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Abstract

Purpose: Alcohol consumption is an established breast cancer risk factor, though further 

research is needed to advance our understanding of the mechanism underlying the association. We 

used global metabolomics profiling to identify serum metabolites and metabolic pathways that 

could potentially mediate the alcohol-breast cancer association.

Methods: A cross-sectional analysis of reported alcohol consumption and serum metabolite 

concentrations was conducted among 211 healthy women 25-29 years old who participated in the 

Dietary Intervention Study in Children 2006 Follow-Up Study (DISC06). Alcohol-metabolite 

associations were evaluated using multivariable linear mixed effects regression.

Results: Alcohol was significantly (FDR p<0.05) associated with several serum metabolites after 

adjustment for diet composition and other potential confounders. The amino acid sarcosine, the 

omega-3 fatty acid eicosapentaenoate (EPA), and the steroid 4-androsten-3beta,17beta-diol 

monosulfate were positively associated with alcohol intake, while the gamma-tocopherol 

metabolite gamma-carboxyethyl hydroxychroman (CEHC) was inversely associated. Positive 
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associations of alcohol with 2-methylcitrate and 4-androsten-3beta,17beta-diol disulfate were 

borderline significant (FDR p<0.10). Metabolite set enrichment analysis identified steroids and the 

glycine pathway as having more members associated with alcohol consumption than expected by 

chance.

Conclusions: Most of the metabolites associated with alcohol in the current analysis participate 

in pathways hypothesized to mediate the alcohol-breast cancer association including hormonal, 

one-carbon metabolism and oxidative stress pathways, but they could also affect risk via 

alternative pathways. Independent replication of alcohol-metabolite associations and prospective 

evaluation of confirmed associations with breast cancer risk are needed.
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Introduction

Approximately 250,000 US women are diagnosed and 40,000 die of breast cancer annually.

[5] Yet, the cause of breast cancer remains largely unknown, and of the known risk factors, 

few are modifiable. Alcohol consumption, an established potentially modifiable breast 

cancer risk factor, increases risk by approximately 7-10 percent/drink/day across all levels of 

intake.[3, 13, 15, 73] Risk does not differ by type of alcohol consumed – wine, beer or 

spirits,[3, 13, 45, 73] suggesting that it is ethanol, per se, and not another constituent that is 

responsible.

Alcohol-associated increased breast cancer risk is generally thought to be due to altered 

hormone or one-carbon metabolism, increased oxidative stress, or mutagenesis by 

acetaldehyde.[27] Alcohol stimulates the hypothalamic-pituitary-adrenal axis leading to 

increased secretion of androgens that are positively associated with breast cancer risk in both 

pre- and postmenopausal women.[28, 77] Alcohol also is well-known to inhibit the 

absorption and metabolism of key nutrients involved in one-carbon metabolism[34, 52, 83] 

that are critical for maintenance of DNA integrity and epigenetic regulation of gene 

expression.[6, 88] Ethanol is rapidly metabolized to acetaldehyde, which can lead to redox 

changes that result in a prooxidant state.[81] Acetaldehyde interacts with many cellular 

constituents including DNA and proteins and is an established potent mutagen and 

carcinogen.[71]

Given the plethora of alcohol’s adverse effects, metabolomics, which simultaneously 

quantifies levels of small molecules in multiple metabolic pathways, is ideally suited for 

advancing our understanding of mechanisms of alcohol’s effects on breast cancer risk. 

Though several studies on metabolic effects of alcohol have been performed,[33, 35, 41, 87, 

91] most do not account for dietary composition, which is reported to differ between 

drinkers and non-drinkers.[14, 55, 65, 72] If in the causal pathway, these dietary differences 

could potentially mediate alcohol-metabolite associations. Alternatively, diet could confound 

or have no effect on these associations.
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We evaluated associations of reported alcohol intake with serum metabolites in a cross-

sectional analysis of women who participated in the Dietary Intervention Study in Children 

2006 Follow-Up Study (DISC06). As part of this study women reported usual alcohol intake 

and diet was ascertained by three non-consecutive 24-hour dietary recalls. We estimated 

alcohol-metabolite associations both with and without adjustment for diet to obtain unbiased 

estimates and to assess potential for confounding. For alcohol-metabolite associations that 

changed following adjustment for diet, we also conducted mediation analysis.

