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Many transition metals are essential trace nutrients for living
organisms, but they are also cytotoxic in high concentrations.
Bacteria maintain the delicate balance between metal starvation
and toxicity through a complex network of metal homeostasis
pathways. These systems are coordinated by the activities of
metal-responsive transcription factors—also known as metal-
sensor proteins or metalloregulators—that are tuned to sense
the bioavailability of specific metals in the cell in order to regu-
late the expression of genes encoding proteins that contribute to
metal homeostasis. Metal binding to a metalloregulator allos-
terically influences its ability to bind specific DNA sequences
through a variety of intricate mechanisms that lie on a contin-
uum between large conformational changes and subtle changes
in internal dynamics. This review summarizes recent advances
in our understanding of how metal sensor proteins respond to
intracellular metal concentrations. In particular, we highlight
the allosteric mechanisms used for metal-responsive regulation
of several prokaryotic single-component metalloregulators, and
we briefly discuss current open questions of how metalloregula-
tors function in bacterial cells. Understanding the regulation
and function of metal-responsive transcription factors is a fun-
damental aspect of metallobiochemistry and is important for
gaining insights into bacterial growth and virulence.

Many metals play vital roles for living organisms, often serv-
ing as structural or catalytic components of biomolecules that
are critical to a variety of fundamental biological processes.
Included in the list of essential metals are the first-row transi-
tion metals from manganese (Mn) to zinc (Zn), which supply a
rich chemical versatility that is not available with purely organic
compounds (1–3). A few “textbook” examples of metallopro-
teins include cytochrome c oxidase in respiration, superoxide
dismutase in cellular protection, nitrogenase in nitrogen fixa-
tion, photosystem II in photosynthesis, and aconitase in central
metabolism. Furthermore, we are still learning about the
breadth of influence of these biologically relevant metals. For
example, one recent area of discovery is the gut microbiota,
specifically the unique metabolic transformations performed

by the metalloenzymes that support these microorganisms that
have such a pervasive impact on human health and disease (4).

Due to the essential nature of the trace nutrient metals,
organisms devote significant resources to ensure a sufficient
supply, often in the face of limited environmental availability
(5). However, despite being indispensable, metal ion uptake
must be restricted for several reasons (6 –8). Metal transport
across a membrane is often an energy-intensive process (9), so
import in excess of the nutritional needs would be a waste of
resources. In addition, surplus accumulation must be avoided
because the chemical properties of the metal ions render them
potentially toxic; excess metal ions can catalyze unwanted reac-
tions and biomolecular damage or lead to the wrong metal
binding to metalloproteins or to adventitious sites of other pro-
teins, resulting in inactivation or inappropriate allosteric effects
(6, 8).

Maintaining the delicate balance between metal starvation
and toxicity is a particular challenge for bacterial pathogens
because they face host defense mechanisms that take advantage
of the dual nature of the nutrient metal ions to either 1) restrict
metal ion access through nutritional immunity strategies, or 2)
attack the pathogens with excessive amounts of metal ions (7,
10 –12). To maintain the desirable levels of each essential metal,
bacteria employ extensive networks of metal acquisition, stor-
age, delivery, and efflux pathways, with each network typically
dedicated to controlling the availability and distribution of a
single type of metal ion (13–15). These systems are coordinated
by metal-responsive transcription factors—also known as met-
al-sensor proteins or metalloregulators—that detect the level of
bioavailability of a specific type of metal (or a subset of metals)
in the cell and subsequently regulate the transcription of genes
encoding the proteins involved in the networks corresponding
to that particular metal (16 –19). These metal-responsive tran-
scription factors can also regulate genes encoding metal-inde-
pendent substitute factors in order to reduce the demand for a
limited nutrient (17). Altogether, these critical factors sustain
the healthy levels of each transition metal nutrient and enable
adaptation to shifting environmental conditions and/or meta-
bolic demands.

Each metal-responsive transcription factor is allosterically
regulated, typically by the type of metal for which it is respon-
sible, resulting in positive or negative feedback to the produc-
tion of the corresponding metal homeostasis systems. In this
context, allosteric regulation is the process by which metal
binding to specific sites on the protein influences DNA binding

This work was supported in part by funding from the Natural Science and
Engineering Research Council (Canada). The authors declare that they
have no conflicts of interest with the contents of this article.

