall dataset

Relative rainfall: median Z-score of 3-
month rainfall from historical baseline,
2012–2016

ARC 2.027 Methods described in text. Spatially
accurate within 0.1 decimal degrees,
the resolution of the rainfall dataset

S. mansoni = Schistosoma mansoni.
* Population of 50,000 or greater.

TABLE 3
Proportion of persistent hotspots in study sites by the trial protocol

Trial protocol Study site Target species Persistent hotspot villages, n (%)

Gaining control Tanzania (148 villages) S. mansoni 106 (72%)
Kenya (150 villages) S. mansoni 53 (35%)
Mozambique (133 villages) Schistosoma haematobium 87 (65%)

Sustaining control Kenya (75 villages) S. mansoni 41 (55%)
Côte d’Ivoire (75 villages) S. mansoni 34 (45%)

S. mansoni = Schistosoma mansoni.
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relative to responder villages at all study sites, with the ex-
ception of the Kenya sustaining control trial, for which the
opposite relationship was observed.
Elevation. The study site with the most variable terrain in

terms of elevation change was the Mozambique gaining
control trial, with a difference in altitude of 621 m between the
highest and lowest study village (Figure 1C). Boxplots of the
elevation of study villages in the Tanzania and Kenya gaining
control trials indicate that PHS villages are somewhat more
low-lying than responder villages. It is likely that the lower
elevation study villages at these sites were located closer to
the shores of Lake Victoria, the largest freshwater body in the
area (Supplemental Figures 2 and 3).
Population density.Within a 1-km-radius buffer zone, most

villages contained fewer than 600 people per square kilome-
ter, with a handful of study villages in the urban areas of the
gaining control study sites having a population density over
2,000 people per square kilometer (Figure 2A). The villagewith
the highest population density, with 10,521 people per square

kilometer, was observed in the Mozambique gaining control
study site. The median population density of PHS and re-
sponder villages was comparable at all study sites.
Travel time to an urban center. Between study sites, the

median travel time from study villages to an urban center, de-
fined as a settlement of more than 50,000 people, ranged from
24 to 46.2minutes (Figure 2B). In the Kenya gaining control and
Côte d’Ivoire sustaining control studies, PHS villages appear to
be somewhat more remote from urban settlements than re-
sponder villages, although the travel time in both studies was
less than an hour for the overwhelming majority of villages.
Rainfall. Absolute rainfall varied in seasonal patterns over

the study period at each site, with precipitation peaking be-
tweenOctober andMarch at the Tanzania gaining control site,
between April and September at the Mozambique gaining
control site, between July and September at the Côte d’Ivoire
sustaining control site, and twice annually, between April and
June and between October and December, at the Kenya
gaining and sustaining control study sites (Figure 3). The ratio

FIGURE 1. Differences between persistent hotspot and responder villages in their distance to freshwater, cropland cover, and elevation.
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of the median of the average trimonthly rainfall in PHS to re-
sponder villages ranged from 0.9 in the October–December
period of the Kenya sustaining control study to 1.1 in the
April–June period of the Mozambique gaining control study.
Meanwhile, the differences in the median values of average
trimonthly rainfall between PHS and responder villages
ranged from 33 mm higher for responder villages between
October and December of the Kenya gaining control study to
61 mm higher for PHS villages between April and June in the
Mozambique gaining control study.
The median SD of rainfall during the study period from the

historical baseline was positive for each study village in all tri-
monthly periods, indicating that rainfall was higher than the his-
torical baseline in at least half of the years of the study period
(Figure 4). The greatest median SD from baseline, 0.7, was ob-
served in theJuly–Septemberperiodof theMozambiquegaining
control study. Differences in relative rainfall between villages
were small, with no two villages having median SDs from
baseline that differed by more than 0.1 in any 3-month period.

Meanmonthly rainfall wasnot consideredas apredictor of PHS
status in the Tanzania gaining control trial for the months of June,
July, August, and September, or in the Côte d’Ivoire sustaining
control trial for themonthof Junebecausevariation inprecipitation
washighly limited: ineachof thesemonths,at least78%ofvillages
received no rainfall at all and no village received over 11 mm of
rainfall (averaged over the observation period) in a single month.
Regression analysis. Tables 4 and 5 display the statisti-

cally significant outputs from fixed-effect models fit to indi-
vidual gaining control and sustaining control trials, respectively.
Unabridged model outputs, including odds ratio estimates
that were not statistically significant at P < 0.05 in any model,
are shown in Supplemental Tables 1 and 2
In the Tanzania gaining control trial, villages at lower elevation

and with a lower proportion of cropland in the surrounding area
were significantly more likely to become PHSs in univariate
analysis, whereas no significant relationships between predic-
tors and PHS status were detected by a multivariate model.
Meanwhile, in the Kenya gaining control trial, PHSs were

