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Abstract

Retinal diseases, such as age-related macular degeneration (AMD), are the leading cause of 

blindness in the elderly population. Since no known cures are currently present, it is crucial to 

diagnose the condition in its early stages so that disease progression is monitored. Recent 

advances show that the mechanical elasticity of the posterior eye changes with the onset of AMD. 
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In this work, we present a quantitative method of mapping the mechanical elasticity of the 

posterior eye using confocal shear wave acoustic radiation force optical coherence elastography 

(SW-ARF-OCE). This technique has been developed and validated with both an ex-vivo porcine 

tissue model and a customized in-vivo rabbit model, which both showed the quantified elasticity 

variations between different layers. This study verifies the feasibility of using this technology for 

the quantification and diagnosis of retinal diseases from the in-vivo posterior eye.
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I. INTRODUCTION

Age-related macular degeneration (AMD) is a progressive disease of the retina and is the 

leading cause of severe vision loss in the western population over 50 years of age [1]. AMD 

most often induces drusen formation in the dry form, and neovascularization in wet AMD. 

Drusen is present in more than half of the population over 70 years of age and often acts as 

an early sign of AMD [2]. Neovascularization occurs when excess blood vessels leak into 

the layers of the retina, signifying a later stage of disease. Although age is the primary factor 

that contributes to AMD, there are a number of environmental and genetic factors that are 

also associated and contribute to the onset and progression of AMD, including smoking, 

obesity, sunlight exposure, etc. [3].

Current methods of diagnosis include fundus photography, which provides surface structural 

information of the retina, and fluorescein angiography, which is used to visualize blood 

vessels and leakages if neovascularization is suspected [4]. For more accurate visualization 

of the entire depth of the retinal layers, optical coherence tomography (OCT) is used for 

non-invasive optical imaging [5]. OCT angiography is also used to produce the en face 

images of retinal blood vessels and diagnose abnormal regions. Once AMD is diagnosed, 

there is currently no known cure so disease management is necessary in various forms, 

including antiangiogenic drugs, radiation and laser treatments, and photodynamic therapy 

[6]. Since it is important to slow down the progression of the disease through treatment, 

early diagnosis is essential. Although it is possible to see anatomical changes that occur with 

drusen formation and neovascularization. It is very difficult to diagnose in the early stages, 

before structural changes are evident.

Recent studies show that the mechanical properties of the posterior eye also change with the 

onset of disease, such as in the case of angiogenesis or retinal degeneration [7–8]. In 

particular, the mechanical stress on the retina gets altered during the early stages when 

drusen deposits begin to form and also later when blood vessels infiltrate. Since it is often 

difficult to visualize drusen when the deposits are on the micron level, it would be helpful to 

use an alternate means of diagnosis [9]. In addition, since the layers of the posterior eye are 

made of a tight network of cells and tissues, the elasticity of different layers is expected to 

differ [8, 10].
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Several methods for in-vivo measurements of mechanical properties of the eye have been 

reported [8, 10–11]. Elastography methods based on magnetic resonance imaging, 

ultrasound, and optical coherence tomography, have been widely used in determining the 

elasticity of tissues [12–19]. Optical coherence elastography (OCE) has the advantage in 

ocular imaging due to its high resolution (<10 um) and the transparency of ocular tissues 

[20–23]. However, few investigations of the mechanical properties of the posterior eye have 

been reported. Ex-vivo retinal elasticity has been studied previously, where elasticity of only 

two different retinal layers were visualized and quantified based on shear wave OCE using a 

phased array transducer as excitation [24]. However, their ultrasound excitation and OCT 

detection are on the opposite side, and this configuration is not feasible for in-vivo animal 

studies where the posterior side is not accessible. Therefore, we propose this confocal shear 

wave acoustic radiation force optical coherence elastography (SW-ARF-OCE) system, 

where an ultrasound ring transducer and optical scan head are co-aligned to facilitate in-vivo 

study of the retinal elasticity. Although in-vivo corneal elastography studies have been 

performed, due to the difficulty in penetrating to the posterior globe through the anterior eye 

and vitreous combined with the need for high sensitivity and resolution, in-vivo 

measurements of the retinal stiffness have yet to be studied.