Materials and Methods

Design

DISC was a multicenter randomized controlled clinical trial sponsored by the National 

Heart, Lung, and Blood Institute (NHLBI) to test the safety and efficacy of a dietary 

intervention to reduce serum low-density lipoprotein cholesterol (LDL-C) in children with 

elevated LDL-C. The trial’s design and results have been described.[19, 21, 23–25, 57, 58, 

78] Briefly, between 1988 and 1990, 663 healthy, pre-pubertal, 8-10 year old children, 

including 301 girls, with elevated LDL-C were recruited into DISC at six clinical centers1 

and randomized to a behavioral dietary intervention or usual care control group. Planned 

intervention continued until 1997 when the mean age of participants was 16.7 years. In 

2006-2008 when participants were 25 to 29 years old, the DISC06 follow-up study was 

conducted to evaluate the longer-term effects of the diet intervention on biomarkers 

associated with breast cancer risk in DISC female participants. Assent was obtained from 

DISC participants and informed consent was obtained from their parents/guardians prior to 

randomization. Informed consent was obtained from participants prior to the DISC06 

follow-up visit. The original DISC protocol was approved by institutional review boards at 

all participating clinical centers and the data coordinating center.2 The DISC06 protocol was 

also approved by the institutional review board at the Fox Chase Cancer Center.

Participants

Eligibility criteria for girls in the original DISC were: 1)8 - 10 years old; 2) serum LDL-C in 

the 80th to 98th percentiles;[82] 3) no major illness or medication that could affect blood 

lipids or growth; 4) height ≥ 5th percentile and weight-for-height in the 5th to 90th percentile;

[85] 5) Tanner stage 1 for breast and pubic hair;[76] and 6) normal psychosocial and 

cognitive development.[1] Girls were excluded if they or family members were following a 

low-fat diet, a parent had a history of early heart disease or the family planned to move. 

DISC participants were recruited through schools, health maintenance organizations, and 

pediatric practices.

All female DISC participants were invited to participate in DISC06 and 260 (86.4 percent) 

of the 301 females originally randomized took part. Women who were pregnant or 

breastfeeding at or within 12 weeks before the visit (n=30) or did not have a blood sample 

1Children’s Hospital, New Orleans, LA; Johns Hopkins Hospital, Baltimore, MD, Kaiser Permanente Center for Health Research, 
Portland, OR; University of Medicine and Dentistry of New Jersey, Newark, NJ; Northwestern University Medical School, Chicago, 
IL; University of Iowa Hospital and Clinics, Iowa City, IA.
2Maryland Medical Research Institute, Baltimore, MD
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for metabolomics assays (n=3), were not fasting at blood donation (n=4), did not complete 

diet recalls (n=11) or had an implausible dietary intake (kcal=13,049/day; n=1) were not 

eligible for the current analysis, leaving 211 participants.

Data Collection

For the DISC06 follow-up study, each female participant attended a single visit at a DISC 

clinic between 2006 and 2008. Visits were scheduled to take place within 14 days of onset of 

next menses whenever possible. All data for a participant were collected on the same day 

except 24-hour dietary recalls, which were collected over two weeks following the visit. 

Data were collected by staff masked to treatment assignment. A centralized data collection 

training session was held before initiation of data collection.

Frequency of usual alcohol intake from wine, beer and spirits was ascertained by 

questionnaire. Otherwise, dietary data were ascertained via three nonconsecutive 24-hour 

dietary recalls collected by trained interviewers on two weekdays and one weekend day. 

Data from the three recalls were averaged to estimate usual nutrient intakes using the 

University of Minnesota’s Nutrition Data System for Research. Participants also completed 

questionnaires on demographics; medical, reproductive and menstrual histories; 

medications; smoking; and family history of breast cancer. Leisure physical activity was 

assessed using the Modifiable Activity Questionnaire.[51] Participants completed menstrual 

cycle calendars for up to 6 weeks following clinic visits until the start of their next menses.

Blood Sampling

Blood was collected in the morning after an overnight fast by venipuncture using standard 

procedures. After standing at room temperature for 45 minutes to allow complete clotting, 

blood was centrifuged and serum was separated and pipetted in 0.5 mL aliquots into 

cryovials that were stored at −80° C.

Metabolomics Assays

Global metabolomic profiling was performed by Metabolon (Durham, NC). Participants’ 

samples were randomly ordered and 10 percent blind quality control (QC) samples were 

integrated throughout to monitor laboratory performance. Additionally, a pooled matrix 

sample served as a technical replicate throughout analyses, extracted water samples served 

as process blanks, and a cocktail of QC standards spiked into every sample allowed for 

instrument performance monitoring and aided chromatographic alignment.

Samples were prepared using the automated MicroLab StAR system (Hamilton Co.). 

Proteins were precipitated with methanol under vigorous shaking for two minutes followed 

by centrifugation. The resulting extract was divided into five fractions for analysis by four 

ultra-high performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) 

based methods with one sample reserved for backup. Samples were placed briefly on a 

TurboVap (Zymark) to remove organic solvents. The sample extracts were stored overnight 

under nitrogen before preparation for analysis.
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The LC/MS platform was based on a Water ACQUITY UPLC and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced with an electrospray 

ionization source and Orbitrap mass analyzer operated at 35,000 mass resolution. After 

drying sample extracts were reconstituted in solvents compatible with each of the four 

analytical methods. The first two methods used reverse phase UPLC-MS/MS with positive 

ion mode electrospray ionization. One chromatographically optimized for more hydrophilic 

compounds by gradient eluting the extract from a C18 column using water and methanol 

with 0.05% perfluoropentanoic acid and 0.1% formic acid. Whereas the other 

chromatographically optimized for more hydrophobic compounds by gradient eluting the 

extract from the same C18 column using methanol, acetonitrile, and water with 0.05% 

perfluoropentanoic acid and 0.01% formic acid. The third method used reverse phase UPLC-