FIGURE 2. Differences between persistent hotspot and responder villages in their population density and travel time to an urban center.
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significantly associated with lower absolute rainfall between
October and December, lower cropland cover, and closer
proximity to freshwater in univariate models. In both univariate
and multivariate models, PHSs were significantly associated
with greater travel time to major urban centers, higher preva-
lence of infection at baseline, and higher absolute rainfall be-
tween April and June. Villages with a greater intensity of
infection at baseline were significantly more likely to become
PHSs in a univariate model, but this relationship was reversed
when controlling for other factors in the multivariate model.
Finally, in the Mozambique gaining control trial, multivariate
models found that the risk of becoming a PHS was signifi-
cantly greater for villages that received a higher volume of
rainfall between April and June, had lower cropland cover, or
were assigned to treatment arms3, 4 (SBT in all 4 years), or five
instead of arm 1. No significant relationships between PHS
status and treatment arm were detected in the individual
Kenya and Tanzania gaining control trials.
Observed relationships between precipitation and PHS

status sometimes differed when variables describing the

absolute level of rainfall during the study period were replaced
by measures of how rainfall during the study period deviated
from the location-specific historical baseline (Supplemental
Tables 3 and 4) Between January and March, relative rainfall
was negatively associated with PHSs in the Kenya gaining
control study, whereas higher relative rainfall between April
andJunewasa significant predictor ofPHSs in both theKenya
gaining and sustaining control trials and the Côte d’Ivoire
sustaining control trial. Between July and September, relative
rainfall was positively associated with PHSs in the Kenya
gaining control trial, whereas the opposite effect was ob-
served in the Kenya and Côte d’Ivoire sustaining control trials.
Between October and December, villages with higher relative
rainfall during the study period were significantly less likely to
become PHSs in the Mozambique gaining control trial.

DISCUSSION

Persistent hotspot threaten both the control of morbidity
and the elimination of schistosomiasis as a public health

FIGURE 3. Differences between persistent hotspot and responder villages in absolute trimonthly rainfall.
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problem, which the WHO has advocated that national health
programs adopt as incremental program goals since 2012.33

This is the first study to evaluate potential factors associated
with PHSs of schistosomiasis by analyzing publicly available
geographic and environmental data with village-level out-
comes data from multiple MDA trials. Unsurprisingly, we
found that PHSs were often more likely to arise in villages that
experienced MDA less frequently, particularly those that
went untreated over 2 consecutive years. This is consistent
with a body of evidence indicating thatMDAonly temporarily
affects schistosomiasis transmission when other environ-
mental control measures are not implemented concurrently
partially because of the fact that treatment with PZQ does
not prevent reinfection or kill immature schistosomes.34 We
also detected a significant negative relationship between
the distance to freshwater and the likelihood of a village
becoming a PHS in some models, which aligns with the
hypothesis that children living closer to water are exposed
to cercariae and become infected more frequently, thus

undermining the effectiveness of MDA for controlling
schistosomiasis.15,19,35,36,37

In each trial, with the exception of the Kenya sustaining
control study, we observed PHSs less frequently in villages
containing or surrounded by a higher proportion of cropland,
as classified by remote sensing. Further review of remote
sensing data indicates that most nonagricultural land in the
vicinity of study villages took the formof forest, grassland, and
surface water (Supplemental Figure 1). The presence of surface
water close to a village may facilitate infection when alternative
watersourcesareunavailable.33,34 It is important tonote thatnone
of the cropland detected in the vicinity of study villages was
classified as irrigated or flooded. As areas where humans may
frequently come into contact with high-quality snail habitat for
extended periods of time, irrigated and flooded agricultural land
has been identified as highly conducive to schistosomiasis
transmission.38–40 The negative relationship we observed be-
tween cropland cover and PHS risk at some study sites may be
weakened or reversed in settingswhere agricultural irrigation and

FIGURE 4. Differences between persistent hotspot and responder villages in relative trimonthly rainfall.
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flooding is more common.41,42 Going forward, the use of higher
resolutionandmoreup-to-date remotesensingdatacould further
refine our understanding of how land cover influences PHS: the
GlobCover dataset we used is based on the 300-m resolution
imagery from 2009, 3 years before the start of the study
period.31