1 To whom correspondence should be addressed. Tel.: 416-978-3568; E-mail:
deborah.zamble@utoronto.ca.

croREVIEWS

J. Biol. Chem. (2020) 295(6) 1673–1684 1673
© 2020 Baksh and Zamble. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

https://orcid.org/0000-0001-7706-3251
mailto:deborah.zamble@utoronto.ca
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.REV119.011444&domain=pdf&date_stamp=2019-12-19


by a distant region. Metal either activates or inhibits binding to
specific DNA sequences in the promoters of target genes to—
depending on the system—activate, repress, or de-repress tran-
scription (Fig. 1). How metal binding to the different types of
metalloregulators controls DNA binding is a fundamental
question in bioinorganic chemistry. In addition, given the
nutritional requirement of microorganisms for various transi-
tion metals, as well as the potential for toxicity if these elements
are not handled correctly, uncovering the mechanisms of metal
homeostasis in pathogens may provide clues about how to com-
bat virulence (17, 20, 21). These metal-responsive proteins also
have applications in the design of biosensors, including micro-
organisms engineered to be sensitive and specific monitoring
systems of metal pollution in the environment, as well as for
bioremediation of these contaminated environments (22–24).
Finally, the bacterial systems are the most extensively studied,
perhaps because of the conceptual and technical tractability of
these single-cell organisms, but eukaryotes also employ metal-
responsive transcription factors to maintain metal homeostasis
(for a few recent reviews see Refs. 25–31). These latter systems
are more complex, and it is not yet clear to what extent they
follow the same principles as the prokaryotic systems.

This review will highlight recent advances in our under-
standing of how bacterial metalloregulatory proteins sense and
react to metal ions. Given that these sensors must operate in the
context of multiple metal ion pools, we start with a brief discus-
sion of the factors that impact the metal selectivity and sensi-
tivity of the sensors. Following an overview of some of the com-
mon traits of these proteins, we then focus on the allosteric
mechanisms employed by members of specific families. Finally,
we briefly touch upon outstanding questions about the mecha-
nistic features of these fascinating proteins.

Set point and selectivity

One of the chemical challenges of employing many metal
ions as nutrients is that an adequate supply of each essential
metal must be maintained under conditions that minimize mis-
metallation of metalloproteins. The relative affinities of metal–
protein complexes are dictated by the properties of the metal
ions and typically follow the Irving-Williams (IW)2 series
(Mg(II) � Ca(II) � Mn(II) � Fe(II) � Co(II) � Ni(II) �
Cu(II) � Zn(II)) (18, 32). Consequently, there is a risk of mis-
metallation by metals that are higher in this series than the
correct metal (referred to as the cognate metal), resulting in loss
of function and/or gain of undesirable reactions (18, 33). For
instance, it is estimated that �5% of all Escherichia coli proteins
utilize iron–sulfur clusters, and mismetallation in these clusters
by zinc, copper, or cobalt is known to cause toxicity in E. coli
(33–37). To deal with this inherent property of the metals,
intracellular metal ions are buffered by cytosolic components at
levels inversely related to the IW series, such that the metals at
the top of this series, Ni(II)/Cu(II)/Zn(II), are the most strictly
limited (18, 38). The cytosolic components that buffer each
metal are largely undefined, but along with along with the ded-
icated storage and delivery proteins as well as adventitious sites
on the surface of macromolecules, they likely include a variety
of small molecules such as glutathione, amino acids and other
organic acids, and inorganic ligands (such as phosphates and
sulfates) (18, 39 –42). For example, in Bacillus subtilis, bacilli-
thiol was identified as a major component of the Zn(II)-buffer-
ing system (43), whereas histidine functions as a Zn(II) buffer in
Acinetobacter baumannii (44).

As key players in metal homeostasis, the metalloregulators
themselves are tuned to respond to buffered metal concentra-
tions that are inversely related to the IW series (45, 46). This
point was highlighted by a recent study that brought together
the metal- and DNA-binding affinities—as well as target DNA
and protein concentrations— of a collection of Salmonella met-
alloregulators to calculate the bioavailable concentrations of
the cognate metals that elicit a response from each regulator,
revealing a spread of a dozen orders of magnitude between the
metal ion concentrations that activated the copper regulator
versus the Mn(II) sensor (45). Furthermore, the window of
acceptable intracellular metal concentrations can be quite nar-
row, as revealed by analysis of pairs of regulators that control
uptake and efflux (40, 47). Although the metal-responsive activ-
ities of metalloregulators indicate the healthy levels of each
nutrient metal, they may not set these levels (45, 46). For
instance, mutant versions of the cyanobacteria Ni(II) regulator
InrS with weakened Ni(II) affinity did not cause a correspond-
ing shift in cellular Ni(II) levels (46). Similarly, the loss of func-
tion upon moving metalloregulators into new organisms dem-
onstrates that the set points for a given metal depends on the
cellular context (48, 49). Altogether, it appears that the set
points are defined by cytosolic components that buffer the met-
als at concentrations inversely related to the IW series, and thus

2 The abbreviations used are: IW, Irving-Williams; DBD, DNA-binding domain;
MBD, metal-binding domain; EcNikR, E. coli NikR; HpNikR, H. pylori NikR;
PDB, Protein Data Bank; RNAP, RNA polymerase.