MS/MS with negative ion mode electrospray ionization. The basic extracts were gradient 

eluted from a separate dedicated C18 column using methanol and water with 6.5mM 

ammonium bicarbonate at pH 8. The fourth method also used negative ionization following 

gradient elution from a HILIC column using water and acetonitrile with 10mM ammonium 

formate at pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans 

using dynamic exclusion. The scan range varied slightly between methods but covered 

70-1000 m/z.

Compounds were identified by comparison to library entries of purified standards or 

recurrent unknown entities. Biochemical identifications were based on three criteria: 

retention index, accurate mass match to the library, and the MS/MS forward and reverse 

scores between the experimental data and authentic standards. At the time DISC06 samples 

were assayed, more than 3300 commercially available purified standard compounds had 

been acquired and characterized.

Proprietary visualization and interpretation software were used to confirm the consistency of 

peak identification among samples. Peaks were quantified using area-under-the-curve.

Statistical Analysis

A total of 705 named metabolites were semi-quantified as relative peak intensity. 

Metabolites with ≥30 percent of values less than the limit of detection or with coefficients of 

variation ≥25 percent calculated from masked quality control samples were dropped, leaving 

449 metabolites for analysis. For metabolites with <30 percent of values below the limit of 

detection, undetected values were imputed at the lowest observed value multiplied by 0.75. 

Metabolites were transformed to the natural log scale and extreme values were winsorized 

using the median absolute deviation.[54]

The association of alcohol consumption with diet composition was assessed by the R2 from 

a linear regression model including alcohol intake (drinks/day) as the dependent variable and 

energy (kcal/day), fat (percent kcal/day) and carbohydrate (percent kcal/day) intakes as 

independent variables. Analyses also were performed replacing total fat in models with fat 

subtypes – saturated, polyunsaturated and monounsaturated fatty acids. Because the adjusted 

R2 from this model was slightly smaller than the adjusted R2 from the more parsimonious 

model and because associations of serum metabolites with alcohol were similar when total 
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fat or fat subtypes were included in models, only results from simpler models including total 

fat are reported.

Univariate associations of individual metabolites with reported alcohol intake were evaluated 

using simple linear regression including each metabolite as a dependent variable and alcohol 

consumption as an independent continuous variable (drinks/week). Multivariable linear 

mixed effects regression was then used to adjust for a set of potential confounders identified 

a priori. Initial multivariable models included clinic as a random effect while body mass 

index (BMI; kg/m2), race, education, smoking, hormonal contraceptive use, parity, physical 

activity, menstrual cycle phase, time of blood collection and DISC treatment group were 

included as fixed effects. Multivariable models were then refit also including energy, fat and 

carbohydrate intakes to adjust for diet composition. Model details are included as a footnote 

to Table 2. Percentage differences in serum metabolite concentrations associated with a one 

drink/week increase in reported alcohol consumption were estimated from models as Δ% = 

(exp(β) – 1) x 100. We applied the false discovery rate (FDR) to control for multiple 

comparisons.[9]

To evaluate the potential influence of extreme values on observed associations, analyses 

were repeated after winsorizing reported alcohol intake using the median absolute deviation.

[54]. We also conducted additional analyses restricted to non-smokers.

To further explore associations of metabolites associated with alcohol (FDR p<0.10) in diet 

adjusted models, analyses were repeated including alcohol as a factor with five levels.

For metabolites significantly associated with alcohol in continuous multivariable models 

(FDR p<0.05), we conducted mediation analysis if after adjustment for diet, the alcohol 

effect size decreased by at least 20 percent and was no longer significant (FDR p≥0.10). 

Analyses were performed using the model-based approach as implemented in R package 

mediation.[80] Mediation was evaluated separately for dietary fat and carbohydrates using 

models similar to those described above but including only fixed effects and using bootstrap 

variances.

Metabolite Set Enrichment Analysis (MSEA) with a one-sided Fisher’s exact test was used 

to identify over-represented classes of metabolites associated with reported alcohol intake.

[67] Metabolites associated with alcohol at p<0.10 in diet adjusted models were considered 

related. Metabolite classes were defined a priori by Metabolon.

To quantify the variance of participants’ metabolite levels relative to assay variance, we 

divided the variance of participants’ analytical samples by the total variance, estimated as 

the sum of the variances of analytical samples plus 23 masked, replicate quality control 

aliquots from a single pool.

