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Abstract

The 3′-end processing machinery for metazoan replication-dependent histone pre-mRNAs 

contains the U7 snRNP and shares the key cleavage module with the canonical cleavage/

polyadenylation machinery. We reconstituted an active human histone pre-mRNA processing 

machinery using 13 recombinant proteins and 2 RNAs, and determined its structure by cryo-

electron microscopy. The overall structure is highly asymmetrical and resembles an amphora with 

one long handle. We captured the pre-mRNA in the CPSF73 endonuclease active site, poised for 

cleavage. The endonuclease and the entire cleavage module undergo extensive rearrangements for 

activation, triggered through the recognition of the duplex between the authentic pre-mRNA and 

U7 snRNA. Our studies also have significant implications for understanding canonical and snRNA 

3′-end processing.

The 3′-end processing machineries for polyadenylated (1, 2) and histone pre-mRNAs (3, 4) 

both utilize CPSF73 to cleave pre-mRNA (5, 6), but the molecular mechanism for their 

functions is still poorly understood. CPSF73, CPSF100, symplekin and CstF64 comprise the 
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histone pre-mRNA cleavage complex (HCC) (Figs. 1A,B, table S1), which is equivalent to 

the mammalian cleavage factor (mCF) for polyadenylated pre-mRNAs (7, 8). The cleavage 

site in histone pre-mRNAs is located between a conserved stem-loop (SL) that is recognized 

by SL binding protein (SLBP) and a histone downstream element (HDE) that base pairs with 

the 5′ end of U7 snRNA, forming an HDE-U7 duplex (Fig. 1A). The U7 snRNP is critical 

for this processing, and the Lsm11-FLASH complex recruits the HCC to the machinery (9–

12) (Supplementary text).

To prepare a fully recombinant machinery, we reconstituted human U7 snRNP (13) and 

mixed it with purified human HCC, FLASH (14), and SLBP (15). Using a modified mouse 

histone H2a pre-mRNA (H2a*, fig. S1) as substrate, we observed robust cleavage activity 

generating the authentic product (Supplementary text, figs. S2,3). Strikingly, the N-terminal 

domain (NTD) of symplekin was essential for processing, and its binding partner Ssu72 (16) 

inhibited the cleavage reaction. A mutation in the active site of CPSF73 abolished the 

cleavage.

We purified the active machinery (fig. S3F) and obtained a cryo-EM reconstruction at 3.2 Å 

resolution for its core (Figs. 1C,D), and a reconstruction at 4.1 Å resolution for the entire 

machinery (tables S2,3, figs. S4–6). The overall structure of the machinery resembles an 

amphora with one long handle (Fig. 1E, fig. S6B, movie S1). The machinery core constitutes 

the body of the amphora, with the U7 snRNA 3′-end SL and the Sm ring at the base and the 

CTDs of CPSF73 and CPSF100 and the first few helical repeats of the symplekin CTD 

forming the mouth. CPSF73 and symplekin NTD are positioned opposite each other on the 

Sm ring (Fig. 1D, fig. S6A). CPSF100 interacts with both CPSF73 and symplekin, but does 

not directly contact the Sm ring (Fig. 1C). The symplekin CTD, FLASH dimer (14), SLBP, 

pre-mRNA SL, and residues 20–65 of Lsm11 form the handle of the amphora (Fig. 1E). The 

FLASH dimer makes an 80 Å long connection from the symplekin CTD to the SLBP-SL 

complex. CstF64 was not observed in the EM density, and is not required for cleavage in 
vitro (Supplementary text, fig. S2F).

Twelve consecutive Watson-Crick base pairs in the HDE-U7 duplex were observed in the 

center of the amphora (Fig. 1D, fig. S1). The metallo-β-lactamase domain of CPSF73, the β-

CASP domain of CPSF100, and the concave face of the symplekin NTD (fig. S6C) surround 

the duplex on three sides (Figs. 1D,1E,2A). The interactions are ionic and hydrophilic in 

nature, but involve none of the bases in the duplex (Fig. 2B), explaining that base pairing 

rather than sequence is important for processing (3, 4, 13). The structure revealed an extra, 

U-U base pair at the bottom of the duplex (Fig. 2C, fig. S1), and analysis of histone pre-

mRNA sequences suggested that U-U base pairs are common in HDE-U7 duplexes (fig. S7).