Figure 1. Schematic of metalloregulator responses to metal binding.
Metalloregulators (purple) bind to specific recognition sequences (orange) in
the promoters (gray) of genes to block access to RNA polymerase (RNAP) or to
enhance its activity. Metal binding allosterically stimulates or inhibits DNA
binding by the metalloregulator to activate (A), repress (B), or de-repress (C)
transcription. For members of the MerR family, the allosteric response to
metal binding is similar to the situation in A, and metal binding causes the
proteins to distort the DNA structure in a manner that promotes RNAP
activity.
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the metalloregulators are tuned to these concentrations to
avoid saturating or depleting the buffered systems (46).

Given that metalloregulators themselves bind metals, they
are also vulnerable to mismetallation. Furthermore, these pro-
teins typically control the expression of homeostasis factors for
one type of metal, so their metal selectivity is of critical impor-
tance. Although the details are still being uncovered, it appears
that the selectivity of metalloregulators is achieved through a
combination of mechanisms. Analysis of individual metallo-
regulators in vitro suggests that the cognate metal may bind
with a unique coordination, signaling that the correct metal is
bound and allosterically stimulating the subsequent DNA-
binding response (50, 51). However, it is clear that this is not a
complete explanation, as the difference between the responses
to the cognate versus noncognate metals is often not very large,
and there are examples of regulators responding in cells to the
wrong metal under conditions when homeostasis is disrupted
(52, 53). It is likely that regulators benefit from functioning in
the metal-buffered environment of the cytoplasm, limiting
exposure to the more competitive metals. Furthermore, it
appears that these proteins are designed to function in the com-
pany of other metalloregulators that are each fine-tuned to
respond to the lowest concentration of their cognate metals
(54). Altogether, each metalloregulator is optimized to provide
metal-selective genetic control in the host organism, highlight-
ing the exquisite tuning of allosteric regulation for each system.

Metalloregulator families and mechanisms of allosteric
control

Metalloregulators are typically homo-oligomeric proteins
(dimeric or tetrameric) bearing two DNA-binding domains.
The metal-binding sites (i.e. allosteric sites) are at distinct loca-
tions from the DNA-binding regions, often at the interface
between the two protomers. A common organization is with
the DNA-binding domain (DBD) at the N terminus and the
metal-binding domain (MBD) at the C terminus. There are sev-
eral distinct families of metalloregulators, usually named after
the founding member(s). Members of a given family generally
have similar DNA-binding motifs and protein architecture, but
have variations within the signal-sensing motifs, such that they
respond to different types of metals, or even nonmetal stimuli
(16, 19, 50, 55). Those that respond to nonmetal stimuli are
generally not involved in maintaining metal homeostasis, with a
few notable exceptions linked to oxidative stress (16, 50, 55).

There are representatives of different metalloregulator fam-
ilies that control the same type of response to the same type of
metal, but they are generally found in different organisms,
keeping functional overlap to a minimum. For instance, both of
the Ni(II)-responsive metalloregulators Nur and NikR repress
nickel uptake, but Nur (a member of the Fur family) is found in
Streptomyces coelicolor (56), whereas NikR is found in other
bacteria such as E. coli and Helicobacter pylori (57). In the cases
where organisms express two different regulators that respond
to the same metal, they typically regulate metal homeostasis
factors with distinct functions, such as import versus export,
and are therefore tuned to coordinate metal uptake and efflux
in order to keep the amounts of available metals at optimal
levels for that organism. For example, B. subtilis employs two

Zn(II)-responsive metalloregulators, Zur (from the Fur family)
to regulate Zn(II) uptake, and CzrA (from the ArsR/SmtB fam-
ily) to regulate Zn(II) efflux (58). As an exception, Mycobacte-
rium tuberculosis has two Ni(II)/Co(II) sensors—NmtR and
KmtR—from the ArsR/SmtB regulator family that both regu-
late expression of efflux transporters, albeit with different metal
sensitivities (59). Why M. tuberculosis has two similar regula-
tors is not clear, but perhaps it is advantageous for an organism
that moves through a variety of physiological conditions to have
the ability to cover a wider range of metal concentrations or to
potentially coordinate responses to other environmental fac-
tors such as pH (60). However, the scarcity of examples of such
a strategy suggests that it is not widespread.

Depending on the family, metal binding can either activate or
inhibit DNA binding so allosteric regulation is considered in
the context of the DNA-bound and DNA-free states, although
the MerR family discussed below provides an exception to this
model. Cognate metal binding allosterically influences the pro-
tein structure, either inhibiting or promoting the conformation
in which the relative orientations of the DBDs are amenable to
binding to a DNA recognition sequence composed of two-half
sites (61). The thermodynamics of the metal- and DNA-bind-
ing activities of metalloregulators can be described by the cou-
pling free energy �Gc, which is calculated using the ratio of
KDNA values of the protein when metal-bound and metal-free
(�Gc � �RT ln(KDNA, metal-bound/KDNA, apo) (50, 51). The value
of �Gc is negative when metal binding activates DNA binding
(e.g. AdcR from the MarR family, NikR, and the Fur and DtxR
families) and positive when metal binding inhibits DNA bind-
ing (e.g. CsoR/RcnR, MarR, and ArsR/SmtB families). The mag-
nitude of �Gc indicates the extent to which binding a specific
metal and DNA are linked, and can therefore quantify the rel-
ative impact of cognate versus noncognate metals on allosteric
control of a metalloregulator (50).