All tests of statistical significance were two-sided except where otherwise stated. All 

analyses were conducted using SAS 9.4 and R 3.5 statistical software.
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Results

Participant characteristics at the DISC06 clinic visit are shown in Table 1. Ninety percent of 

women were white with a mean age of 27.2 ±1.1 years. Their mean BMI was 25.5 ±5.5 

kg/m2; 24 percent were overweight and 19 percent were obese.[10] At the time of the visit, 

26 percent of participants smoked cigarettes and 55 percent used hormonal contraceptives. 

By design, most (82 percent) were in the luteal phase of their menstrual cycles. All 

participants fasted overnight and 91 percent of blood collections took place before 11am. 

Reported alcohol intake ranged from 0 to 40 drinks per week with a median of 3.0 (IQR 

(interquartile range) = 0.9 – 6.0) drinks per week. Participants’ mean energy intake was 1735 

±487 kcal/day, with 17 percent of energy provided by protein, 50 percent by carbohydrates 

and 31 percent by fat. The distribution of participant characteristics across categories of 

alcohol intake is included as Supplemental Table 1.

Diet macronutrient composition was strongly and significantly associated with alcohol 

intake. The adjusted R2 from a linear model that regressed reported alcohol intake 

(drinks/wk) on energy (kcal/day), fat and carbohydrate (percent kcal/day) intakes was 0.152 

(p<0.0001). Though alcohol was not significantly associated with energy intake (β=0.0002, 

p=0.08), fat (β= −0.5014, p<0.0001) and carbohydrate (β= −0.4374 p<0.0001) intakes were 

independently significantly inversely associated with alcohol.

Table 2 presents associations of reported alcohol intake with metabolites that were 

associated in multivariable adjusted analysis with or without inclusion of diet. Associations 

of alcohol with all metabolites evaluated along with an estimate of the contribution of 

participant variance to total metabolite variance are included as Supplemental Table 2. 

Adjustment for diet composition generally attenuated alcohol-metabolite associations. Prior 

to adjustment for diet, 14 metabolites were significantly associated with alcohol 

consumption after adjustment for multiple comparisons (FDR p<0.05), while after 

adjustment for diet four metabolites were significantly associated with alcohol and two were 

borderline significant (FDR p<0.10).

Figure 1 graphically summarizes diet adjusted alcohol-metabolite associations by metabolite 

superclass. After adjusting for multiple comparisons, the amino acid sarcosine increased 

significantly by 3.89 percent/drink/wk (FDR p=0.045), whereas the tricarboxylic acid (TCA) 

cycle metabolite 2-methylcitrate increased slightly by 1.16 percent/drink/wk and was 

borderline significant (FDR p=0.067). Adjusted for multiple comparisons several lipids also 

increased in association with alcohol; the omega-3 fatty acid eicosapentaenoate (EPA) 

increased significantly by 2.58 percent/drink/wk (FDR p=0.045) and the steroids 4-

androsten-3beta,17beta-diol mono- and disulfate increased by 3.78 percent /drink/wk (FDR 

p=0.045) and 3.36 percent/drink/wk (FDR p=0.054), respectively. In contrast, the gamma-

tocopherol metabolite gamma-carboxyethyl hydroxychroman (gamma-CEHC) decreased 

significantly by 2.40 percent/drink/wk (FDR p=0.045). The association of alcohol with 

serum EPA was not materially changed by further adjustment for dietary EPA (Δ = 2.36 

percent/drink/wk; p=6.08e−4), and its association with serum gamma-CEHC was unchanged 

by further adjustment for dietary gamma tocopherol from food and supplements (Δ = −2.39 

percent/drink/wk; p=4.35 e−4). Results of the alcohol - gamma-CEHC association also were 
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unchanged by adjustment for alpha-tocopherol from food and/or supplements or total 

vitamin E from food and/or supplements (data not shown).

Winsorizing alcohol intake recoded ≥23 to 21.8 drinks per week. Effect sizes tended to be 

larger after winsorizing because of the truncated distribution of alcohol intakes. However, p-

values generally were similar to those shown in Table 2, indicating results were not due to 

influential outliers (data not shown). Restricting analyses to non-smokers also did not 

change our main results materially (data not shown).

Associations of alcohol intake modeled as a factor with 5 levels and metabolites associated 

in continuous diet adjusted models at FDR p<0.10 are shown in Table 3. Women who 

consumed ≥10 drinks/week had serum sarcosine and 4-androsten-3beta,17beta-diol disulfate 

levels that were more than twice as high as those who consumed <1 drink/week. Their 4-

androsten-3beta,17beta-diol monosulfate levels also were almost twice as high. EPA and 2-

methylcitrate also were 60 and 20 percent higher, respectively, among the heaviest compared 

to lightest drinkers, whereas gamma-CEHC was 41 percent lower. Among drinkers serum 

metabolite levels changed monotonically with increasing alcohol intake except for 2-

methycitrate, which was associated only at ≥10 drinks/week.

