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Abstract

Background/Aims: For single arm trials, a treatment is evaluated by comparing an outcome 

estimate to historically reported outcome estimates. Such a historically controlled trial is often 

analyzed as if the estimates from previous trials were known without variation and there is no trial 

to trial variation in their estimands. We develop a test of treatment efficacy and sample size 

calculation for historically controlled trials that considers these sources of variation.

Methods: We fit a Bayesian hierarchical model, providing a sample from the posterior predictive 

distribution of the outcome estimand of a new trial, which, along with the standard error of the 

estimate, can be used to calculate the probability that the estimate exceeds a threshold. We then 

calculate criteria for statistical significance as a function of the standard error of the new trial and 

calculate sample size as a function of difference to be detected. We apply these methods to clinical 

trials for amyotrophic lateral sclerosis (ALS) using data from the placebo groups of sixteen trials.

Results: We find that when attempting to detect the small to moderate effect sizes usually 

assumed in ALS clinical trials, historically controlled trials would require a greater total number of 

patients than concurrently controlled trials, and only when an effect size is extraodinarily large is a 

historically controlled trial a reasonable alternative. We also show that utilizing patient level data 

for the prognostic covariates can reduce the sample size required for a historically controlled trial.

Conclusion: This paper quantifies when historically controlled trials would not provide any 

sample size advantage, despite dispensing with a control group.
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Introduction

The gold standard for clinical trials is to use randomization to generate a concurrent control 

group that differs, in principle, only with respect to use of the intervention under study. 

Often the team designing the study discusses an alternative, the historically controlled trial 
(HCT), where the investigator compares their results from patients treated on an 

experimental arm to outcomes observed in one or more previous trials of patients given the 

usual treatment. Such trials are more common when the experimental arm is a new treatment 

and the trial is designed to help decide whether to do additional trials to show efficacy, a so 

called Phase II trial. This paper focuses on one aspect of the discussion of whether or not to 

conduct an HCT, which is how to determine the sample size required for such a trial when 

properly accounting for variation in the historical control group outcomes. These results are 

one consideration that can help inform the discussion as to whether or not it is acceptable to 

do such an HCT. In effect, we show how to quantitatively evaluate the claim made by Paul 

Meier,1 that if you correctly accounted for the trial-to-trial variability then there would be 

little advantage to the use of historically controlled trials. We also quantify one of the rules 

for HCTs published in the New England Journal of Medicine in 1990,2 which states that 

HCTs are only appropriate when the expected treatment effect is large.

The usual analysis of an HCT is to compare a statistic such as the mean response rate, 

median survival time, or mean rate of change from the experimental group to the same 

statistic from the historical comparator trials without fully accounting for uncertainty in the 

historical estimate. We denote the statistic used to assess the results of a trial as the outcome 
of the trial in what follows. When variability in the outcomes of the historical comparator 

trials are ignored, an HCT appears to require one fourth the number of patients that would be 

required to detect the same magnitude of treatment effect in a randomized controlled trial 

(RCT) that assigns treatments equally to two groups.3 This is true because the sample size is 

halved by removing the control group and then halved again because the variability of the 

control group outcome is treated as zero. The ignored variability in this calculation derives 

from patient-to-patient variability and unexplained trial-to-trial variability. This variability 

could reflect factors such as differences from trial to trial in the types of centers involved 

(academic, community-based, etc.) that could lead to variation in the manner in which the 

experimental (and other) treatments are delivered, differences in the nature of the underlying 

study target populations, and differences in the actual patients enrolled (covariate 

distributions). We conceptualize the problem as follows: investigators running an HCT 

perform a single trial from a population of potential trials. Repetitions of the trial would not 

all yield the same outcome. The outcome of each individual trial is subject to a random trial 

effect as well as variation due to sampling. If there is a true treatment effect it would be 

added to this trial effect. When the trial data are compared to historical data, this random 

trial effect could make the difference look significant when there was no effect of treatment, 

or perhaps worse, it could make the difference look insignificant when there was a 

difference.