Our current knowledge of the allosteric mechanisms of met-
al-regulated DNA binding is not yet comprehensive. As ongo-
ing research uncovers more details it is becoming clear that
multiple strategies are employed and that they lie on a contin-
uum between the imposition of large changes in three-dimen-
sional structure to more subtle changes in protein dynamics
(Fig. 2). As such, these systems can be considered within the
broader paradigm of allosteric modulation of protein ensem-
bles (62, 63). The following sections will highlight recent
advances in our understanding of metal-responsive regulation
of several well-known prokaryotic single-component metallo-
regulator families, starting with families that exhibit clear struc-
tural changes upon metal binding to those that are controlled
by changes in internal dynamics, although these mechanisms
are not mutually exclusive. This review is not exhaustive, and it
focuses on families with well-studied allosteric mechanisms
that are representative of the various mechanisms that can be
employed and will therefore not discuss all of the known metal
sensor families, including those of TetR and CopY (64, 65).

MerR family

Members of the MerR family of transcriptional activators
respond to various environmental stimuli—such as drugs,
heavy metals (MerR itself responds to Hg(II)), and other chem-
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ical species that cause cellular damage—to regulate genes
involved in efflux and detoxification (66, 67). This family also
includes several proteins that respond to essential metals, such
as the Cu(I)-responsive CueR and Zn(II)-responsive ZntR (66,
67). Compared with other metalloregulators, this family exhib-
its a unique response to metal binding; rather than binding or
releasing DNA, the protein remains bound to the DNA and
alters the DNA architecture to activate transcription (67–69).

MerR proteins are homodimers with a winged helix–turn–
helix DBD of one monomer connected to a long dimerization
helix that forms an antiparallel coiled coil with the opposing
monomer (Fig. 3) (67, 68). Metals are generally coordinated by
a minimum of two residues at the metal-binding loop at the end
of the dimerization helix (e.g. CueR), but some members also
use a third residue supplied by the N-terminal region of the
other dimerization helix (70). In the absence of metal, tran-
scription is repressed due to the suboptimal spacing of the pro-
moter elements, and metal binding allosterically induces a
structural change that allows the protein to kink and undertwist
the DNA to promote binding by RNA polymerase (67, 68, 70,
71). Recent crystallographic and double electron– electron res-
onance studies on CueR indicated that the protein–DNA con-
tacts remain the same regardless of metal binding, but metal
binding orders the structure of the metal-binding loop, displac-
ing key residues in the hinge between the DBD and dimeriza-
tion helix, which form new hydrogen bonds to the DBD (68, 71).
This rearrangement, supported by a change in hydrophobic
packing, pulls the rigid-body DBDs closer together via a scissor-
like movement in the dimerization helix, forcing a distortion in
the DNA structure (68, 71). Nanometer-precision single-mole-
cule tracking of CueR and ZntR in living E. coli cells revealed

distinct concentration-dependent dissociation kinetics from
the promoter DNA for the metal-bound and metal-free pro-
teins, adding another layer of complexity to transcriptional reg-
ulation by members of this family (72).

Fur family

The Fur family of transcriptional repressors—including
Fe(II)-responsive Fur, Zn(II)-responsive Zur, Mn(II)-respon-
sive Mur, and Ni(II)-responsive Nur—are widespread in bacte-
ria and act as global regulators of many operons (Fig. 1B) (73–
75). Metal binding activates DNA binding by the proteins in
this family, which play important and diverse biological roles.
For instance, Mur and Zur regulate the expression of the cor-
responding metal uptake systems, and Zur is known to regulate
additional genes involved in Zn(II) homeostasis as well as pro-
tection from oxidative stress, whereas Fur is considered to be a
global transcriptional regulator because it regulates the expres-
sion of various genes encoding proteins involved in Fe(II)
homeostasis, DNA synthesis, energy metabolism, and many
more (73, 75).