The structure also revealed a Watson-Crick base pair between C28 and G31 of the CUAG 

sequence at the 3′ end of the U7 Sm site (Fig. 2D, fig. S1). It is flanked by residues from 

Lsm10 and Lsm11 and assumes a different backbone conformation compared to other Sm 

sites (Fig. 2D, fig. S8A). In addition, G26 is hydrogen-bonded with C33 of H2a*, providing 

a direct connection between the Sm site and the pre-mRNA (figs. S1,S8B). The recognition 

of the first five Sm site nucleotides (21-AAUUU-25) and U27 is similar to that in 

spliceosomal Sm rings (figs. S1,S8B) (17, 18), although there are substantial differences in 
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the extensions of the Sm proteins and the positions of the RNA outside the Sm ring (figs. 

S8C–E).

The pre-mRNA substrate (Fig. 3A) is bound in the active site of CPSF73. The correct 

scissile phosphate, after A26 (fig. S1), is coordinated to the two zinc ions in the active site 

(Fig. 3B). The A26 base has hydrogen-bonding interactions to its N1 and N6 atoms, 

consistent with the preference for an adenine at the cleavage site (3, 4) (figs. S9A–C). C25 

has weak density (Fig. 3A) and is not recognized by CPSF73. This binding mode of the pre-

mRNA clearly illuminated the molecular mechanism for the cleavage reaction. The 

hydroxide ion that is a bridging ligand between the two zinc ions (6) is the nucleophile that 

initiates the cleavage reaction (Fig. 3B), and the 3′ oxyanion of A26, the leaving group, is 

protonated by His396, which is activated by Glu204. Glu204, His396 and the ligands to the 

zinc ions are conserved among CPSF73 homologs (19, 20) including IntS11, the 

endonuclease for snRNA cleavage (21). Therefore, the conformation of the machinery 

observed here is likely poised for the cleavage reaction. Except for the brief moment during 

EM grid preparation, the sample was kept at 4 °C or on ice, which slowed the reaction (12) 

and allowed us to observe the pre-mRNA in the CPSF73 active site. There are substantial 

differences in the orientation of the β-CASP domain compared to that in RNase J (22, 23) 

(fig. S9D), and especially in the binding modes of the RNA substrate (fig. S9E).

The reported structures of CPSF73 (6) and its yeast homolog Ysh1 (24) are in a closed, 

inactive conformation. We observed here an open, active conformation of CPSF73. A large 

rearrangement of its β-CASP domain relative to the metallo-β-lactamase domain, 

corresponding to a rotation of ~17° (Fig. 3C, fig. S9F), is necessary to create a narrow, deep 

canyon that is only large enough to accommodate single-stranded RNA (Fig. 3D, figs. 

S9A,F,G).

The N- and C-terminal extensions of Lsm10, highly conserved among vertebrate homologs 

(fig. S10A), have a crucial role in this conformational change for CPSF73. These extensions 

are placed directly against the β-CASP domain (fig. S11A) and have extensive steric clashes 

with its closed conformation (Fig. 3C, fig. S9F), likely helping to trigger the activation of 

CPSF73. In addition, a segment in the C-terminal extension of Lsm10 (residues 107–110) is 

positioned at the rim of the canyon (fig. S9A) and forms a part of the binding site for the 3′ 
portion of the substrate (Fig. 3D).

The recognition of the HDE-U7 duplex may be the critical event to initiate the 

conformational rearrangement in CPSF73, consistent with the requirement of symplekin 

NTD for cleavage. On the other hand, the NTD-Ssu72 complex is incompatible with the 

structure observed here, as Ssu72 would clash with the duplex as well as CPSF73 (fig. S6D), 

explaining the inhibitory effect of Ssu72 (Supplementary text).