The purpose of this paper is to develop a criterion based on control group (usual care) data 

from multiple clinical trials that can be used to assess significance of the outcome of a single 

arm study while appropriately acknowledging the presence of trial-to-trial variation. Our 
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approach uses a Bayesian hierarchical model to account for variability in the historical trials 

and our uncertainty in estimating it. We demonstrate how to determine the required sample 

size for trials that would use this criterion. Through our derivation, we quantify the guidance 

given in Byar et al.2 that HCTs are appropriate when the effect of treatment is large or only 

large differences are of interest. Given the strong interest of patients, researchers, and 

funders in conducting efficient and timely trials, this insight can guide the decision of when 

an HCT is reasonable.

We consider two scenarios. The first is where the historical outcome data are a list of trial 

outcomes and their standard errors. Such historical data can be compiled from the published 

literature or online.4 We show how to develop a control chart that can be used to determine 

whether the estimated treatment effect from any future HCT is greater than would be 

expected by chance. In addition, we show how to develop a sample size chart that shows 

how large such an HCT should be. The second scenario requires patient level data from 

multiple trials and we discuss how prognostic covariates might reduce the trial effect and 

thereby increase the efficiency of HCTs.

There is an extensive literature on whether to conduct HCTs. For instance, Gehan and 

Freireich5 created controversy in the cancer community by advocating that single arm trials 

be used and others have discussed this issue in the literature.6, 7 The use of a Bayesian 

hierarchical model to analyze HCTs was suggested in Meier1 but was not implemented. He 

brought forward this method as an argument that if you correctly accounted for the trial-to-

trial variability then there would be little advantage to the use of historically controlled trials. 

Although Meier doesn’t elaborate, one assumes that he is comparing the number of patients 

in the experimental group in the historically controlled trial with the number of patients in 

the combined experimental plus control group in the randomized trial. We implement his 

suggestion in this paper and show that his statement is true for a study in Amyotrophic 

Lateral Sclerosis (ALS) in the sense that the historically controlled trial would require more 

patients than a randomized trial (with two groups) to detect a treatment difference associated 

with an effective therapy in this disease.8

One could also use a Bayesian hierarchical model to pool concurrent control group data with 

historical control groups. Pooling historical data with a randomized control group also has 

an extensive literature beginning with Pocock et al. 9 and more recently reviewed by others. 
10-12. The Galway paper12 contrasts various approaches including a Bayesian hierarchical 

model using a simulated example. Despite this literature, pooling historical and concurrent 

data does not seem to be commonly used in clinical trials.

The outline of this paper is as follows. We describe the Bayesian hierarchical model that we 

used and how we calculated the predictive distribution of the outcome parameter for clinical 

trials. We then show how this distribution can be used both to generate criteria for evaluating 

an HCT and for calculating the required sample size. We discuss the issue of using a 

machine learning-based predictive model based on covariates to reduce the sample size even 

further. Finally, we apply this approach using data from the PRO-ACT data base13 as an 

example of applying these criteria to amyotrophic lateral sclerosis (ALS) clinical trials.
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Methods

Using estimates of means and standard errors from multiple groups

We start with the situation where patient-level data from historical trials are unavailable. 

What are available are estimates of the parameter of interest from the control groups from m 
clinical trials, say μ1, μ2, … , μm. These parameters might be the mean of an outcome 

variable, a proportion, or any summary that could be used to evaluate the results for the 

treatment and control group. Suppose also that we have the standard error of each μ1, μ2, … 

say τ1, τ2, … . In most fields such statistics are available or could be easily derived from 

published manuscripts. In what follows, for i indexing trial, we consider μi to be random 

variables but we consider each τi to be known exactly. The method we use is described in 

Gelman et al.14 and is their paradigmatic example of a Bayesian analysis. We need to treat τi 

as known exactly because, as in the example in Gelman et al.,14 in most situations the 

clinical trials would have slightly different designs. As a result although the estimands would 

be the same, the standard errors, would not be a patient level standard deviation divided by 

n, where n is the sample size, and more importantly they would not be proportional to 

1 ∕ n with the same proportionality constant. We assume the sample size of each of the 

trials would have to be large enough so that the variability of the standard error due to 

sampling variation is negligible. An alternative approach is to treat the standard deviation as 

an estimate having a distribution, which is more appropriate for small sample sizes as is 

discussed later in this section.