Members of this family are typically homodimers with two
winged-helix DBDs and metal-binding sites at the dimerization
domain (73, 75). These proteins generally bind two to three
metal ions per monomer, including in many cases a Zn(II) ion
required for folding and dimerization that is often referred to as
the “structural” metal (73, 76). A key metal-sensing site is
located near the hinge region that links the two domains and
includes a conserved coordinating histidine (73, 75, 77, 78).
Metal binding to this site bridges both domains, drawing them
in closer together, along with re-orientation of the N-terminal
domains. This rearrangement is thought to stabilize the DBDs
in a “caliper-like” conformation that is compatible with DNA
binding (73, 77, 78). Furthermore, the Zur dimer can form sev-
eral metallated species as it binds Zn(II) sequentially at two
regulatory sites with negative cooperativity, producing a graded
response to intracellular metal availability in B. subtilis that pri-
oritizes scavenging of Zn(II) from cytosolic sources over acti-
vation of Zn(II) uptake and emergency back-up systems (76,
79).

Initially classed as a metal-dependent repressor, Fur can also
modulate transcriptional activation, and in some organisms
there is evidence of direct genetic regulation by apo-protein
(73, 74). These complex modes of action may be modulated by
the ability of Fur to compact the DNA structure (80), as well as
variations between the structures of the different homologs
(75). An additional means of regulation may arise through the
quaternary structure of the proteins, given that a subclass of Fur
homologs are isolated as tetramers in both the apo- and metal-
bound states (81, 82). The organization of the proteins within
the tetramer prevents DNA binding, but dissociation into the
active dimers is promoted by the presence of DNA.

CsoR/RcnR family

The CsoR/RcnR family of transcriptional repressors (Fig. 1C)
are tetramers that form all �-helical disk-shaped structures
(83). Members of this family have a WXYZ amino acid finger-
print for coordinating metal ions, which inhibits DNA binding
(83–85). Proteins in this family have a novel DNA-binding

Figure 2. Continuum of the allosteric responses to metal binding that
influence DNA binding by metalloregulators. Top to bottom: schematics of
the metal ion-induced changes in Zur from the Fur family (teal; adapted from
Ref. 79), MntR from the DtxR family (green; adapted from Ref. 98), and AdcR
from the MarR family (blue (135)). In each of these examples the apo-protein is
in a DNA-binding–incompetent state, and DNA binding is activated upon
binding metal (yellow circles). The lightly-colored features of MntR and AdcR
represent movement of those regions. For instance, MntR exhibits interdo-
main flexibility, allowing the DBDs to adopt different orientations relative to
the MBD before metal binding (97, 98, 102).
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motif, and a structure of a complex with DNA has not yet been
solved, but it is thought that two proteins bind per operator in
an interaction that is mediated by several surface-exposed clus-
ters of basic residues (83, 86). In the case of the Cu(I)-responsive
CsoR—which regulates expression of a Cu-efflux pump—Cu(I)
binding is believed to influence a hydrogen-bonding network
that is anchored by a coordinating His and spans two subunits,
generating a more compact structure with fewer exposed pos-
itively-charged residues in order to allosterically inhibit DNA
binding (61, 87, 88). Furthermore, analysis of CsoR from Geo-
bacillus thermodenitrificans revealed that Cu(I) binding
quenches the mean residue mobility, and an N-terminal region
packs against the Cu(I)-binding pocket to stabilize the metal-
bound state (84, 89), although these changes may vary between
copper-binding homologs of this family.

The other founding member of this family is the Ni(II)/
Co(II)-responsive RcnR that regulates the expression of a Ni(II)
and Co(II) efflux pump (60). The response to cognate metal
binding includes residues right at the N terminus of the protein
(83, 85), unlike CsoR, suggesting a variation on the mechanism
of allosteric regulation. This was highlighted by a recent study
that investigated the structural flexibility of the protein using
hydrogen– deuterium exchange coupled with mass spectrome-
try (90). The biggest impact of cognate metal binding was a
decrease in flexibility at the N terminus and mutation of two
highly-conserved basic residues in this region greatly abrogated
the transcriptional inhibition by apo-protein. Altogether, the
results suggest that re-organization upon metal binding would
impact key nonspecific electrostatic interactions with the DNA.
Another recent study demonstrated that the molecular mech-
anisms for responding to Co(II) and Ni(II) are distinct, because
coordination of Co(II)— but not Ni(II)—forms an inter-subunit
linkage to drive allostery in a manner similar to that of formal-
dehyde-responsive FrmR from the same family (91, 92). The
response to Ni(II) is still being investigated but does not appear
to depend on its coordination geometry (91).

DtxR family

Members of the Fe(II)-responsive DtxR family and the
Mn(II)-dependent subfamily generally repress transcription
of metal uptake systems upon metal binding (Fig. 1B) (93, 94).

