
Hands Holding Clues for Object Recognition in Teachable 
Machines

Kyungjun Lee,
Department of Computer Science, University of Maryland, College Park, MD, USA

Hernisa Kacorri
College of Information Studies, University of Maryland, College Park, MD, USA

Abstract

Camera manipulation confounds the use of object recognition applications by blind people. This is 

exacerbated when photos from this population are also used to train models, as with teachable 

machines, where out-of-frame or partially included objects against cluttered backgrounds degrade 

performance. Leveraging prior evidence on the ability of blind people to coordinate hand 

movements using proprioception, we propose a deep learning system that jointly models hand 

segmentation and object localization for object classification. We investigate the utility of hands as 

a natural interface for including and indicating the object of interest in the camera frame. We 

confirm the potential of this approach by analyzing existing datasets from people with visual 

impairments for object recognition. With a new publicly available egocentric dataset and an 

extensive error analysis, we provide insights into this approach in the context of teachable 

recognizers.
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1 INTRODUCTION

Object recognition apps making use of built-in cameras on mobile or wearable devices have 

gained in popularity among blind users as they help with access to the visual world. 

Typically, they provide solutions employing sighted help through crowdsourcing (e.g., Aira 
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[7] and BeMyEyes [9]) or machine learning with pre-trained image recognition models (e.g., 
SeeingAI [5] and Aipoly Vision [67]). They have also employed hybrid solutions, falling 

back to sighted help when computer vision models fail (e.g., TapTapSee [65]). Camera 

manipulation, however, remains a challenge for blind users [34, 36, 66, 73]. In all cases, the 

effectiveness of these solutions is confounded by blurred images, viewpoints with low 

discriminative characteristics, cluttered backgrounds, low saliency, and more importantly 

partially included or out-of-frame objects of interest.

Human-powered applications, especially those employing video services, can provide near-

real-time guidance for better camera aiming. However, they often come with other 

limitations such as the need for crowd availability and Internet connection, per demand cost, 

and privacy concerns [3, 61, 71]. Such limitations can be resolved with pre-trained computer 

vision models using the device’s onboard processing, though many of the camera 

manipulation challenges remain difficult to resolve. For example, a computer vision app, 

which is typically trained on well-framed photos of sighted people, may not be able to 

recognize the object of interest when given a partially included object against a cluttered 

background. In the case of object recognizers with teachable machines [35, 36, 62], where 

machine learning models are trained and personalized by blind users, having objects 

partially included or even out of the camera frame is a primary factor limiting performance 

[36]. To overcome these challenges, we are interested in examining hands as a natural 

interface for including and indicating the object of interest in the camera frame (as shown in 

Fig. 1).

Why hand-detection in object recognition.

When exploring the feasibility of teachable object recognizers for the blind, Kacorri et al., 
2017 [36] observed that users’ hands tend to be present in many of the images, either 

holding an object or serving as a reference point to place the object in the photo. We 

speculate that they were leveraging proprioception [51, 60], the perception of body and limb 

position, to coordinate their hand movements: one hand holding and adjusting the camera to 

the location of the other hand that was in proximity to the object of interest. Gosselin et al. 
[25] provide evidence on the ability of blind people to use proprioception to guide hand 

orientation and to make rapid corrections of hand orientation during movements.

Hand-guided object localization.

Motivated by the observation above and prior literature in proprioception, we analyze 

existing datasets from blind users in the context of object recognition to examine the 

presence of the user’s hand in photos. Moreover, we investigate the effectiveness of a hand-

guided object localization approach for object recognition, where an object is localized 

based on its proximity to the hand, cropped and forwarded to the object recognition model. 

By using the hand as a guide to the object of interest, we not only ensure that the object is 

included in the frame, but we also reduce the effect that the background might have on the 

recognition model. This is natural since the object is cropped and the background is removed 

from the image, as shown in Fig. 1. To localize the object of interest based on its proximity 

to the user’s hand, we use convolutional neural networks (CNNs) tofirst train a hand 

segmentation model and then fine-tune it to learn to locate the center of the object in 
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proximity to the segmented hand. The image is then cropped to include the located object of 

interest. We explore the effectiveness of this approach in the context of teachable machines, 

where the quality of the image impacts accuracy not only during the prediction step but also 

in training [36]. Specifically, we show that this approach could improve the accuracy of 

teachable object recognizers in real-world environments where objects lay in a cluttered 

background. With an extensive error analysis, we provide deeper insights into the feasibility 

and challenges of using existing egocentric datasets from the sighted population. Tofurther 

research in this direction, we make our dataset as well as the output of our models for the 

error analysis publicly available.