We assume a hierarchical model where μi is an estimate of μi. where the later has a normal 

distribution with mean μ and standard deviation σ. The parameter σ is the trial-to-trial 

variability in the outcome. The full hierarchical model of the observed data is: 

μi~Normal(μi, τi), μi ~ Normal(μ, σ). The priors for μ σ were the uniform priors that STAN 

uses by default. To develop a criteria for significance for a new trial we generate values of 

the Bayesian predictive distribution of a the outcome of a new trial, say μ*. This calculation 

can be easily performed using STAN15 or WinBugs16 although the latter requires the prior 

distributions of μ and σ to be supplied explicitly.

We then created a function which uses this sample to calculate the probability that the results 

of a new clinical trial will estimate a parameter that exceeds a specified threshold, say t. 
Suppose δ is the actual improvement due to the new treatment, where δ = 0 if it isn’t 

effective, the trial result has standard error τ and p(μ*) is the predictive distribution. Then 

P(μ > t) = ∫ (Φ((μ∗ + δ − t) ∕ τ)p(μ∗))dμ∗. This can be estimated using the mean of Φ((μ* + δ − 

t)/τ) over our sample from the predictive distribution of μ*. We assume that the new trial is 

reasonably large, that is large enough so the normal approximation to it’s distribution is 

valid for the measured treatment effect in the new trial. With this function it is straight 

forward to plot the criteria for significance at any level, as a function of τ. Such a control 
chart could be used to determine the significance of a historically controlled trial. In the 

example, we used STAN for this calculation with 12,000 iterations of the MCMC sampler 

where half were then used for the calculation, the first 6000 is used as a burn in. All the 

parameters in STAN were set at their default. The program we used is available in CRAN17 
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with the name of HCT. If there are only a small number of historical control groups it might 

be better to put a more informative distribution on μ and σ however, for the results to be 

believable one would need this distribution to be wide enough to be universally acceptable.

The derivation above doesn’t use the sample sizes ni of the previous clinical trials, nor does 

it use the sample size of the HCT under consideration, as in the example in Gelman et al.14 

Clearly large trials will have smaller values of τi. The algorithm effectively subtracts out the 

sampling variation in μi using τi when it calculates the posterior distribution of μ. When the 

criteria above are used to evaluate an HCT, one will have an estimate of the standard error, τ 
for the HCT (which we will consider fixed) from the output of whatever statistical package 

is used to analyze the data. In this case, the sample size of the HCT can be ignored, as long 

is it is large enough for the normal approximation of the outcome to hold. For planning trials 

τ is needed as a function of the sample size n in order to calculate the power of a clinical 

trial. In the simplest situation where μi is a mean, τ = s ∕ n where s is the patient level 

standard deviation of the efficacy measure. The value of s can be calculated from the 

historical trial data by the average value of τi n. As a sensitivity analysis we considered a 

more complicated model where the square of the standard deviation is considered to be s2/

[n(n − 1)] times a a Chi-Squared distribution with n − 1 degrees of freedom and the s for 

each trial is considered a draw from a log-normal distribution with unknown mean and 

standard deviation which are given non-informative priors. This would be the preferred 

analysis if one had small trials rather than large ones in the historical database. In the ALS 

example, to follow, none of the probability calculations changed appreciably.

Often μi is the estimated parameter of a model. In this case, τi ∝ 1 ∕ ni, where the constant 

of proportion, which we will still call s, depends on the study design. In a survival study 

where μ is the log-hazard ratio, s will depend on the duration of the accrual and follow-up 

periods and a formula can be found in Schoenfeld.18 In a longitudinal study s will depend on 

the number and timing of the study visits. A formula for a random effects model can be 

found in Liu and Liang.19. An R package is available.20. In general s2 is the element of the 

inverse of the information matrix that corresponds to the parameter estimate that measures 

the treatment effect. If the design of the proposed HCT is quite similar to that of all of the 

historical trials then s can be estimated by the average value of τi ni and used as if the 

outcome were a sample mean.

What we are doing is similar to a random effects meta analysis, where we assume that μ1, 

μ2, … , μm have a normal distribution with a N(μ′ + θ, τ) distribution and θ is a random 

effect with standard deviation σ. The advantage of a Bayesian approach where you put a 

uniform prior on the unknown value of μ′ and σ is that the Bayesian approach appreciates 

the role of the number of control groups m. The Bayesian predictive distribution of μ* will 

have more variability if m is small, while the results of a random effects meta analysis will 

not.
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Use of patient level data with covariates

When patient-level data are available, such as demographics, disease severity, etc., the 

sample size of an HCT might be reduced by using these data to match patients or to predict 

the patient outcome used to measure efficacy. Differences in the distributions of prognostic 

covariates might be one cause of the variation in the outcomes of the trials. In addition 

including covariates might reduce the value of τi. Both of these might improve the efficiency 

of an HCT.