Theeffect of rainfall onPHSstatus in this analysis depended
on both the study site and time of year. In both the Kenya and
Mozambique gaining control trials, PHSs were associated
with higher rainfall between April and June. Meanwhile, low
rainfall between January andMarch andbetweenOctober and
November was predictive of PHSs in the Côte d’Ivoire sus-
taining control trial and the Kenya gaining control trial, re-
spectively. Continental-scale statistical modeling has failed to
characterize a consistent relationship between precipitation
and schistosomiasis transmission potential, suggesting that
these relationships vary between settings.18,43 Higher rainfall
can facilitate the transmission of schistosomiasis by moving
excreted eggs into freshwater bodies, transporting snails and
schistosomes to new locations, and supporting the estab-
lishment and persistence of suitable water bodies.15,44–46

However, high precipitation levels can also reduce human
infection riskwhen flooding or fast-movingwater flows reduce
or eliminate snail host populations.15 Nevertheless, which, if
any, of these mechanisms are responsible for the observed
relationships between rainfall and PHSs is unclear.
For the most part, we did not observe major differences in

the predictors of S. mansoni and S. haematobium PHSs in the
gaining control studies (Table 4). Treatment arm was the only
factor that was significantly associated with PHS status in the
one S. haematobium gaining control trial, but not in either of
the two S. mansoni gaining control trials. Meanwhile, no fac-
tors were significantly associated with PHS status in both of
the S. mansoni gaining control studies. Although the inter-
mediatehostsofS. haematobiumandS.mansoni, snails of the
genus Bulinus and Biomphalaria, respectively, both primarily
reside in shallow freshwater bodies, Bulinus snails are distin-
guished by being able survive in warmer and more barren
environments.47 As a result, differences in the frequency and
drivers ofPHSsbetweenS.mansoniandS. haematobiummay
be more pronounced in areas that are hotter and more arid
than the sites where the gaining control studies were con-
ducted. We were unable to evaluate possible differences in
PHS drivers between Schistosoma species in the sustaining

control trials, as both of these studies used S. mansoni as the
target schistosome.
The SCORE studies were implementedwith engagement of

NTD program managers and with clearly defined targets for
coverage. The finding of PHS shows that these efforts will not
always be sufficient to control schistosomiasis among children
in highly endemic areas and that further efforts, such as snail
control, provision of sanitation and safe water, and more fre-
quent or broadly targeted MDA, may be needed in some set-
tings.48 The ability to predict PHS early in the implementation
of programs based on easily obtainable data could allow
NTD programmanagers to target interventions more quickly
to where they will be most needed. We observed associa-
tions between PHS status and some environmental factors,
but these trends were inconsistent between study sites, in
line with the highly focal dynamics of schistosomiasis trans-
mission. Further studies that combine a variety of village-level
data with detailed models of local transmission dynamics
may help develop predictive tools that can lead to more effi-
cient and effective programs.
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TABLE 5
Relationships between persistent hotspot status and predictors in individual sustaining control trials

Predictor

Kenya trial Côte d’Ivoire trial

Predictor value Univariate OR (95% CI) Multivariate OR (95% CI) Predictor value Univariate OR (95% CI) Multivariate OR (95% CI)

Treatment arm Arm 1 1 1 Arm 1 1 1
Arm 2 1.64 (0.53–5.21) 2.57 (0.49–15.62) Arm 2 3.19 (1.02–10.60) 30.73 (3.06–681.47)

Baseline intensity (mean eggs
per gram)

< 8.87 1 1 < 40.74 1 1
8.87–18.35 0.21 (0.06–0.68) 0.14 (0.02–0.79) 40.74–81.50 1.38 (0.45–4.26) 3.16 (0.47–27.60)
> 18.35 0.29 (0.08–0.94) 0.40 (0.05–2.77) > 81.50 0.85 (0.27–2.62) 0.57 (0.04–7.78)

Travel time to urban center
(hours)

< 0.37 1 1 < 0.28 1 1
> 0.62 0.66 (0.21–2.04) 0.65 (0.05–8.69) > 0.56 3.54 (1.12–12.04) 3.70 (0.54–29.31)

% cropland (1 km radius) < 87.75% 1 1 < 96.94% 1 1
> 97.06% 1.02 (0.37–2.75) 1.14 (0.09–14.14) > 97.06% 0.39 (0.14–1.05) 0.13 (0.01–0.97)

Elevation (m) < 1,192 1 1 < 267 1 1
1,192–1,223 1.62 (0.53–5.09) 6.07 (1.0004–50.59) 267–343 1.91 (0.63–6.02) 1.39 (0.15–14.00)

Mean rainfall (mm),
January–March

< 222.39 1 1 < 31.37 1 1
> 256.92 0.48 (0.14–1.56) 2.81 (0.06–162.56) > 35.01 0.29 (0.09–0.91) 0.05 (0.004–0.34)

Odds ratios that are statistically significant at P < 0.05 are denoted in bold.
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