In this study, we report on the development of a shear wave ARF-OCE system that enables 

in-vivo imaging of the mechanical properties of the retina. To the best of our knowledge, we 

demonstrate the first in-vivo elasticity mapping of the retina. A rabbit model was measured, 

and the elasticities of the different retinal layers were identified in increasing stiffness from 

the ganglion side to the photoreceptor portions.

II. MATERIALS & METHODS

A. System setup

A customized 50 kHz spectral domain optical coherence tomography (SD-OCT) system 

with a central wavelength of 890 nm and bandwidth of 144 nm is used for the detection of 

tissue structure and response to stimulation. The imaging depth range is 2.9 mm while the 

penetration depth in tissue is approximately 1.5 mm. The light emitted from the 

superluminescent diode is filtered through the optical isolator and split with an optical 

coupler. For the safety purpose of in-vivo retinal imaging, 20% of the light is transmitted to 

the sample, which is well within the ANSI safety limits, and 80% is redirected to a reference 

mirror. Glass imaging windows are placed in the stationary reference arm for dispersion 

compensation. In the sample arm, galvo mirrors are used for B-M mode scanning, and a scan 

lens is used with a focal length of 54 mm to penetrate through the ring transducer and into 

the posterior eye globe. The scattering signal from the sample arm is coupled together with 

the reflected reference arm signal and sent to the detector arm. The interference signal is 

separated by wavelength with a diffraction grating and focused onto a line scan CMOS 

camera. The signal is processed and transformed into depth-resolved intensity and phase 

information.

A 4.5 MHz ring ultrasound transducer was used for pulsed tissue excitation. The excitation 

duration was limited to 1–2 ms while the optical detection speed was 50 kHz. The optical 

setup and the ex-vivo sample setup are shown in figure 1a, where a phosphate buffered 
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saline (PBS) is used as the medium for ultrasound propagation as well as preservation of 

ocular tissue. For in-vivo experiments, the rabbit eye is proptosed within a rubber drape that 

can serve as a container to immerse the eye in PBS fluid as shown in figure 1c. The 

ultrasound transducer was removed in figure 1c in order to visualize the ocular proptosis of 

the rabbit. The drape system imitates the steridrapes that are used in clinical ultrasound. PBS 

is then added to the draped construct once again to serve as the medium for propagation as 

well as for lubrication of the rabbit eye. A detail description of this drape system can be 

illustrated in figure 1b.

B. System synchronization

For the shear wave excitation, a baseband signal (S1) is given by the PC to the function 

generator, which converts it into a sinusoidal modulated pulse signal with 1–2 msec 

duration. This pulse is amplified by approximately 42dB and fed to the ultrasound 

transducer. A ultrasound generated pressure is applied onto the sample, initiating the 

propagation of the shear wave from the focal region to the peripheral areas. The detection 

scanning scheme is shown in figure 2a, where the ultrasound excitation beam is given at 

location P0, and B-M mode detection occurs along the lateral direction from P1 to Pn. At 

each location, an excitation pulse of 1–2 ms is given and a series of 400 A-lines, which 

corresponds to 8.8 ms, is obtained in M mode before the galvanometer moves to the next 

location. The number of A-lines is chosen such that the entire duration and progression of 

the shear wave can be captured.

In order to achieve efficient and effective imaging, the entire excitation and detection 

process must be synchronized. The timing diagram is shown in figure 2b. To obtain a B-scan 

showing the full lateral scanning area, an ultrasound modulation pulse is given for every 400 

A-lines while the camera DAQ trigger is given for each A-line to capture the intensity and 

phase information at each location for 8.8 ms total, in increments of 22 us. This 

synchronization generates 400 B-Scan images with lateral dimension of 600 um in a total of 

approximately 3.5 s. After detection is completed, the galvanometer moves to the next 

location in increments of 1.5 um, which is well within the lateral resolution of the optical 

system. The M-mode displacement image is obtained at every B-scan location, and the 

phase-resolved displacement is post-processed to obtain the shear modulus map. SW B-scan 

images are generated by reslicing the M-scan images, and therefore all the B-Scan images 

are generated at the same time after the imaging is completed.