Of the 14 metabolites significantly associated with alcohol at FDR p<0.05 in multivariable 

models before adjustment for diet, eight had an FDR p≥0.10 after adjustment, and alcohol 

effect sizes decreased by 20 percent or more for three of these. Results of mediation analysis 

shown in Table 4 suggest that dietary fat significantly (p=0.002) mediated 33 percent of the 

association of alcohol with the phospholipid 1-palmitoyl-2-oleoyl-GPC, whereas both fat 

and carbohydrate contributed to mediation of the association of alcohol with the lipid myo-

inositol. However, small absolute values of the sensitivity parameter ρ when the average 

causal mediation effect equals 0 indicate results are sensitive to possible uncontrolled 

confounding.[40]

Metabolite Set Enrichment Analysis (MSEA) identified two classes of metabolites, steroids 

and glycine pathway metabolites as having more members associated with alcohol 

consumption in diet adjusted analysis than expected by chance. Seven of 19 steroid 

metabolites including 4-androsten-3beta,17beta-diol mono- and disulfate, 5-alpha-

androstan-3beta,17beta-diol disulfate, etiocholanolone glucuronide, pregnendiol disulfate 

and pregnanediol-3-glucuronide were associated with alcohol (p=0.007). Similarly, 4 of 10 

glycine pathway metabolites including sarcosine, N-acetylglycine, dimethylglycine and 

threonine were associated (p=0.03).

Discussion

Alcohol consumption was strongly associated with serum metabolites across a broad range 

of metabolite classes in this cross-sectional study of young adult women. Accounting for 

multiple comparisons, 14 metabolites were significantly associated with alcohol before diet 

adjustment, while after adjustment four remained significant and two were borderline 

significant. Results are compatible with alcohol-induced alterations in hormonal, one-carbon 
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metabolism and oxidative stress pathways, all of which are implicated in breast cancer 

etiology.

Diets of drinkers and non-drinkers differ.[14, 55, 65, 72] In an analysis from NHANESIII, 

alcohol consumption was significantly positively associated with total energy intake but 

inversely associated with energy derived from protein, fat and particularly carbohydrate, 

suggesting that energy from alcohol replaces that from other macronutrients.[55] Even so, 

most studies of metabolomic profiles associated with alcohol do not adjust for diet or adjust 

only for energy intake. In our analysis eight metabolites that were significantly associated 

with alcohol before adjustment for diet composition were no longer associated after 

adjustment. With adjustment, alcohol effect sizes decreased by 20 percent or more for three 

of these metabolites, which appeared to be due to a combination of confounding and 

mediation.

Steroids as a class were significantly positively upregulated by alcohol. In particular, the 

mono- and disulfates of the testosterone precursor 4-androsten-3beta,17beta-diol were 

strongly and significantly positively associated with alcohol after adjustment for multiple 

comparisons. Two additional testosterone metabolites, 5-alpha-androstan-3beta,17beta-diol 

disulfate and etiocholanolone glucuronide, as well as several progesterone metabolites also 

were significantly positively associated with alcohol before, but not after, adjustment for 

multiple comparisons. Alcohol stimulates the hypothalamic-pituitary-adrenal axis leading to 

increased adrenal androgen production, and 4-androsten-3beta,17beta-diol was previously 

reported to be increased in association with alcohol.[33, 60, 91] Associations of testosterone 

with breast cancer risk are well established in both pre- and postmenopausal women.[28, 77] 

4-Androsten-3beta,17beta-diol monosulfate also was significantly positively associated with 

postmenopausal breast cancer in a prospective study.[60] Thus, alcohol could potentially 

increase breast cancer risk by increasing circulating androgens.

To our knowledge this is the first report of significant alterations of the glycine pathway by 

alcohol. Sarcosine (methylglycine), an intermediate in this pathway, was strongly and 

significantly positively associated with alcohol intake in diet-adjusted models after 

accounting for multiple comparisons. N-acetylglycine and dimethylglycine also were 

positively associated while threonine was inversely associated with alcohol before, though 

not after, adjustment for multiple comparisons. We are not aware of any prior reports of an 

association of alcohol with serum sarcosine levels, but alcohol has been reported to increase 

sarcosine’s precursors choline and dimethyglycine under some conditions.[35, 62] The 

glycine pathway fuels one-carbon metabolism,[4] and approximately 60 percent of methyl 

groups required for methylation of homocysteine to methionine in one-carbon metabolism 

are contributed by betaine,[59] a precursor of dimethylglycine. Thus, in addition to 

established mechanisms,[83] alcohol could potentially inhibit one-carbon metabolism by 

interfering with the glycine pathway. Sarcosine is metabolized to glycine, an integral 

component of glutathione, which is the primary cellular antioxidant,[4] and elevated 

sarcosine in association with alcohol could alternatively be related to oxidative stress. We 

are not aware of any reports of an association of sarcosine with breast cancer risk, but breast 