Besides the rearrangement in CPSF73, an extensive change in the architecture of HCC is 

required for activation. We recently showed that mCF/HCC in an inactive state has a trilobal 

structure and is highly dynamic (25). In contrast, the HCC structure observed here in the 

active state shows dramatic differences compared to the inactive state (Fig. 4A). There are 

Sun et al. Page 3

Science. Author manuscript; available in PMC 2020 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intimate contacts between CPSF73 and CPSF100 in the current structure; in fact they form a 

pseudo dimer (figs. S11B,C). These may be hallmarks of the active state for HCC/mCF.

The conformational dynamics of HCC/mCF is due to flexibility in its core, formed by the 

CTDs of CPSF73, CPSF100 and symplekin (10–12, 26, 27) (Figs. 1E,4B). The CTD of 

CPSF73 likely has three sub-domains (CTD1–3), and that of CPSF100 has two sub-domains 

(Figs. 1B,E, fig. S12A). The CTD1 sub-domains of CPSF73 and CPSF100 form a six-

stranded β barrel-like structure (fig. S12B). The CTD2 sub-domains form a separate 

complex, which makes only a small contact with the CTD1 complex, contributing to the 

flexibility in HCC/mCF. The overall structure of the CTD2 complex is similar to that of 

IntS11 and IntS9 (28). The first two helices of the symplekin CTD pack against the helices 

in the CTD2 complex (Fig. 4B) in the core of HCC/mCF.

The structure showed that HCC is recruited to the machinery directly by both FLASH and 

Lsm11 through two tethering contacts. Residues in FLASH prior to the coiled-coil domain, 

including the LDLY motif (10), interact with the symplekin CTD (fig. S10C), and residues 

107–118 of Lsm11 interact with CPSF73 (figs. S10B,S11D) (Supplementary text). These 

observations explain earlier data showing the importance of the LDLY motif in FLASH and 

residues 65–130 in Lsm11 for HCC recruitment (10, 11, 29).

Mutagenesis and biochemical experiments supported the structural observations 

(Supplementary text). HCC recruitment was abolished by mutating the FLASH LDLY motif 

or symplekin CTD (fig. S13A). Removing the N- and C-terminal extensions of Lsm10 

greatly reduced the cleavage activity without affecting U7 snRNP or machinery assembly 

(figs. S13B–D). Moreover, the Lsm10 mutants showed mis-processing of the pre-mRNA. 

Therefore, these extensions may also have a crucial role in correctly positioning CPSF73 for 

the cleavage reaction. Mutating as few as two symplekin NTD residues that interact with the 

HDE-U7 duplex (fig. S6C) greatly reduced the cleavage activity (fig. S13E). Finally, the 

experiments also provided evidence for an Lsm11-FLASH-SLBP-SL quaternary complex 

(Fig. 1E, fig. S13F).

The structure of the machinery suggests how it may be assembled for processing (Fig. 4C, 

movie S2, Supplementary text) and provides a molecular foundation to understand and 

explain the large body of biochemical and functional data on histone pre-mRNA 3′-end 

processing (3, 4). The structure also has significant implications for understanding canonical 

pre-mRNA and snRNA 3′-end processing. The binding mode of the histone pre-mRNA in 

CPSF73 is likely similar for canonical pre-mRNAs and snRNAs, and the active 

conformation of mCF for canonical pre-mRNAs is likely to be the same as that of HCC 

observed here. The comparison to the structure of mCF in an inactive state suggested that its 

correct architecture is another critical requirement for the activation of the processing 

machineries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall structure of the human histone pre-mRNA 3′-end processing machinery.
(A) Schematic drawing of the histone pre-mRNA 3′-end processing machinery. (B) Domain 

organizations of the subunits of HCC, and Lsm10 and Lsm11. The domains in CPSF100 are 

given slightly darker colors compared to their homologs in CPSF73. The vertical bar in the 

symplekin CTD marks its N-terminal half that interacts with CPSF73. Abbreviations are 

defined in table S1. (C) Cryo-EM density at 3.2 Å resolution for the core of the machinery. 