2 RELATED WORK

Object recognition and camera manipulation for visually impaired people have been 

extensively studied for accessibility. We discuss prior work that we draw upon to both 

inform our analysis and contextualize the implications of our results. Moreover, we present 

state-of-the-art deep learning approaches, which guide our model, from hand recognition in 

egocentric vision, a sub-field of computer vision focusing on the analysis of images and 

videos typically captured by a wearable camera.

Object Recognition for the Blind

Researchers have explored assistive technologies that use camera input to help visually 

impaired people identify surrounding objects. The following surveys prior work to identify 

the characteristics of these solutions and to understand: the diversity of user input, the 

mechanisms underlying prediction, and sources of training examples for deployed computer 

vision models. Table 1 presents representative examples from 2010–2018 focusing mainly 

on real-world applications, though similar patterns may be found when examining larger 

surveys [33, 40, 46]. While a few examples are similar to barcode scanners, requiring 

adhesive tags to be attached to objects, (e.g., [17, 68]), the general trend is to use camera 

stream as an input for prediction with a single photo [4–6, 10, 15, 18, 19, 24, 65] or real-

time video [5, 7, 9, 15, 53, 65, 67].

Prediction using computer vision models is common practice (Table 1). However, current 

limitations in object recognition make it impossible to build a “super” object classifier to 

recognize all possible object instances of interest for all blind people. Thus, such solutions 

are typically restricted to a few object instances (e.g., US currency [18]), adhesive tags (e.g., 
[17, 68]), objects whose images are available on the web or a database (e.g., [24, 73]), and 

generic object classes (e.g., [5, 15, 67]). To overcome some of these limitations, applications 

are either backed up (e.g., [65]) or fully supported (e.g., [7, 9–11]) by human respondents.

Most recently, researchers are exploring teachable object recognition which allows users to 

personalize a recognizer with their objects of interest. Early approaches required training 

examples provided by sighted users [63]. Subsequently, models trained by users with visual 

impairments have shown promise given well-framed training examples [4, 36, 62]. As there 

are few datasets with photos of objects taken by blind users, most models are trained on 

photos taken by sighted people. Such photos may exhibit different background clutter, scale, 

viewpoints, occlusion, and image quality than those taken by blind users at prediction time.

Lee and Kacorri Page 3

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Informed by this design space, we explore the presence of users’ hands in photos during 

prediction for a crowd-sourced solution, such as VizWiz [11], and a teachable solution, such 

as Sosa-Garcia and Odone [62]; they released their datasets (Sec. 4). Moreover, we explore 

the effectiveness of our hand-guided object localization in the context of training, by 

replicating prior work from Kacorri et al. [36] on a new small but rich benchmark dataset 

(Sec. 5).

Camera Manipulation for the Blind

We consider how challenges in camera manipulation faced by blind people have been 

studied in prior work. While not restricted to object recognition, prior studies analyzing 

photos taken by blind people have reported on difficulties related to blurriness, lighting, 

framing, composition, and overall photo quality [1, 12]. To overcome some of these 

challenges, researchers have leveraged models of visual attention [32] to either provide 

feedback to the user for better framing [66] or to select a high-quality photofrom a video 

stream [73]. Others have explored solutions that can detect blurriness and inform users about 

camera tilt [28]. While rarely discussed in the context of object recognition, such approaches 

assume that the users can spatially localize an object and aim the camera appropriately. 

Thus, they have limited utility in the case of partially included or out-of-frame objects of 

interest, cluttered backgrounds, and the presence of multiple objects.

Some reported strategies that blind users employ for taking good photos [1, 2, 28, 34] 

include: (i) positioning the camera to the center of an object and slowly pulling away while 

trying to keep it in frame, (ii) making an educated guess on where to point the camera, and 

(iii) taking several shots, hoping some will include the object. Jayant et al. [34] built upon 

the first strategy to guide users by asking them to take a first photo of the object up-close 

and then tofollow verbal feedback to move the camera away. Although this method is an 

interesting alternative approach that can be used in our work, it is verbose and has not been 

evaluated in a real-world setup and the presence of multiple objects.

Even though the presence of users’ hands in the camera frame (mentioned in Kacorri et al. 
[36]) is not explicitly reported above, we associate it with the second strategy: users leverage 

proprioception [25] to make an educated guess. Prior work on blind users’ fingertip 

detection to estimate the area of interest in a camera frame for inaccessible physical 

interfaces [26] or color detection [47] provides additional evidence for the potential of our 

approach.