These proteins are homodimers composed of a helix–turn–
helix DNA-binding motif at each N terminus, a dimerization
domain, and usually an additional C-terminal domain referred
to as the FeoA domain because its fold is similar to that of the
bacterial Fe(II)-transport protein FeoA (95–97). Members of
this family bind metals at the interface between the N- and
C-terminal domains in two conserved and structurally distinct
metal-binding sites per monomer, which appear to have differ-
ing roles depending on the system (95–99). For instance, DxtR
requires stepwise binding to both sites for full allosteric activa-
tion, but the Mn(II)-responsive PsaR uses only one site as the
primary regulatory site (96, 99). Recent studies on the Mn(II)-
sensing MtsR from Streptococcus pyogenes revealed a second
site that is structurally unique compared with its paralogs, and
a single Ala substitution of a metal ligand only caused a partial
loss of repression, suggesting that metal sensing by the two sites
under varying levels of manganese limitation may fine-tune the
degree of repression of the Mn(II) acquisition system (100).

The common mechanism of allosteric regulation of the DtxR
family involves a metal-induced disorder–to– order transition
in the N terminus that reorients the DBDs to promote DNA
binding (98, 101). The Mn(II)-responsive MntR exhibits inter-
domain flexibility such that the DBDs can adopt different ori-
entations relative to the dimerization domain, until Mn(II) or
Cd(II) binding causes rigidification of an �-helix connecting the
dimerization domain and DBDs to restrict the conformation of
the protein and promote DNA binding (97, 98, 102). Oligomer-
ization on target promoters is also necessary for gene regulation
by some family members (100, 103, 104), which may involve the
FeoA domain (100). The residues involved in the FeoA domain
interactions and protein oligomerization are highly conserved
among the Mn(II)-responsive subfamily, suggesting that FeoA-
dependent oligomerization on the target promoter may be part
of their mechanism of regulation (100).

NikR

The Ni(II)-responsive NikR is a homotetramer, with a central
MBD connected by flexible linkers to two ribbon– helix– helix
DBDs (105–107). NikR is believed to exist in a conformational
equilibrium between different states characterized by the posi-
tions of the DBDs relative to the MBD regardless of Ni(II) bind-

Figure 3. CueR from MerR family. Crystal structures of apo (gray; PDB code 4WLS) and Ag(I)-bound (light orange; PDB code 4WLW) CueR show clear
rearrangements in the protein and DNA upon metal binding. The Ag(I) ions are shown as yellow spheres.
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ing, which is uncommon for metalloregulators (105–108). In
the DNA-bound complex, the DBDs face the same side of the
protein in the “cis” conformation (109), but nickel binding does
not activate the large change in tertiary structure needed to
achieve this conformation (Fig. 4) (105–108), so metal-depen-
dent activation of DNA binding must employ alternative strat-
egies that appear to differ between NikR homologs (57, 110). In
the case of E. coli NikR (EcNikR), which is a transcriptional
repressor of nickel import (Fig. 1B) (111), Ni(II) binding
induces short-range effects, causing a disorder–to– order tran-
sition of �-helix 3 in the MBD and its proceeding loop that
contains a Ni(II)-binding ligand (Fig. 4A) (107, 112, 113).
Ordering of this region is thought to localize EcNikR to DNA
through nonspecific electrostatic contacts with the phosphodi-
ester backbone, allowing the protein to initiate a one-dimen-
sional search along the DNA (109, 114). As it moves along the
DNA, the DBDs continuously make transient contacts, only
forming specific contacts and adopting the “cis” conformation
upon finding the recognition sequence, which is then bolstered
by potassium binding at the inter-domain interface (109, 114).

The H. pylori homolog of NikR (HpNikR) has a more com-
plex activity than other known NikR proteins because it can
function as either an activator or a repressor to regulate the
transcription of a slate of genes in a temporally graded fashion
(Fig. 1B, repression and activation of transcription) (60, 115,
116). HpNikR also binds with a range of affinities to the various
target sequences (117), which have a weak consensus, and there
is evidence that the DNA-bound complexes are in different
conformations (118). How Ni(II) activates this DNA-binding
response by HpNikR is not yet clear, and unlike EcNikR there is

no evidence for a local structural change (Fig. 4B) (105, 119,
120). However, HpNikR has unique features compared with its
homologs, including longer interdomain linkers and a nine-
residue extension on its N terminus (105, 121), as well as several
Ni(II) coordination sites observed under different conditions
(120, 122). In addition, it exhibits a functional response to the
acidic pH that H. pylori would experience in its colonization
environment, the human stomach (123–125). It is likely that
Ni(II) binding induces an allosteric effect propagated through
either the linkers or the inter-domain interface to influence the
motion of the DBDs and promote DNA binding (108, 120, 126).
In addition, the protein is proposed to become stabilized in the
“cis” conformation upon binding its target DNA sequence, so
the DNA may play a significant role in tuning the activity of
HpNikR.

MarR family

The ubiquitous MarR family of transcription factors includes
proteins that respond to antibiotics, metabolic intermediates,
and indicators of oxidative stress, among other inducers (127).
Only a few metal-responsive members of this family have been
identified, including the Zn(II)-responsive AdcR that represses
the transcription of genes involved in Zn(II) uptake (128). MarR
proteins share a homodimeric structure with two winged
helix–turn– helix motifs at the base of a “pyramidal” structure.
In many of these proteins, ligand binding or oxidation occurs in
roughly the same relative location sandwiched between the
dimerization and DNA-binding regions, which modulates
DNA binding.