We focus on a strategy that allows the implementation of a control chart, in a similar manner 

to the one that can be generated from published data. To do this, we need a method of letting 

μ for each trial be the difference between the observed outcome and the prediction based on 

covariates. Then we can duplicate the algorithm described for the use of published data, 

replacing the outcome by it’s deviation from the prediction and it’s standard error by the 

standard error of the deviation.

The principal difficulty with this approach is that if you develop a prediction model from the 

pooled historical data it will tend to over-fit these data, and both the between trial variation 

and the standard error of the outcome will be understated. To prevent this, we hold out the 

data for each trial and develop the prediction equation from the other trials. We then predict 

the data from the held out trial and use the deviation from the prediction as the value of μi

for that trial. An alternative would be to use the same covariates in the model for all the 

trials, in which case all the standard errors as well as the among trail variability may be 

reduced.

Example

Background

ALS is characterized by a progressive loss of motor neurons. Patients face increasing 

disability leading to complete paralysis including the breathing and swallowing muscles, 

which eventually causes death. The ALS functional Rating Scale Revised (ALSFRS-R) is a 

12-item questionnaire which rates functional abilities in four domains (bulbar, fine motor, 

gross motor, and respiration) from 4-normal to 0-completely absent. The score is a sum of 

the ratings of each of the 12 functions. The average rate of decline in ALSFRS-R among 

ALS patients is approximately one point per month. The score is used as the primary 

efficacy measure in phase II and in some phase III ALS trials. Usually a random-slopes 

model is used to analyze the data,21 with the trial outcome being the mean slope. This model 

specifies that the observed ALSFRS-R is a patient-specific random intercept and slope plus a 

visit-specific residual deviation from the patient-specific trajectory. A normal distribution is 

postulated for the patient-specific intercepts, slopes and deviations. Although the disease is 

eventually fatal, mortality is not used as an endpoint in early phase trials because the one-

year survival is over 80%.

In 2014 with funds from several philanthropic organizations, Prize4Life and the Neurology 

Clinical Trials Unit at the Massachusetts General Hospital created the PROACT database to 

house data from clinical trials conducted by industry and academia. The database currently 
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contains records of 23 Phase II/III clinical trials. This database provided the opportunity to 

conduct a meta-analysis using the methods described above.

Analysis based on estimated control group means and standard errors

The database that is publicly distributed does not identify the trial source for each patient 

and one cannot identify which patients were in the same trial; however the organizers of the 

database have this information, and were willing to calculate the statistics for the control 

group of each trial for us to use in this analysis. We assumed that a phase II HCT would be 

six months in duration, so we removed the data for each patient that occurred more than 220 

days after randomization. In addition, we did not want to include trials that were shorter than 

six months in duration, so if a trial had no observations taken after 150 days the whole trial 

was excluded. Figure 1 shows a forest plot of mean slope of the ALSFRS-R per month for 

the included trials.

We used RSTAN15 for the computation. Of the 23 trials in the database, there where 16 that 

were included based on the criteria above. The mean of μ, the rate of change of ALSFR-R, 

was −1.03 points/month and the mean of σ was 0.11 points/month. The standard deviation of 

μ was 0.03 points/month and the variation of σ was 0.026. The average value of s was 0.995 

points/month.

If one considered the historical control mean to be fixed, then one could assume that a new 

drug worked if an HCT with 100 patients clinical trial had a mean slope of greater than 

( − 1.03 + 1.96 × s ∕ 100) = − 0.83 points/month. The criteria based on our model was −.73 

(points/month) to declare significance at a two sided p=0.05 significance level.