C. Imaging processing

Within the 400 A-lines in M-mode at each location, the entire shear wave propagation 

through that point can be captured. In figure 3a–c, a sample raw data for the porcine retina is 

shown where it is apparent that different locations on the retina correspond to different 

propagation speeds. Note that only 330 out of 400 A-lines were shown in the figure below 

for visualization purpose. The transducer focal area is on the left side of the images, and 

propagation is to the right. For example, the bottom most layer of the retina propagates the 

fastest and corresponds to a stiffer tissue component. It is also important to note that the 

ultrasound wave intensity decreases at regions of stiffer tissue, and the intensity of the 

displacement is not considered in the velocity calculations.
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One of the challenges in analyzing retinal OCE data is segmentation. It is necessary to 

segment the boundaries across layers so that data from each individual layer can be isolated 

for layer specific elasticity analysis. Another challenge of shear wave elasticity analysis is to 

trace the location of the wave surface over time for the purpose of wave speed calculation. 

With layered Doppler OCT data and the segmentation algorithm, the wave surface as a 

function of time in each layer can be segmented to calculate the shear wave velocity at every 

location.

In the SW-ARF-OCE setup, the raw data is obtained, and post-processing is performed to 

segment the layers and calculate the shear wave propagation speed. As shown in figure 3d–e, 

the OCT intensity and Doppler phase data are first obtained, and the OCT image is 

segmented based on a customized dynamic programming segmentation algorithm to isolate 

different retinal layers [25]. Then the segmented layers are applied to the displacement map, 

where the shear wave propagation surfaces for each layer is segmented as well. Next, the 

propagation speed is calculated for each location based on the slope of the segmented wave 

propagation for each layer. The velocity is based on the change in location over the time 

period, and the shear wave velocity map can be obtained. The relationship between the 

velocity Cs and the shear modulus μ, can be described with the equation μ = ρCs
2, where ρ is 

the tissue density of approximately 1 kg/m3. The elastic modulus is approximately 3 times 

the shear modulus as demonstrated by previous literature [26] and can be calculated and 

mapped out as an elastogram.

D. Ex-vivo porcine eye preparation

The porcine eyeball was obtained within 24 hours of death. Since the eyeball was no longer 

fully transparent due to degradation, the anterior portion of the eye, including the cornea and 

the lens was removed along the iris. The vitreous was still attached to the retina and was 

kept in place during imaging to avoid retinal detachment. A 0.8% agar phantom was 

moulded around the posterior globe and used to keep the eye in place during imaging as well 

as to help preserve the shape of the posterior globe and prevent detachment. The sample was 

kept in phosphate-buffered saline during imaging to preserve freshness and as a medium for 

ultrasound propagation.

E. In-vivo rabbit experiment preparation

All rabbit experiments were performed according to the University of California, Irvine 

(UCI) Institutional Animal Care and Use Committee (IACUC) protocol. The rabbit was used 

for an AMD study, where it was exposed to a high fat diet, blue light, and nicotine for 8 

weeks. Since the disease was localized, most of the central retina was still relatively healthy. 

The healthy region was used for this study. The rabbit was given 35 mg/kg of ketamine and 

5 mg/kg of xylazine subcutaneously for initial anesthesia. Two drops of proparacaine HCl 

and atropine solution were applied topically for further anesthesia and dilation of the eye for 

imaging, respectively. The unconscious rabbit was propped onto the imaging stage and the 

eye was proptosed. Additional anesthesia was given via subcutaneous injection of ketamine 

(17.5 mg/kg) if the heart rate or oxygen levels indicate distress. After imaging was 

completed, the rabbit was euthanized with an intravenous injection of euthasol. When death 
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was confirmed, the rabbit eye was enucleated and fixed in 10% buffered formalin for 

histological analysis.

III. RESULTS

A. Ex-vivo porcine study

In order to test the confocal excitation and detection setup, imaging was first performed on 

an ex-vivo porcine retina using the same OCT system. The central retina region 

approximately 2 mm from the optic nerve on the temporal side was identified and imaged. 

The shear wave travels for over 700 um in the ex-vivo porcine retinal tissue and the system 

is capable of visualizing wave propagation in the whole depth of view. The results are shown 

in figure 4. The OCT intensity map is shown in figure 4a where segmentation was 

performed, and 5 different layers were isolated. Next, the corresponding shear wave velocity 

map and elastogram were calculated according to the above algorithm and shown in figure 

4b and 4c, respectively. Finally, an H&E histology slide of a porcine retina is shown in 

figure 4d, where the 5 layers could be matched. Layer iv was omitted during the analysis due 

to low OCT scattering signal in the outer nuclear layer. Retinal detachment was observed 

and most likely due to detachment during the removal of the anterior portion and also due to 

the histology process.