Figure 4. NikR from E. coli and H. pylori. A, crystal structures of EcNikR in the apo (gray; PDB code 1Q5V) and Ni(II)-bound (light green; PDB code 2HZA) forms
reveal ordering of �-helix 3 in the metal-binding domain. B, the superimposed structures of HpNikR in the apo (gray; PDB code 2CA9) and Ni(II)-bound (light
green; PDB code 2CAD) forms exhibit little structural differences. The Ni(II)–EcNikR–DNA structure (green; PDB code 2HZV) has the DBDs in the “cis” conforma-
tion. Although there is no DNA-bound structure of HpNikR, it is believed to bind DNA in the same conformation as EcNikR (depicted by gray arrow). Ni(II) ions
are shown as yellow spheres and K� are shown as purple spheres.
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Distinct allosteric mechanisms have been proposed for dif-
ferent MarR proteins. For example, Cu(II) oxidizes a cysteine
residue in the DNA-binding helices of E. coli MarR, creating
disulfide bonds between two MarR dimers to induce tetramer
formation and block DNA binding (Fig. 1C) (129). In contrast,
DNA binding by AdcR is activated by Zn(II) binding (Fig. 1B)
(128). Initial structural analysis of AdcR suggested that Zn(II)
binding activates a conformational switch that rotates and re-
orients the DNA-binding motifs with respect to the central core
so that the protein is poised to bind DNA, possibly through a
hydrogen-bond network connecting a Zn(II) ligand to the DNA
recognition helix (130, 131). Analysis of the homologous ZitR
from Lactococcus lactis revealed that stepwise binding of two
Zn(II) ions to neighboring sites induced switching of the coor-
dinating nitrogen of a His ligand from site 1 to site 2, which
“locks” the protein into the optimal DNA-binding conforma-
tion (131). Further biophysical solution studies of AdcR
revealed that Zn(II) binding results in an allosteric redistribu-
tion of protein dynamics, quenching the local and global
motions to focus the conformational ensemble around the
more compact structure required to bind DNA, while simulta-
neously activating fast timescale motions in the DNA-binding
motifs, resulting in both entropic and enthalpic contributions
to �Gc (132). The proposed model, which remains to be tested,
is that the dynamics of the DNA-binding competent structure
are conserved; for cases of ligand-dependent activation, the
effector would quench larger-scale dynamics to activate DNA
binding (as with AdcR), whereas for ligand-responsive inhibi-
tion, effector binding would further narrow the conformational
ensemble to a state incompatible with DNA binding (most of
the rest of the MarR family), a scenario supported by studies of
other members of this family (127).

ArsR/SmtB family

The ArsR/SmtB family of transcriptional repressors is wide-
spread, with at least one version of ArsR/SmtB encoded in most
of the sequenced bacterial genomes (55), and this family exhib-
its an unusual diversity in terms of the location and composi-
tion of the inducer-binding sites. Members adopt a homodi-
meric winged-helical structure (55, 133), and binding of the
metal inducer, or in some cases metalloids or nonmetal signals,
inhibits DNA binding and results in de-repression of the down-
stream genes (Fig. 1C). In the apo-form, the metal-responsive
members of this family repress the expression of genes involved
in metal efflux or metal ion sequestration (134).

One of the best-studied proteins in this family is Zn(II)-re-
sponsive CzrA from Staphylococcus aureus, which regulates the
expression of a Zn(II) efflux pump and provides an example of
an entropic model of allostery in a metalloregulator (135). Anal-
ysis of apo- and Zn(II)-CzrA revealed similar structures that do
not resemble the DNA-bound protein, which exhibits global
rearrangements of the wing domains into a more “closed” con-
formation that allow for concurrent contacts of the DNA major
grooves by the two DNA-binding domains (Fig. 5) (134, 136).
The lack of structural changes upon metal binding led to the
model that Zn(II) binding impacts the internal dynamics of the
protein, limiting the conformational ensemble and the ability to
adopt the structure that is appropriate for DNA binding, and

that the protein undergoes an induced fit to the more “closed”
conformation upon binding DNA (136, 137). Furthermore, an
H-bond network originating from the nonligating nitrogen of a
His ligand was identified as key for allosteric coupling (133).
Additional NMR studies demonstrated that the target DNA
increases the flexibility of methyl-side chains throughout the
apo-protein, consistent with an entropic driving force for DNA
complex formation (135). Zn(II) binding was found to redis-
tribute the fast dynamics, thereby quenching a network of con-
ditional motions and causing inhibition of DNA binding (135).
The functional dynamics of CzrA may also include surface
water molecules, which should be considered a part of the con-
formational ensemble that responds to Zn(II) binding (138).
This model of allosteric regulation bypasses the need for large-
scale structural rearrangements or even a specific molecular
path linking the metal-binding site to the DNA-binding motifs,
and it may provide a common mechanism that explains the
regulation of the many proteins in this family with distinct
inducer binding sites.