Figure 2 is the control chart that could be used to determine statistical significance of a new 

treatment in an HCT. One would plot the estimated slope per month against its standard 

error. If the point was above the top line running from slope= −.8 to slope= −.4 points/

month, then the HCT would provide evidence of a significant beneficial effect; if it were 

below the bottom line running from −1.3 to −1.6 points/month, then the HCT would provide 

evidence of a significant harm. The three points on the graph are the results from three 20-

patient clinical trials of exercise, showing neither benefit nor harm.22

Figure 3 plots required sample size for 80% power comparing a concurrently controlled trial 

(RCT) to an HCT. The solid line shows the sample size needed for an HCT as a function in 

the % decrease in ALSFRS-R slope and the dashed line shows the corresponding total 

sample size for an RCT, with equal randomization to each arm. We assumed s = 0.995 which 

was the average value from our historical database. The standard times to measure the 

ALSFRS-R are 0,1,2,4 and 6 months, and most of the variation in the random-effects model 

is due to variation in each patient’s slope, so the effect of different designs on s would be 

minimal. However if one wanted to calculate s, let X be a two column matrix with first 

column ones and second column the visit times. Then s2 = (σ0
2X′X + X′ΣX)2, 2

−1 , where σ0 is 

the standard deviation of the error term and Σ is the variance covariance matrix of the 

random effects. Then the sample size should be s/0.995 times the sample size from the chart 

in Figure 3.
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The sample size for an HCT increases rapidly as the effect size is reduced with a vertical 

asymptote near 30%. To see why this is so, we note that if the new trial had a very large 

sample size so that the estimated outcome μ had a negligible standard error then the power to 

detect a 29% difference would be approximately 

P(μ > μ + 1.96σ) = 1 − Φ{(μ + 1.96 ∗ σ − (μ + δ)) ∕ σ} = 1 − Φ{( − 1.03 + 1.986 ∗ .11 − 0.71 ∗ (
− 1.03)) ∕ .11} = 0.78

. 

where in this case μ, σ are the mean and standard deviation of the predictive distribution, and 

an 80% power could not be achieved whatever the sample size.

Many phase II-III trials in ALS of oral drugs are designed to achieve 80% power to detect a 

30% differnce. However, it would be reasonable to posit a 50% difference for trials of 

particularly expensive or invasive treatments, such as gene or stem cell therapy. In this case, 

an HCT would require ≈ 50 patients versus ≈ 130 for a RCT.

The point at which the two sample size curves cross provides a quantification of the general 

guidance that HCTs should be considered when investigating dramatic treatment effects, 

e.g., the use of penicillin in pneumococcal pneumonia.23

Analysis using patient-level data for covariate adjustment

For covariate adjustment we needed a prediction that could be computed for most of the data 

in the PRO-ACT database and would accurately predict patients’ ALSFRS-R scores over 

time. Prize4Life had previously conducted a data mining contest for developing a predictor 

with just those properties, so we chose to use this algorithm.24 A non-linear, nonparametric 

gradient boosting algorithm25 was trained using the PROACT data. The model was trained 

to predict raw ALSFRS-R scores longitudinally from a set of features extracted from 

baseline trial visits. The feature set chosen to train the model was based on an evaluation of 

features that had a similar distribution across all trials in the PRO-ACT database to reduce 

bias due to high proportions of missing data within a subset of trials. Final feature selection, 

optimization of tuning parameters and imputation of missing data were performed based 

largely on previous exploratory analyses and models.

The model was fit for this paper by considering the trials in groups of three, training the 

model on the trials not in that group of three, and then using the model to make predictions 

for each patient in the group of three trials. These predictions were subtracted from the 

observed ALSFRS-R scores and the result used as the data for a random slopes model.

Figure 4 shows how this would change the sample size requirements for HCTs and RCTs. In 

this case, it appears that an HCT and an RCT designed to detect a 30% difference would 

need to be the same size, but an HCT would require fewer patients to test for larger 

differences.

Interpretation

A common effect size of ALS phase II trials is a 25-30 percent reduction in the decline of 

the ALSFRS-R slope. Assuming this treatment effect, an RCT would require no more total 

patients than an HCT. Thus, using HCTs to detect these differences would be inadvisable 

and the conjecture given in Meier1 that the HCT offers no advantage turns out to be true.For 
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the ALS example, we show that the HCT would not be smaller than the randomized trial. 

This may be counterintuitive to patients and physicians who believe an HCT will reach a 

conclusion more rapidly. However, in ALS, where improvements are likely to be moderate, 

the HCT will not have sufficient power to detect (even an important) benefit. For larger 

differences, HCTs would require smaller sample sizes, especially if we use covariates. 