Hands in Egocentric Vision

Egocentric vision analyzes images providing a first-person view from a wearable camera 

typically mounted on the user’s body or, as in our context, a mobile camera hand-held by a 

blind user. As users’ hands in egocentric vision can provide context about intentions, 

actions, and areas of interest, hand recognition is an active area of research in the computer 

vision community (e.g., [13, 30, 72]) with many applications in virtual reality (e.g., [69, 

70]), augmented reality (e.g., [29, 45, 54]), as well as within our community [16, 26, 47, 49, 

52]. To our knowledge, this is the first study exploring hand detection in the context of 

object recognition for the blind.
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Our hand-guided object localization leverages prior work by Ma et al. [44], which uses a 

twin-stream CNN to detect egocentric activities. Specifically, we adopt one of the network 

streams for our recognition pipeline (Fig. 1). However, we opt for a different network 

architecture using FCN-8s [42] to improve our model’s understanding of hands in the first-

person view. Using photos from sighted users with a head-mounted camera, we explore its 

potential for photos taken by both blind and sighted users using a mobile camera over a 

larger number of object instances.

3 A HAND-GUIDED OBJECT RECOGNIZER

We introduce a hand-guided object recognizer comprising three deep learning models (Fig. 

2): hand segmentation, object localization, and object classification. Our architecture is 

based on prior work on egocentric activity recognition [44], though we use a high-precision 

fully convolutional network, FCN-8s, proposed by Long et al. [42].

Typically, thousands of annotated images are required to train such models. Therefore, in 

training our system, we make use of any existing pertinent datasets (Sec. 4) and create a new 

one for richer insights and error analysis (Sec. 5).

Hand Segmentation Model

Our hand-guided object recognizer is based on the intuition that objects of interest will 

appear in the vicinity of the user’s hand. Thus, to estimate the center of the object of interest, 

we need to locate the hand within the frame. We train a hand segmentation model to perform 

this task.

Specifically, we use a fully convolutional network (FCN-8s), shown to perform well for fine-

grained segmentation [42]. High performance is crucial to our approach as it requires highly 

accurate information on hand shape and poses. As shown in Fig. 3(a), our model is trained 

with images annotated with two labels, background and hand, where we estimate the class of 

each pixel; that is, whether the pixel belongs to the background or the hand. The model is 

optimized using the cross-entropy loss function.

Object Localization Model

Employing transfer learning [43, 48], we build an object localization model by “fine-tuning” 

our hand segmentation model. Intuitively, lower layers of the segmentation model have 

learned to identify image pixels corresponding to a hand. Thus, these features can be re-

purposed to estimate the center of the object relative to the hand pixels.

Specifically, we keep weights for the first five layers in the segmentation model, shown to 

learn hand related features [44], and re-train the rest. Training images are annotated with a 

Euclidean heatmap mark indicating the object’s center (Fig. 3(b)). Heatmap annotation has 

been shown to be more robust than pinpointing location coordinates regarding model 

training [44, 50]. Using cross-entropy loss, we train the localization model to predict the 

class of each pixel in the final layer: the background or the center location1.
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Annotating with a heatmap, the model learns which pixel belongs to the possible center 
locations. Given an image, we use this model to localize the object center and crop the 

image based on the estimate (blue overlay in Fig. 3(b)).

Object Classification Models

Automatic object recognition spans across: (i) pre-trained models on a static number of 

object classes, which we call generic object recognizers (GOR); and (ii) personalized models 

with teachable machines, allowing end-users to specify objects of interest and provide a 

small number of training examples, which we call teachable object recognizers (TOR).

We explore feasibility of hand-guided object localization for object recognition in both 

contexts: generic and teachable. The former uses state-of-art models trained on large data. In 

the teachable case, models are trained on the fly by users; thus we expect the effect of hand-

guided localization to be larger as image quality affects both training and prediction.

GOR: We use Google’s Inception V3 [64] pre-trained on the 2012 ILSVRC dataset [58] 

with 1,000 object classes.

TOR: We use transfer learning to re-train2 GOR for 19 object classes using our benchmark 

dataset described in Sec. 5.

4 EGOCENTRIC HAND-OBJECT DATASETS

Training and evaluating each component requires an abundance of data. Ideally, the data are 

egocentric images from diverse groups of visually impaired people with mobile cameras to 

identify real-world objects using both GORs and TORs. Moreover, images require detailed 

annotations such as hand masks, object center, and object name (Fig. 3(a) and Fig. 3(b)). 

Such a dataset is not currently available.

To mitigate this, we identify related datasets, extend them with additional annotations, and 

create a new benchmark dataset (see Sec. 5). Table 2 summarizes these datasets along the 

number of images, distinct objects, and people, the level of people’s vision, camera 

perspective, and environmental setup (examples shown in Fig. 4). Environments are reported 

as “wild” for images captured in the real world, and “vanilla” for images in a uniform 

laboratory setting where objects tend to occur with a plain background.