Concluding remarks and perspectives

Metalloregulators are key players in maintaining homeosta-
sis of essential transition metals; therefore, understanding how
they sense and respond to the intracellular availability of their
cognate metal is of fundamental importance. Recent research

Figure 5. CzrA from ArsR/SmtB family. A, overlay of the crystal structures of
apo- (gray; PDB code 1R1U) and Zn(II)-CzrA (light blue; PDB code 2M30)
reveals very similar structures. The Zn(II) ions are shown as yellow spheres. B,
crystal structure of the DNA-bound protein (blue; PDB code 2KJB, DNA not
shown) superimposed on the Zn(II)-bound protein (light blue; PDB code
2M30) shows some structural changes, corresponding to an induced fit upon
DNA binding.
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revealed that metalloregulators are tuned to sense and respond
to changes within a narrow range of healthy intracellular metal
concentrations and that this window differs substantially for
each type of nutrient metal. In general, cognate metal binding
elicits an allosteric change in the metalloregulator to activate or
inhibit DNA binding. Research into various metalloregulators
has made it clear that the allosteric response can occur through
a variety of different mechanisms, falling on a continuum from
large conformational changes in tertiary structure to more sub-
tle adjustments in dynamics. In some cases, metal binding has a
domino effect on the protein structure, resulting in a confor-
mation that is activated for, or prevented from, binding the
target DNA sequence. However, in other cases the metal-bind-
ing residues seem to be largely pre-organized in the absence of
metals, so metal binding does not have a dramatic impact on
tertiary structure, and the manner in which DNA binding is
impacted involves changes in secondary structure and/or a
redistribution of protein dynamics.

The concept of allostery driven by changes in dynamics, in
the absence of clear-cut conformational transformations, is
becoming well-established, although it has only recently been
applied to metalloregulators and has not yet been elucidated for
any metalloregulator larger than a homodimer (132, 135, 139 –
144). As such, the classical models of allostery—the concerted
(145) and sequential (146) models— describing rigid-body con-
formational changes cannot account for every case. In its place,
due to advancements in solution NMR spectroscopy and
molecular dynamics, the ensemble model of allostery has
emerged in recent years. In this model, a protein exists as an
ensemble of conformations sampled according to their energy
landscape, and binding of an inducer remodels the landscape to
promote the biological function (62, 147). As exemplified by
CzrA (from the ArsR/SmtB family), a redistribution of fast
internal dynamics can also contribute to allostery (135, 148). It
is clear that our view of allostery is continuing to evolve, and
because allosteric regulation is ubiquitous in biology, the mech-
anisms learned for metalloregulators can be applied to under-
stand allosteric regulation of various other systems, such as
signal transduction, metabolism, and enzymatic activity.

Beyond the mechanisms of allostery, there are a variety of
other questions about metalloregulators that are becoming
more tractable, building on our increasing understanding of
these systems along with technical improvements. For exam-
ple, as with other transcriptional regulators, one functional
challenge to metalloregulators is finding and recognizing the
specific target sequence within the haystack of genomic DNA.
Given the small number of recognition sites and the strictly
controlled regulation, metalloregulators afford excellent model
systems to explore the strategies used by DNA-processing fac-
tors to locate their target sequences. Along the same lines, most
of the studies to date have focused on thermodynamic analysis
of the isolated DNA complexes, but it is likely that, at least in
some cases, the activities of these factors will be impacted by the
complex kinetic environment of the cell, and by cooperation
with other protein factors, particularly in the cases of transcrip-
tional activation.

In terms of understanding how each metalloregulator is able
to properly function in cells and—in the context of each oth-

er—to regulate metal homeostasis, several outstanding ques-
tions remain. Some questions that we are just starting to
unravel include the following. What is the source of the metal
ions that the metalloregulators are sensing? Are the metallo-
regulators responding to slight changes in the balance of metals
as buffered by the background of cytoplasmic metal chelators
or are there specific factors that help tip the balance and load or
unload the regulator? Beyond the initial response, is recycling
needed to reset the systems? For example, in the case of regu-
lators that are activated upon binding metals with very tight
affinities, is there a mechanism to unload or degrade the pro-
teins if the levels of available metal ions subside? As more
research reveals the details of the different sensors, we gain a
clearer picture of the regulation and function of metal-respon-
sive transcription factors. This information is not only impor-
tant for untangling the virulence of various bacterial pathogens
but in the broader context of understanding how dysregulation
of seemingly separate pools of labile metals contributes to var-
ious disease states in living systems (149, 150).
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