tumor expression of sarcosine-related proteins has been reported.[11, 49, 89]
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We observed higher levels of 2-methylcitrate associated with alcohol consumption. Though 

circulating citrate was reduced in association with alcohol consumption in two 

metabolomics studies,[35, 87] to our knowledge there have been no prior reports of 

associations with 2-methylcitrate. 2-Methylcitrate is formed by the condensation of 

propionyl CoA with oxaloacetate in a reaction that is catalyzed by citrate synthase and is 

more common to bacteria and fungi than humans.[2] In humans propionyl CoA is primarily 

metabolized via the vitamin B12 dependent methylmalonyl pathway,[20] though under 

certain circumstances, such as vitamin B12 deficiency, it can be metabolized via citrate 

synthase to 2-methylcitrate.[2] Alcohol decreases circulating vitamin B12,[53] and 2-

methylcitrate levels are reportedly elevated in vitamin B12 deficiency.[37, 43] Even so, the 

magnitude of the association of alcohol with 2-methylcitrate in our study was small and 

should be interpreted cautiously.

In the current analysis gamma-CEHC, a gamma-tocopherol metabolite, was significantly 

inversely associated with alcohol intake, and the association was unchanged by adjustment 

for dietary gamma-tocopherol. Alcohol is rapidly oxidized to acetaldehyde, which leads to 

oxidative stress as a consequence of increased free radical generation and depletion of 

antioxidant defenses.[16] Tocopherols are one of the primary defense systems acting by 

preventing the generation of free radicals.[44, 84] Gamma-tocopherol also is anti-

inflammatory, and its CEHC derivative acts as an antioxidant and anti-inflammatory as well.

[38, 42] Plasma tocopherols generally are not associated[30, 31, 60] or are positively 

associated with alcohol consumption in cross sectional studies.[86, 92] In a controlled 

feeding study, consumption of two alcoholic beverages per day increased serum alpha-

tocopherol but gamma-tocopherol was unchanged.[36] Gamma-tocopherol has been shown 

to inhibit development of estrogen dependent mammary tumors in animal models.[74] 

However, in most prospective epidemiologic studies gamma-tocopherol is not significantly 

associated with breast cancer,[7, 26, 29, 68, 75] with the exception of one that observed a 

positive association.[46] In a recent prospective metabolomics study,[60] serum gamma-

CEHC glucuronide also was significantly positively associated with postmenopausal breast 

cancer risk. Thus, even though the biology of gamma-CEHC suggests our observed lower 

serum levels with alcohol consumption could potentially increase breast cancer risk, this is 

not supported by empirical evidence. In a small reproducibility study, the intraclass 

correlation coefficient for serum gamma-CEHC measured in samples collected twice, 

approximately one year apart, from 15 premenopausal women was 0.27 (unpublished data), 

suggesting poor reproducibility over time, which could contribute to inconsistent findings.

EPA was significantly positively associated with alcohol consumption in the current 

analysis, and the association was not altered by adjustment for EPA intake from food and 

supplements. EPA was previously positively associated with moderate alcohol consumption.

[17, 18] Though these studies suggest the association may be specific to wine,[17, 18] we 

only ascertained usual total alcohol intake. EPA is an omega-3 fatty acid plentiful in fish, a 

component of the Mediterranean diet associated with decreased cancer risk and mortality at 

several sites including the breast.[69] Though plasma EPA levels generally are not 

associated with breast cancer risk,[8, 12, 61, 66] most prospective studies support a 

protective effect of dietary EPA or marine omega-3 fatty acids for breast cancer.[8, 50, 70, 
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90] Increased serum EPA may counter some of alcohol’s adverse health effects while 

contributing to some of its beneficial effects when consumed in moderation.

Our study had several strengths. The sample size was reasonably large and participants, who 

were all women, reported a wide range of usual alcohol intake. Data on potential 

confounders were ascertained concurrently with alcohol intake. Usual diet was assessed by 

three nonconsecutive 24-hour recalls, the gold standard for population research.[79] 

Participants fasted overnight prior to donating blood, which was processed following a 

standardized protocol, and metabolomics assays were performed by Metabolon, a leader in 

the field. There also were some limitations. All participants had elevated serum LDL-C at 

baseline[82] and met several additional eligibility criteria, which could limit generalizability 

of findings. Even so, at the DISC06 follow-up visit only 16 (7.6%) had elevated serum LDL-

C according to current guidelines[32] and one was taking cholesterol lowering medication. 

Usual alcohol intake was self-reported, which could have led to misclassification of 

exposure, since people tend to under-report intake,[56] but if misclassification occurred it 

would likely have been non-differential. Metabolomics assays were performed using a single 

blood sample from each participant. Even though we adjusted for menstrual cycle phase as 

well as time of day of blood collection in addition to multiple potential confounders in 

analysis, other sources of variation could have inflated variances and diminished power. The 

Metabolon platform does not include estrogens, steroid hormones that are associated with 

breast cancer risk[28, 47] and previously have been associated with alcohol consumption in 

both pre- and postmenopausal women.[22, 39, 48, 63, 64] Finally, the cross-sectional study 

design limits our ability to infer causality.