GTEA.—Georgia Tech Egocentric Activity (GTEA and GTEA Gaze+) datasets [41] are 

collected with 4 and 26 sighted people, respectively, through hat-mounted cameras3. For 

benchmarking activity recognition, they include annotation of actions being performed — 

frame-level gaze tracking data included in Gaze+ as well. They also provide hand mask 

1We train both models with 10, 000 training steps, using the Adam optimizer [38], 10–6 learning rate, 0.9 beta1, 0.999 beta2, and 0.9 
Adam epsilon.
2We fine-tune pre-trained Inception using 4, 000 training steps and gradient descent with learning rate 10–2. We augment data by 
flipping left/right, randomly cropping 10% of the margin, and varying brightness by ±10%.
3Only data with available hand masks (6 people) were used in GTEA Gaze+.
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annotations, since hand shape and poses are informative in object and activity recognition 

[21]. We manually annotated the object centers4.

Intel Egocentric Vision Dataset.—This dataset is closer to our task as it was collected 

for recognition of everyday objects handled by a person [55]. Similar to GTEA, two sighted 

participants recorded their activities using a shoulder-mounted camera. However, the default 

per-pixel annotations include both hand(s) and the object of interest. As our system 

recognizes a hand and an object separately, we manually generated hand-only masks and 

object-center annotations for a subset of this dataset (only 177 images from one participant)5 

and use them to train our segmentation and localization models.

EgoHands.—This dataset provides first-person interactions among four sighted people; 

two people formed a group, and each of two wore a glass-mounted camera to record the 

activities [8]. We use the 3, 752 images with hand masks to train our hand segmentation 

model.

Glassense-Vision.—This dataset is close to both our task and our target population as it 

was collected with three low-vision participants for TORs [62]. Thus, we use it to evaluate 

our approach. A total of 71 object instances were grouped along seven categories6 of three 

geometrical types (flat, boxes, and cylinders). However, their training data were collected in 

a uniform setting, with objects on a white surface with no hands present. In contrast, the 

testing data were acquired while participants held the object on their hand. Therefore, our 

analysis only uses the testing data that capture hand-object interactions.

VizWiz.—This visual question answering dataset [27] provides a rich set of real-world 

images taken by visually impaired people along with questions to the crowd. While the 

images are not limited to object recognition, the dataset provides a unique opportunity to 

investigate how hand presence in real-world settings would lead to including and indicating 

the object of interest in the camera frame. Thus, we use this dataset to evaluate our approach.

5 TEgO: A NEW BENCHMARK DATASET

To investigate the feasibility of hand-guided object recognition for blind people, we create a 

new benchmark dataset, called Teachable Egocentric Objects (TEgO)7. By controlling for 

factors such as users, environments, lighting, and object characteristics, this small but rich 

dataset allows us to explore and uncover potential strengths and limitations in the context of 

object recognition for the blind, which is not feasible with the existing datasets described 

above.

People.—Two individuals collected data over five weeks resulting in 11, 930 images. As 

shown in Table 2, the small number of people is comparable to those reported for similar 

egocentric datasets in computer vision, while the number of images is large. The first 

4Additional annotations available at https://iamlabumd.github.io/tego/.
5Additional annotations available at https://iamlabumd.github.io/tego/.
6The cereals category in the Glassense-Vision dataset was unavailable at the time.
7TEgO is available at https://iamlabumd.github.io/tego/
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individual (B) was a blind undergraduate (no light perception) with little experience using a 

mobile phone camera. The second individual (S) was a sighted student experienced in 

machine learning. Data from S serve merely as an upper baseline for discriminative power of 
the system given that many of the objects shared visual similarities; that is, we treat the data 

from S as ideal data and use them as a point of comparison in our analysis.

Objects.—Informed by prior work on TORs [36, 62], object stimuli (total of 19) were 

carefully engineered to cover a large group of categories with diverse geometries and 

functions. Objects within a category were deliberately chosen to have a similar shape and 

appearance (Fig. 5). By making the recognition task more difficult, we are hoping to 

anticipate more challenges faced in real-world deployments.

Environment and Lighting.—We collected our dataset in both simulated real-world 

(wild*) and more traditional lab (vanilla) settings. As shown in Fig. 1 and Fig. 4, “wild”-

photos were taken against a cluttered background including a bookshelf, a kitchen, and 

many other objects. Whereas “vanilla”-photos were taken against a wooden surface next to a 

white wall. Three different lighting conditions are considered for testing in each 

environment: (i) indoor lights on, (ii) surrounding light with indoor lights off, and (iii) fash 

on with indoor lights off. The data collection lasted for many days while the effect of natural 

light was mitigated.