However, the use of covariates as described here is fairly difficult to implement. The 

algorithm we used would need it to be run on the data of the clinical trial in order to analyze 

the trial. Also, in the planning phase, one would have to assume that future patients would be 

enough like the patients in the PRO-ACT database such that the sample size considerations 

developed using this database would be relevant. For instance, the exclusion and inclusion 

rules would need to be similar and their expected rates of progression would need to be 

similar. In particular, one would need to consider whether the standards of care external to 

the trial were constant enough to make the historical data relevant. The risk, if the new trail 

recruits are substantially different patients, is that the study would be underpowered and 

miss a potentially promising therapy. This can happen for example if the a new treatment 

becomes standard and improves patient outcome, resulting in a lower control group rate. In 

ALS, there is concern that the approval of edaravone for ALS26might change the natural 

history if many patients opt to receive it. In time, the control groups of trials conducted after 

the introduction of edaravone could be used to develop new criteria for HCTs.

Discussion

There are many issues about historically controlled trials that were not discussed in this 

paper. One concern in using historical data is if there is a secular trend, where trial outcomes 

improve over the years due to changes in diagnostic criteria or improvements in treatment or 

other care so the historical patients would be too different to use as a control group. This 

trend could be directly modeled if patient level historical data are available. While we did 

not have such data from the PRO-ACT trial, this database is being actively curated, with 

contemporary trials being continually added.

In Qureshi et al.27 secular trends in mean ALSFRS-R were not detectable. Occasionally 

there are advances in patient care that might radically change the prognosis of the control 

group. Two examples would be the introduction of a new effective therapy or changes in 

care or diagnosis criteria. This may have happened in ALS with the introduction of a 

recently approved therapy26. In that case one would need quite a few new trials to estimate 

the new mean outcome. This could be accomplished by introducing a new parameter 

measuring the difference caused by the change in standard of care. If one assumed that the 

trial-to-trial variability also changed one would need a completely new set of trials.

A second issue which is not readily resolvable is whether eliminating the placebo control 

group would fundamentally change the patient population. In particular, there is already a 

known difference in the demographic makeup of patients who participate in clinical trials 

from the broader patient population.28 It is unknown whether that difference would be 

exacerbated if patients knew that they would be receiving treatment.
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An important area where alternatives to placebo controlled trials are required is the advent of 

increasingly invasive treatments for relatively rare diseases, such as surgical placement of 

stem cells. In these cases, there is a clear desire to find viable alternative strategies to a sham 

placebo, which would likely be unethical. However, these trials may have the issue that they 

require younger, healthier patients who have better prognosis but for whom no historical 

data exist.

Another issue is how often the analysis of historical data needs to be repeated. The Bayesian 

approach has the advantage that uncertainties in the estimation of the mean drop in 

ALSFRS-R and the trial-to-trial variation are incorporated into the criteria for significance 

and the sample size calculations. Thus, as more trials are added to the database, the power of 

HCT will increase modestly.

This analysis could be repeated for other diseases that are extensively studied. Since the 

analysis does not require patient-level data, it could be included in meta-analyses to give 

guidance for interpreting future single arm trials in the literature. Software is available for 

fitting these models.17

The focus of this paper has been on phase II trials that are designed to screen new drugs for 

further study. It is not our intention to suggest replacing randomized phase III clinical trial 

when they are ethically possible. The data from an HCT can never be as convincing as that 

from an RCT.

There are other approaches to phase II trials such as using master protocols to select the 

most promising phase II drug among several.29,30 However, an HCT is an alternative when 

expected effect sizes are large and master protocols aren’t possible. In ALS it appears that 

this would be an unusual situation because the usual effect sizes are too small to make HCTs 

practical.
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Figure 1. 
Forest Plot of the control groups of clinical trials in the PROACT database. The mean and 

error bars for the mean change in ALSFRS-R per month are shown.
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Figure 2. 
Control chart for judging significance of an HCT with ALSFRS-R slope estimated over 6 

months as the outcome.

DA et al. Page 14

Clin Trials. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Total Sample Size as a function of difference in slope as %change for an HCT and an RCT
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Figure 4. 
Total sample size as a function of difference in slope(% change), using covariate adjustment
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