In summary, the current analysis identified several novel metabolites associated with alcohol 

consumption. Most participate in pathways hypothesized to mediate the alcohol-breast 

cancer association including hormonal, one-carbon metabolism and oxidative stress 

pathways, but they could also affect risk via alternative pathways. Independent replication of 

alcohol-metabolite associations and prospective evaluation of confirmed associations with 

breast cancer risk are needed.
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Figure 1. 
Manhattan plot associations of alcohol with metabolites by superclass
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Table 1.

Participant Characteristics (N=211)

Continuous Variables Mean SD

Age, y 27.22 1.06

BMI (kg/m2) 25.53 5.46

Alcohol (drinks/wk) 4.93 6.33

Moderate-intense physical activity (MET·hr·wk 1) 24.61 21.68

Diet

 Energy (kcal/day) 1735 487

 Protein (%kcal) 16.90 4.02

 Carbohydrate (%kcal) 50.23 9.00

 Fat (%kcal) 31.46 7.47

Categorical Variables N %

Race

 White 190 90.05

 Other 21 9.95

Education

 High school 23 10.90

 Some college 47 22.27

 Bachelor’s degree 106 50.24

 Graduate school 35 16.59

Current Smoker

 No 156 73.93

 Yes, <5 cigarettes/day 23 10.90

 Yes, ≥5 cigarettes/day 32 15.17

Full-Term Pregnancies

 0 156 73.93

 1 32 15.17

 2+ 23 10.90

Current Hormonal Contraceptive Use

 None 100 47.39

 Combined oral contraceptive pill 88 41.71

 Other 23 10.90

Menstrual Cycle Phase at Blood Collection

 Luteal 172 81.52

 Follicular 27 12.80

 Unknown 12 5.69

Time of Day at Blood Collection

 7-8am 37 17.54

 9am 108 51.18

 10am 47 22.27
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Continuous Variables Mean SD

 11am-2pm 19 9.00

DISC Treatment Group

 Intervention 107 50.71

 Usual care 104 49.29
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Table 2.

Percent Change in Serum Metabolite Concentrations Associated with an Increase of One Alcoholic Beverage 

per Week for Metabolites Associated with Alcohol in a Multivariable Model at FDR p<0.10

Unadjusted
a Multivariable Adjusted 

Excluding Diet
b

Multivariable Adjusted 

Including Diet
c

Metabolite

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

Amino Acid

Glycine, Serine and 
Threonine Metabolism

sarcosine 3.86 4.05E-05 0.005 4.52 8.40E-06 0.001 3.89 3.98E-04 0.045

Lysine Metabolism

3-methylglutarylcarnitine −2.25 1.73E-02 0.152 −2.58 3.34E-03 0.094 −2.04 3.30E-02 0.463

Carbohydrate

Pentose Metabolism

arabitol/xylitol 0.88 2.05E-04 0.013 0.85 8.46E-04 0.032 0.82 2.67E-03 0.133

Energy

TCA Cycle

2-methylcitrate/homocitrate 1.04 5.66E-04 0.020 1.22 2.31E-04 0.013 1.16 8.93E-04 0.067

Lipid

Medium Chain Fatty Acids

10-undecenoate (11:1n1) 1.84 5.14E-05 0.005 1.65 4.91E-04 0.022 1.47 3.73E-03 0.159

Polyunsaturated Fatty Acid 
(n3 and n6)

eicosapentaenoate (EPA; 
20:5n3) 2.60 9.98E-06 0.001 2.76 2.27E-05 0.003 2.58 2.76E-04 0.045

Inositol Metabolism

myo-inositol 0.79 2.92E-04 0.013 0.77 9.84E-04 0.034 0.50 4.63E-02 0.520

Phospholipid Metabolism

1-palmitoyl-2-oleoyl-GPC 
(16:0/18:1) 0.99 9.39E-05 0.007 0.78 5.28E-04 0.022 0.52 2.72E-02 0.459

Steroid

4-androsten-3beta,17beta-
diol monosulfate (2) 5.34 1.21E-08 <0.001 4.37 2.47E-06 0.001 3.78 1.64E-04 0.045

4-androsten-3beta,17beta-
diol disulfate 4.46 4.15E-07 <0.001 4.18 4.89E-06 0.001 3.36 5.97E-04 0.054

4-androsten-3beta,17beta-
diol monosulfate (1) 1.97 1.35E-02 0.140 2.50 1.07E-03 0.034 2.01 1.51E-02 0.340

etiocholanolone glucuronide 2.86 1.60E-03 0.036 3.48 2.20E-04 0.013 3.23 1.71E-03 0.110