Procedure.—TORs are evaluated in two phases: training and testing. In training, the user 

sequentially provides a small number of photos: about 30 examples per object under each 

environment and lighting condition. To simulate testing, an object is randomly given to the 

user for a single shot. The random object assignment minimizes learning effects [36]. We 

iterate it until we test each object five times, resulting in a total of 19 × 5 test images at a 

time.

In the pilot stage, we observed that photos taken by B with the volume button differed from 

those taken with the screen button. To account for this, we also considered two photo-

capturing conditions for B: (i) screen button and (ii) volume button. Since we did not 

observe such differences from S’s photos, S used only the screen button.

More importantly, to allow for meaningful interpretation of results, data were collected 

under two hand-inclusion conditions: (i) use of hand-object interaction, and (ii) no hand. B 

took a total of 6, 189 training and 2, 280 testing images, and S took a total of 2, 321 training 

and 1, 140 testing images.

Annotations.—Beyond object labels, all images in our dataset are manually annotated 

with hand masks (Fig. 3(a)) and object center heatmaps (Fig. 3(b)).

6 EXPLORATORY ANALYSIS AND RESULTS

As discussed in Sec. 3, our system comprises three models:
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Hand segmentation: The model was trained primarily on images taken by sighted people 

with hand mask annotations (a total of 5, 707) from GTEA, GTEA Gaze+, Intel Egocentric 

Vision, and EgoHands. Additionally, similar to the selective hand annotation in [41], we 

included randomly selected images (about 7%) from TEgO during the training phase (224 

and 654 from S and B, respectively). By including some images from our dataset, we 

increase the potential of the model to perform well on the unseen data from S and B. It 

decouples the performance of the segmentation and localization models from the recognition 

model, and thus allows us to evaluate the utility of hands in recognition. Only the Intel 

Egocentric Vision dataset (177 annotated images) includes hands with a similar complexion 

to that of B. The majority of the data from sighted participants include hands with a 

complexion close to that of S (5, 530 images). Thus, we do not anticipate that the imbalance 

across B and S data, will bias our segmentation model in favor of B.

Object localization: We used a total of 1, 955 images from GTEA, GTEA Gaze+, and 

Intel Egocentric Vision, and 4, 048 images from TEgO (1, 175 and 2, 873 from S and B, 

respectively) with their heatmap annotation data to train the model; we fine-tuned the hand 

model to the localization model. It leads to roughly balanced data from sighted versus blind 

individuals (3, 130 vs. 2, 873) and lighter versus darker complexions (2, 953 vs. 3, 050).

Object recognition: A GOR is pre-trained on a million of images from ImageNet [58], 

and TORs are trained on images from TEgO; each TOR is trained with 30 examples per 

object (total 19 objects) from S or B in a given condition: hand presence and environment. 

For example, a TOR for B is trained on 30 images per object taken in the wild with the 

screen button while using one hand to interact with the object.

Analysis on Existing Datasets from Our User Group

To provide further evidence for this work, we investigate whether hands are used as a natural 

interface by people with visual impairments for including and indicating the objects in the 

camera frame. We examine existing images from this population in the context of object 

recognition such as the Glassense-Vision [62] (vanilla) and VizWiz [27] (wild) datasets. In 

addition, we run our segmentation and localization models over these previously unseen 

datasets, report the proportion of images with such characteristics, and offer qualitative 

insights on their limitations.

Glassense-Vision.—Through manual examination, we find about 44% of images taken 

by people with low vision in the Glassense-Vision included the individual’s hand when 

testing the performance of their teachable object recognizers in a vanilla environment. 

However, our model estimated that only 16% of images include a hand, appropriately 

cropping the object in 89% of these. By visually inspecting failed cases, where a hand was 

not identified, we find images with different ratio and orientation from those typical in our 

training examples. It highlights the importance of diversity in hand-segmentation training 

data for this population. Positive and negative examples of model outputs are shown in Fig. 

6(a). While this analysis would benefit from a more quantitative approach for object 

detection, it requires ground-truth annotations which are currently unavailable for the 

dataset.
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VizWiz.—As discussed in Sec. 4, VizWiz provides a richer, more realistic object 

recognition scenario as blind or low vision real-world users post images with associated 

questions to the crowd. To gauge what portion of VizWiz data are object recognition tasks, 

we note that most questions begin with “what”. Based on prior analysis on this dataset [27], 

we estimate that around 29% of questions are related to object identification: about 8, 700 of 