(D) Schematic drawing of the structure of the core of the machinery, viewed after a 150° 

rotation around the vertical axis from panel C. The proteins are colored as in Figs. 1A,1B. 
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The U7 snRNA is in dark green, and H2a* in orange. (E) Cryo-EM density for the entire 

machinery (gray), low-pass filtered to 8 Å resolution to show the density of FLASH and 

SLBP. The possible density for CTD3 of CPSF73 is indicated with the asterisk. Structure 

figures are produced with PyMOL (www.pymol.org) unless noted otherwise. Panels C and E 

produced with Chimera (30).
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Figure 2. Recognition of the HDE-U7 duplex and the U7 Sm site.
(A) The HDE-U7 duplex is surrounded by CPSF73, CPSF100 and symplekin NTD, shown 

as a transparent surface. Lsm11 has interactions with the bottom of the duplex. (B) 

Electrostatic surface of the proteins in the duplex binding site, showing charged interactions 

with the backbone of the duplex. (C) A U-U base pair at the bottom of the duplex, flanked 

on the other face by A19 of U7 snRNA. (D) A C-G base pair in the 3′ CUAG sequence of 

the U7 Sm site. The base pair is flanked on one side by Arg34 of Lsm10, and on the other by 

Arg174 of Lsm11.
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Figure 3. CPSF73 is in an active state, poised for the cleavage reaction.
(A) Cryo-EM density for H2a* nucleotides bound in the CPSF73 active site. The scissile 

phosphate is indicated with the black arrow. (B) The endonuclease mechanism of CPSF73. 

The positions of the zinc ions (gray spheres) and the bridging hydroxide (red sphere) are 

based on the crystal structure of CPSF73 alone (6) (PDB entry 2I7V). The position of the 

sulfate ion observed in the earlier structure is shown in thin sticks. (C) Overlay of the 

structure of CPSF73 in the active state observed here (in color) with the inactive, closed state 

reported earlier (gray) (6). The metallo-β-lactamase domain was used for the overlay. The 

rearrangement of the β-CASP domain is indicated with the red arrow, corresponding to a 

rotation of 17°. (D) Molecular surface of the active site region of CPSF73, colored by the 

domains. Lsm10 is located at the rim of the canyon, contacting nucleotides downstream of 

the cleavage site.
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Figure 4. Schematic of histone pre-mRNA 3′-end processing cycle.
(A) Significant structural differences of HCC in an active state compared to an inactive state. 

The structure of HCC observed here is docked into the EM density for mCF (gray surface) 

(25), using the symplekin CTD as the reference. (B) Schematic drawing of the CTD2 

domain complex of CPSF73 (light green) and CPSF100 (darker green) and the N-terminal 

segment of the symplekin CTD (magenta). The CTD complex of IntS9 and IntS11 (28) was 

docked into the EM density at 4.1 Å resolution (transparent surface) using Chimera. Panels 

A and B produced with Chimera. (C) A putative model for histone pre-mRNA 3′-end 
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processing cycle. The machinery is assembled from the U7 snRNP (state I) with the 

recruitment of FLASH (II) and HCC (III), followed by the recognition of the pre-mRNA for 

CPSF73 and HCC activation and pre-mRNA cleavage (IV). The machinery is likely highly 

dynamic before the binding of the authentic pre-mRNA, and the possible flexible regions are 

indicated with the curved arrows and dashed lines. After the cleavage (V), the downstream 

product is degraded by an exonuclease activity and the machinery can be recycled directly 

(solid arrow), or possibly disassembled followed by re-assembly. State IV corresponds to the 

structure reported here, with the scissors indicating cleavage by CPSF73, and the other states 

are models.
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