The elasticity results of the porcine retina are summarized in table 1, where the mean and 

standard deviations for each layer are listed and plotted. The elasticity increased from 

approximately 6 kPa on the ganglion side to over 140 kPa on the photoreceptor side. Since 

the photoreceptor side is close to the sclera of the eye globe, it is expected to be stiffer. The 

close-knit structure of the retinal layers most definitely interferes with the mechanical 

elasticity for each and is demonstrated by the gradual gradient increase in the elasticity over 

the layers from the ganglion side to the photoreceptors.

B. In-vivo rabbit study

Although the elasticity contrast between different retinal layers is apparent in the ex-vivo 

porcine model, the presence of intraocular pressure and blood vessel perfusion is lost. 

Therefore, it is not an accurate representation of the retinal structure in its natural 

environment. In order to address these issues, an in-vivo rabbit model was designed and 

imaged. For this shear wave elastography study, a healthy region of the central retina was 

chosen. The rabbit was put under anesthesia according to protocol and proptosed in the 

imaging setup as shown in figure 1c.

Imaging was performed on the central retina approximately 1.5 mm from the optic disc on 

the temporal side. The same B-M mode scanning scheme was used to capture the shear wave 

propagation. The OCT intensity image is shown in figure 5a, where segmentation was 

performed to isolate 5 different layers in the posterior globe. The shear velocity map is 

demonstrated in figure 5b, and a speed of up to 5.8 m/s can be visualized. The velocity was 

converted to the Young’s modulus in figure 5c. The elasticity of the first three layers from 

the ganglion side to the photoreceptor side are: 12.6±1.5, 35.7±18.9, 101.1±5.1 kPa. The 

bottom two layers of the eye could not be differentiated due to the fast propagation speed 
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where the Young’s modulus is over 100 kPa. The shear wave is attenuated within 200 um in 

the lateral direction and the current system setup is not fast enough to capture the wave 

propagation within such a distance for the bottom three layers. This issue can be resolved by 

increasing the imaging speed or extending the traveling distance of the shear wave with a 

higher ultrasound excitation power. According to the histology, the bottom two layers are 

close to the sclera and are expected to be stiffer than the retina and have a higher 

propagation velocity.

After the rabbit was euthanized, the posterior globe was fixed and processed for histological 

analysis. H&E staining is shown in figure 5d, where the layers of the retina can be 

corresponded to the OCT figure similar to literature [27]. The retinal detachment is likely a 

fixation artifact while the swelling in the sclera or layer v is caused by the repeated proptosis 

procedure. Three layers of the live rabbit retina have been distinguished with different 

elasticity values. The feasibility of using the SW-ARF-OCE method to probe the mechanical 

properties of the retina has been confirmed.

IV. DISCUSSION & CONCLUSION

We have presented a SW-ARF-OCE method of measuring and quantifying the in-vivo 

elasticity map of the retina for the first time, to the best of our knowledge. This technology 

offers high resolution imaging and highly sensitive velocity maps that are used to 

quantitatively assess retinal layers. Furthermore, the confocal setup allows for easy access to 

the posterior eye during the in-vivo study. In addition, the system is non-invasive since OCT 

and ultrasound are readily used in ophthalmic clinics today. Ultrasound gel and steridrape 

based waterbaths are commonly used in clinics to couple ultrasound into the eye and are 

adaptable in the translation of our technology. This technology will allow researchers and 

physicians to study the mechanisms behind changes in the mechanical elasticity of the retina 

during disease onset and progression, which is crucial in both basic pathological research as 

well as clinical diagnosis.

Although the quantification of retinal mechanical properties has been demonstrated in-vivo, 

a few challenges remain to be addressed before the technology can be translated. First, a 

higher imaging speed is necessary to visualize stiffer posterior layers, such as the sclera. A 

faster line scan camera can address this issue. A faster line scan camera will help speed up 

the scan time and allow for spatial imaging of a single ARF pulse. The temporal resolution 

of shear wave propagation will be increased so that faster shear wave speeds can be tracked 

within stiffer tissue such as the sclera. Second, the propagation distance of the shear wave is 

limited to a few hundred microns due to the fast attenuation of the signal. A larger field of 

view can be achieved with a high power excitation pulse, more precise confocal alignment of 

the ultrasound excitation on retinal tissue, or more ideally, the implementation of an array 

transducer for a larger region of excitation and detection. It is also important to study the 

changes in the mechanical properties using a diseased model and examine its correlation to 

clinical impairments.