31, 173 images. While it is impractical to manually inspect all 31, 173 for the presence of a 

user’s hand, we run our object segmentation and localization models on the VizWiz data and 

detect a total of 1, 548 images that include a user’s hand for the object of interest. While still 

an estimate, this result indicates that, in at least 18% of images regarding object 

identification, real-world end users use their hands as a natural interface to indicate the 

object of interest. Figure 6(b) depicts examples of our localization model’s positive and 

negative results on VizWiz. By visually inspecting 6, 000 random samples not detected by 

our hand model, we identify only 36 images (<1%) where users’ hands were present. The 

majority (24) includes just the fingertips, and one image includes a previously unseen hand 

shape. Some images were blurry (9), and some had the camera flash on (9) — a lighting 

condition not present in any of the training sets. When visible, objects’ shapes were: 

relatively flat (e.g., paper, currency, gift card, newspaper, DVD cover), roughly cylindrical 

(e.g., pen, cigarette, cans, bottles, mug), and nearly rectangular (e.g., smartphones, laptop, 

keyboard).

Analysis on Our New Benchmark Dataset TEgO

For our analysis, we first separate the S data from the B data in TEgO, then divide their data 

into three subsets based on the method applied to the training and testing images — 

cropped-object (CO), hand-object (HO), and object (O). The HO and O methods include 

original images taken by S and B. HO contains images where S and B are holding the object, 

while O contains the rest. CO consists of HO images cropped by the object localization 

model; that is, the CO images are extracted from the HO images.

Model Performance.—We explore the potential of the hand-guided recognition approach 

in the context of teachable object recognizers by comparing recognition performance of 

TORs trained on the CO images to those trained on the original HO and O images, 

respectively. Each model is trained on around 30 images per object at a given condition (e.g., 
environment, button), and its accuracy is calculated on five testing images per object (total of 

95) in the same condition. The average accuracy across models in HO, CO, and O is 

reported in Fig. 7, with error bars denoting standard error across multiple sets of testing 

results for S and B — 12 sets for S and 24 sets for B (due to the button settings).

As expected, the models from S, serving as an upper baseline and trained on images taken 

by a sighted machine learning expert, outperform those of B. They also indicate that this 19-

way classification task is challenging, with CO achieving an average accuracy of 92% and 

an improvement of 5% and 6% on average over HO and O, respectively. Models from B 

follow a similar pattern, with CO achieving an average accuracy of 71% and an 

improvement of 6% and 9% on average over HO and O, respectively. However, overlapping 

error bars indicate that these differences may not be significant.
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Effect of Environment.—Fig. 8 shows a breakdown of the models’ performance across 

vanilla and wild environments. As expected, overall model performance is lower in the wild, 

where cluttered backgrounds tend to be present. In the vanilla environment, we observe that, 

in general, models trained on images where S and B hold the objects (HO and CO) perform 

better than those where they don’t (O). However, the utility of our approach seems more 

pertinent to the wild environment, where CO achieves, on average, 67% accuracy for B and 

improvement of 12% and 14% over HO and O, respectively. These results highlight the 

potential of our approach, given that photos of objects taken by people with visual 

impairments in the real world tend to include cluttered environments, as illustrated with the 

VizWiz dataset (Sec. 4).

Effect of Sample Size.—We explore the potential of our approach for training with 

highly limited sample sizes of 1 and 5 with k-shot learning in Fig. 9. Similar to Kacorri et al. 
[36], we observe that, on average, the model performance increases with the sample size. 

More importantly, we note that CO tends to outperform HO and O consistently across 

sample sizes.

Teachable vs. Generic.—We explore whether the positive effect of the CO method over 

the HO and O methods, observed in teachable object recognizers (TORs), carries on to a 

generic object recognizer (GOR). As discussed in Sec. 3, we use as our GOR the Google’s 

Inception V3 model [64]. Since a GOR is not trained on the labels of TEgO, its accuracy 

score should not be compared with those of TORs, directly. As shown in Fig. 10, to allow 

for the comparison, we use V-measure [57] by comparing desirable properties of the two, 

such as consistency of their predictions given images of the same object, and ability to 

distinguish between two different objects. Similar to Kacorri et al. [36], we observe that a 

TOR achieves higher V-scores than a GOR. This is not surprising since a TOR model is fine-

tuned to the users, their environments, and the number of objects. However, we did not 

anticipate CO and HO underperforming O in the GOR case. We suspect that the presence of 

hands in the HO and CO images, as well as close-up cropped images in the CO, may have 

induced some confusion in the GOR.

Error Analysis.—Interested on how to improve our method, we focus on hand 

segmentation and localization errors (Fig. 11) as well as object features affecting recognition 

(Fig. 12).

Hands out of frame.: While S and B held objects in all CO images, the B’s hand is not 

present in nine images; but, the objects are. These were taken in the wild environment and 

included relatively large objects such as soda bottles (6) and cereal boxes (3). The 

localization model correctly identifies object centers on seven of them and failed to localize 

any on the other two, which partially include the object.