Nucleotide

3-ureidopropionate 1.04 2.41E-03 0.049 1.05 3.19E-03 0.094 0.96 1.41E-02 0.333

Cofactors and Vitamins

Tocopherol Metabolism

gamma-CEHC −2.33 2.36E-04 0.013 −2.54 4.24E-05 0.004 −2.40 3.94E-04 0.045

Cancer Causes Control. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dorgan et al. Page 22

Unadjusted
a Multivariable Adjusted 

Excluding Diet
b

Multivariable Adjusted 

Including Diet
c

Metabolite

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

% 
Change/
Drink/W

k

Pvalue FDR 
Pvalue

Vitamin A Metabolism

retinol (Vitamin A) 1.13 8.76E-04 0.026 1.09 2.76E-04 0.014 0.84 9.16E-03 0.280

Xenobiotic

Food Component/Plant

piperine 3.73 3.90E-03 0.063 4.99 1.25E-04 0.009 4.04 3.88E-03 0.159

a
Results from simple linear regression of individual metabolite concentrations on alcohol intake (drinks/wk).

b
Results from linear mixed effects regression of individual metabolite concentrations on alcohol intake (drinks/wk) adjusted for clinic as a random 

effect and BMI (kg/m2;continuous), race (white/non-white), college graduate (yes/no), current smoker (no/yes≥5 cigarettes per day/yes >5 
cigarettes per day), current hormonal contraceptive use (none/combined oral contraceptive pill/other), parous (yes/no), physical activity 

(MET·hr·wk−1;continuous), menstrual cycle phase (luteal/follicular/missing), time of blood collection (7-8am/9am/10am/11am-2pm), and DISC 
treatment group (intervention/usual care) as fixed effects.

c
Results from linear mixed effects regression of individual metabolite concentrations on alcohol intake (drinks/wk) adjusted as for b above plus 

energy (kcal/day; continuous), fat (%kcal/day; continuous) and carbohydrate (%kcal/day; continuous) as fixed effects.
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Table 3.

Multivariable Diet Adjusted Percent Change in Metabolite Concentrations for Categories of Alcohol 

Consumption
a

Drinks per Week

0 >0 and <1 ≥1 and <5 ≥5 and <10 ≥10 and ≤40

N 17 41 81 46 26

Sarcosine

 % change −5.44 ref −1.90 21.49 138.02

 95% CI
b −39.36, 47.43 −27.23, 32.24 −14.97, 73.57 55.52, 264.29

 Pvalue 0.815 0.905 0.312 <0.001

Eicosapentaenoate

 % change −1.56 ref 10.46 23.52 59.87

 95% CI −26.80, 32.39 −9.50, 34.80 −2.64, 56.71 20.36, 112.36

 Pvalue 0.921 0.355 0.101 0.002

4-Androsten-3beta,17beta-diol monosulfate

 % change −8.43 ref 6.01 50.68 97.88

 95% CI −38.58, 36.53 −18.96, 38.66 9.32, 107.67 34.96, 190.15

 Pvalue 0.682 0.687 0.019 0.001

4-Androsten-3beta,17beta-diol disulfate

 % change 10.58 ref 3.13 53.52 123.64

 95% CI −26.31, 65.92 −21.50, 35.48 10.82, 112.68 51.60, 229.93

 Pvalue 0.646 0.834 0.015 <0.001

Gamma-CEHC

 % change −13.26 ref −27.84 −33.63 −41.50

 95% CI −34.91, 14.89 −40.75, −13.19 −47.44, −17.04 −55.72, −23.68

 Pvalue 0.355 0.002 0.001 <0.001

2-Methylcitrate

 % change −4.85 ref −7.58 −3.25 19.51

 95% CI −17.84, 9.56 −16.03, 1.90 −13.96, 8.41 4.09, 37.14

 Pvalue 0.522 0.133 0.595 0.017

a
Results from linear mixed effects regression of individual metabolite concentrations on alcohol intake modeled as a factor with 5 levels and 

adjusted as described in Table 2 footnote c.

b
CI=confidence interval
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Table 4.

Mediation of Alcohol - Metabolite Associations by Dietary Fat and Carbohydrate Intakes

Dietary Fat Dietary Carbohydrate

Proportion Mediated ACME
a Sensitivity Proportion Mediated ACME

a Sensitivity

Metabolite Proportion 95% CI
b p-value ρc Proportion 95% CI

b p-value ρc

Lipids

myo-inositol 0.29 0.03 - 0.72 0.03 −0.2 0.33 0.06 - 0.79 0.02 −0.2

1-palmitoyl-2-oleoyl-GPC 
(16:0/18:1) 0.33 0.11 - 0.88 0.002 −0.2 0.29 0.02 - 0.87 0.04 −0.2

Cofactors and Vitamins

retinol 0.15 −0.08 - 0.50 0.19 −0.1 0.20 −0.04 - 0.61 0.09 −0.1

a
ACME = average causal mediation effects

b
CI = confidence interval

c
ρ at ACME=0
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