The mechanical index (MI) of the current system exceeds the federal ophthalmic ultrasound 

limit (0.23) by approximately 10 fold. However, since we use phase-Doppler to measure the 

displacement in hundreds-nanometer range and the displacement sensitivity of this imaging 
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system is less than 1 nm [28], it will be possible to scale down the excitation ARF by at least 

1 order of magnitude and still obtain sufficient signal. In addition, it will be possible to 

measure the shear wave propagation across a spatial region using a single pulse with the 

incorporation of a faster camera. This will also decrease the patient exposure to ARF and 

help the translation of this technique to clinics. In addition, our current OCT image is not 

optimal due to the bulk motion and noise that occurs during in-vivo imaging. There is a 

significant amount of bulk motion from the rabbit breathing and reflex motions. 

Furthermore, since imaging took place in a PBS bath, some signal loss was observed. 

Imaging in fluids also changes the natural focal characteristics of the rabbit eye since the 

refractive index change from air to cornea is different than that from PBS to cornea, so it is 

more difficult to obtain a perfect focus on the retina. The in-vivo optical setup may be 

improved by considering the use of ophthalmic gel to substitute for the PBS bath, fine tuning 

the optical focus, and also bulk motion removal.

In conclusion, we have demonstrated a novel method to quantify the mechanical elasticity of 

the retinal layers in-vivo using SW-ARF-OCE based on layer segmentation and shear wave 

analysis. We have first tested the feasibility on an ex-vivo porcine model, where 5 different 

retinal layers have been isolated and the mechanical elasticity was distinguished. In order to 

validate the feasibility of translating this technology, imaging was performed on an in-vivo 

New Zealand white rabbit retina model, where 3 layers of the retina could be analyzed and 

quantified for different mechanical properties. This study is a crucial stepping stone to the 

translation of the SW-ARF-OCE technology for clinical diagnosis and disease studies.
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Figure 1. 
System set up. a) SW-ARF-OCE system schematic with ex-vivo sample. SLD: 

superluminescent diode, OC: optical coupler, CO: collimator, OA: optical attenuator, M: 

mirror, GM: galvanometer mirrors, L1/L2: lens, UT: ultrasound transducer, S: sample, RFA: 

radiofrequency amplifier, FG: function generator, G: grating, S1: baseband signal, S2: 

modulated signal, S3: amplified modulated signal. b) Schematic of in-vivo experimental 

setup. c) Photograph of in-vivo rabbit experimental setup. d) Schematic of retina layered 

anatomy.
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Figure 2. 
a) Scanning scheme of SW-ARF-OCE system. b) Timing diagram.
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Figure 3. 
a–c) Cross sectional raw data showing wave propagation of retinal layers at different time 

points for an ex-vivo pig retina. Shear wave induced axial displacement is shown by 

different colors corresponding to the color bar. d–e) Flow diagram demonstrating post-

processing of raw data. DOCT: Doppler optical coherence tomography.
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Figure 4. 
Ex-vivo porcine retina results. a) OCT of porcine central retina. b) Velocity map of the shear 

wave propagation. c) Elastogram of the corresponding region. d) H&E staining of the 

porcine retinal layers. i: optic nerve fibers (ONF) & ganglion cell layer (GCL); ii: inner 

plexiform layer (IPL); iii: inner nuclear layer (INL) & outer plexiform layer (OPL); iv: outer 

nuclear layer (ONL); v: photoreceptors (PR).
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Figure 5. 
In-vivo rabbit elastography results. a) OCT of rabbit central retina. b) Shear wave velocity 

map. c) Elastogram of corresponding region. d) H&E histology showing some retinal 

detachment. i. nerve fiber, ganglion cell, & inner plexiform; ii. inner nuclear, outer 

plexiform, & outer nuclear; iii. RPE; iv. choroid; v. sclera
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Table 1.

Summary of ex-vivo elasticity maps of each porcine retinal layer. ONL has been omitted due to low OCT 

signal in the outer nuclear layer. SD (standard deviation)

Layer Mean Std

ONF&GCL 5.8 0.3

IPL 6.7 0.26

INL&OPL 10 1.97

ONL N/A N/A

PR 143 4.18
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