Hand segmentation errors.: Among 855 testing images collected in the vanilla 

environment, hands are partially segmented on 11 images for S and 9 for B. Even with 

partial segmentation, the localization model successfully infers the object centers. In 18 

images from S and 29 from B, the segmentation model misclassifies small non-hand parts of 

the image in addition to correctly segmenting the hand. The localization model successfully 

Lee and Kacorri Page 11

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infers the object centers in all but 2 images from B, where the misclassifies non-hand parts 

are in proximity to another object. We observe similar patterns for the simulated wild 

environment. Among 855 testing images in the wild, hands are partially segmented on 54 

images for S and 15 images for B. However, the localization model is affected only on one 

image for S and two for B. In other 30 images from S and 42 from B, the segmentation 

model classifies small non-hand parts of the image as a hand while correctly segmenting the 

hand. Again, the localization model successfully infers the object centers for all but two 

images from B, where the misclassified non-hand parts are in proximity to another object.

Object localization errors.: There are few instances in the vanilla environment where the 

localization model fails even though most of the hand is detected. Specifically, on two 

images from B, the model fails to localize the object, which is partially included. We 

observe 11 similar instances from B in the simulated wild environment. However, the most 

common localization error, observed in one image from S and 20 images from B in the wild, 

is misidentifying another object close to the object of interest. We suspect that some of these 

errors could be mitigated with additional training examples including such ambiguities.

Discriminative features of objects.: The stimuli objects in TEgO were engineered to be 

diverse in terms of shape and function while sharing similarities to make recognition 

challenging. We illustrate aggregated results on misclassified testing images as a confusion 

heatmap (Fig. 12). We observe that some of the highest confusions are among objects within 

the same category that are cylindrical or share visual features such as soup can and mandarin 

can, salt and oregano, cheetos and lays. It indicates room for better performance in the 

recognition models (TORs) independent of the quality of cropped photos fed by our 

localization model.

7 DISCUSSION

We discuss implications and limitations of our analysis and the proposed hand-guided object 

recognition method.

Implications

Our findings and insights can contribute to the design and evaluation of future object 

recognition applications for people with visual impairments in the following ways.

Teachable object recognizers.—We demonstrate that by jointly modeling hand 

segmentation and object localization, we can improve the performance of teachable object 

recognizers. Our analysis indicates that this gain is present across models trained by a 

sighted and a blind individual, vanilla and wild environments, as well as varying training 

sizes. The largest gain appears in the wild, highlighting the potential of this approach given 

that photos by people with visual impairments in the real world tend to include cluttered 

environments.

User interactions.—Our analysis on existing datasets from people with visual 

impairments in the context of image recognition provides further evidence on the utility of 

hands as a natural interface for including and indicating the object of interest in the camera 
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frame. However, we observe that the presence of hands might have the opposite effect on 

generic object recognizers where the training images are often leveraging available data 

from sighted people. Given the visual feedback, sighted people may not use proprioception 

to aim their camera. Thus, their images may not necessarily include the hand. We propose 

that researchers consider these user interactions when designing and evaluating their 

systems.

Representative datasets.—While there is a recent trend of data sharing in accessibility 

that we embrace (e.g., [22, 31, 37]), privacy concerns often prevent researchers from sharing 

images taken by people with visual impairments outside the lab. This work illustrates the 

potentials and limitations of leveraging existing data from a non-representative population 

such as sighted people. Beyond a population mismatch, we faced the following challenges: 

bias towards lighter hand complexions; bias towards male individuals (13 male; 2 female); 

lack of wrinkles, tattoos, and jewerly in the hands; and limited annotations for new but 

related learning tasks. We contribute towards representative datasets by making our data, 

TEgO and other annotations, publicly available.

New directions.—To provide evidence for the utility of proprioception in photo-taking, 

similar to the Glassense and VizWiz datasets, the blind individual in TEgO did not receive 

any guidance from the mobile device in taking a good photo. However, we see the potential 

of our hand segmentation and object localization models for providing an explicit 

mechanism that can guide the user. For example, we can use sonification to guide the user to 

take well-framed photos based on the estimated center of the object, its relative position to 

the frame, and confidence scores from our models.

Limitations

Our dataset was collected with two individuals by controlling for a number of factors which 

exceed characteristics of previous datasets (in terms of objects and environments). While the 

small number of people is comparable to those reported for similar benchmark egocentric 

datasets, we can see results benefiting from a larger and more diverse blind user pool 

(gender, age, and hand characteristics) — especially since one of the individuals was sighted 

and merely served as an upper baseline. Furthermore, such analysis would benefit from 

additional data that account for real-world cluttered backgrounds, lighting conditions, and 

object ambiguities.

Due to the lack of available hand data with darker complexions, we included more hand data 

from the blind individual in training our segmentation model. While this might have biased 

our hand segmentation model, we do not see that this effect carries over into the 

segmentation (more errors are observed on images from the blind individual). We suspect 

that additional data can also help improve the performance of our approach by allowing to 

encode diverse hand shapes in the localization better. Prior work on hand-object 

manipulation [14, 23, 39] argues that people tend to use same or similar hand shapes for a 

given object shape and function.
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Given the limited data, we did not use a dynamically sized bounding box. Cropping with a 

fixed size box could have resulted in unwanted background artifacts or partially included 

objects, which may have impacted their recognition.

Due to the lack of hand annotations for the Glassense and VizWiz datasets and available 

tools for understanding model behaviors, part of our analysis was based on subjective visual 

inspection. For a more objective analysis, we are currently exploring the compatibility of 

available approaches, such as Grad-CAM [59] and LIME [56] for explainability.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we explore the utility of proprioception in the context of object recognition, 

which allows people with visual impairments to more easily align their camera by holding or 

placing their hand close to an object of interest. We provide evidence that such natural 

interactions occur in real-world datasets for this population and demonstrate their potential 

for teachable object recognizers, where out-of-frame or partially included objects against 

cluttered backgrounds can degrade performance. By jointly modeling hand segmentation 

and object localization, we achieve a sizable improvement on recognition accuracy that 

peeks on simulated real-world conditions with cluttered backgrounds. To train and evaluate 

our models, we leverage existing egocentric datasets on related tasks from sighted people 

and collect a new benchmark dataset (TEgO). Our extensive error analysis provides insights 

into the feasibility and challenges of this approach. To further research in this direction, we 

make our dataset as well as the output of our models for the error analysis publicly available 

at https://iamlabumd.github.io/tego/.

In future work, we plan to replicate this analysis with video streams processed at a frame 

level. While videos can provide continuous information on hand-object interactions, they are 

computationally expensive, consume more power, and require a frame-selection approach to 

extract higher quality images that we are still working on.
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Figure 1: 
An illustration of our hand-guided object recognition approach on an example from our 

egocentric dataset. Given a photo of an object in proximity to a hand, it first identifies the 

hand and then estimates the object center, which is then cropped and passed to the 

recognition model.

Lee and Kacorri Page 19

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
In our approach, a hand segmentation model (Step I) is fine-tuned to estimate the center of 

the object in proximity to the hand (Step II). A bounding box, placed in that center is used to 

isolate the object and crop the image, which is then passed to the object classification model 

(Step III).
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Figure 3: 
An (input, annotation, output) example for our hand segmentation (a) and object localization 

(b) models.
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Figure 4: 
Examples from each dataset. Glassense-Vision, VizWiz, and our benchmark examples are 

selected to include hands.

Lee and Kacorri Page 22

Proc SIGCHI Conf Hum Factor Comput Syst. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: 
Nineteen objects used in our data collection. Objects in the same category are displayed in 

proximity.
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Figure 6: 
Positive and negative outputs of our object localization model on the Glassense-Vision and 

VizWiz datasets.
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Figure 7: 
Our hand-guided object recognition method (CO) tends to improve recognition accuracy on 

average for S and B compared to the original HO and O methods.
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Figure 8: 
Accuracy gain of our method (CO) over HO and O is more pertinent in cluttered 

backgrounds (wild).
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Figure 9: 
On average CO outperforms HO and O consistently across training sample sizes k = 1, 5, 20.
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Figure 10: 
Presence of hands (HO and CO) seems to have a different efect for generic vs. teachable 

models.
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Figure 11: 
Positive and negative results on TEgO, with outof-frame hands for some of the negative 

examples.
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Figure 12: 
Confusion matrix for the CO models showing that misclassifcation occurs within objects of 

similar shape. Cans and bottles are indicated as “-c” and “-b”, respectively.
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Table 1:

Input, model, and prediction characteristics of prior work in object recognition for the blind.

System
Input Trained Model Prediction

img/video tag sighted blind personal human machine

VizWiz [11] • •

Digit-Eyes [17] • • • •

EyeNote [18] • • •

LookTel Rec. [53] • • •

TapTapSee [65] • • • •

Zhong et al. [73] • • •

Talking Goggles [24] • • •

CamFind [15] • • •

EyeSpy [19] • • •

BeMyEyes [9] • •

BeSpecular [10] • •

Aipoly Vision [67] • • •

Kacorri et al. [36] • • • • •

Sosa-Garcia et al. [62] • • • •

Aira [7] • •

Seeing AI [5] • • •

VocalEyes AI [6] • • •

WayAround [68] • • • •

Envision AI [4] • • • • •
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