

HHS Public Access

Author manuscript *Prostate*. Author manuscript; available in PMC 2020 February 10.

Published in final edited form as: *Prostate.* 2020 February ; 80(2): 235–237. doi:10.1002/pros.23924.

Germline BLM mutations and metastatic prostate cancer

Elisa M. Ledet, PhD¹, Emmanuel S. Antonarakis, MD², William B. Isaacs, PhD³, Tamara L. Lotan, MD³, Colin Pritchard, MD, PhD⁴, A. Oliver Sartor, MD¹

¹Tulane Cancer Center, New Orleans, Louisiana ²Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland ³James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland ⁴University of Washington, Seattle, Washington

Abstract

Background: Biallelic loss-of-function *BLM* mutations result in Bloom syndrome: a genetic disorder characterized by growth deficiencies, photosensitivity, and multiple cancer susceptibilities. There are conflicting reports about whether or not heterozygous *BLM* carriers are at a higher risk of various cancers. Without *BLM* protein functionality, there is evidence of increased sister chromatid exchange and chromosomal instability.

Methods: Metastatic prostate cancer patients (N = 796) underwent germline genetic testing as part of routine care at three academic centers. Patients with heterozygous *BLM* mutations were identified. Tumor tissue was analyzed for somatic alterations in those patients who had a germline pathogenic mutation. Control data using a population sample were extracted from the Genome Aggregation Database.

Results: Heterozygous *BLM* germline mutations in 5 of 796 patients (prevalence, 0.63%). All mutations were loss-of-function truncating alterations. None of the mutations were *BLM*^{Ash}. The control population (gnomAD) frequency of pathogenic or likely pathogenic *BLM* mutations was 0.18% (212 of 116 653). The relative risk (RR) of *BLM* mutations in metastatic prostate cancer patients was 3.4 (95% CI, 1.42-8.33; P < .0062) compared to gnomAD controls. Tumor DNA sequencing in the *BLM* carriers showed no evidence of somatic *BLM* mutations. Interestingly, 3 of 5 *BLM* germline carriers had bi-allelic *BRCA2* inactivation evident on tumor sequencing. One patient had both germline and somatic mutations in *BRCA2*. Excluding the patient with the germline *BRCA2* mutation (*BLM* prevalence, 4 of 796: 0.50%) still yielded a statistically significant finding vs the gnomAD controls (RR, 2.8; 95% CI, 1.02-7.39; P < .04).

Conclusion: Truncating *BLM* germline mutations occur at a higher frequency in patients with advanced prostate cancer as compared to control populations. Though no biallelic loss of *BLM* was no noted in cancers, a surprising number of the *BLM* germline heterozygotes had pathogenic *BRCA2* mutations in their tumor.

Correspondence: Oliver Sartor, MD, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112. osartor@tulane.edu.

Keywords

BLM; BRCA2; DNA-repair; germline testing; metastatic prostate cancer

1 | INTRODUCTION

The *BLM* gene encodes a RecQ DNA helicase involved in maintenance of genomic integrity and regulation of homologous recombination. In particular, this helicase participates in the unwinding of DNA in 3'-to-5' direction and is involved with 5' resection during DNA double-strand break repair. Without *BLM* protein functionality, there is an increase in sister chromatid exchange resulting in greater chromosomal instability.

Biallelic loss-of-function *BLM* mutations result in Bloom syndrome: a genetic disorder characterized by growth deficiencies, photosensitivity, and multiple cancer susceptibilities often developing at an early age.¹ The most frequent *BLM* mutation (c. 2281delATCTGAinsTAGATTC), also known as *BLM*^{Ash}, is a relatively common founder mutation found in the Ashkenazi Jewish population. There are conflicting reports about whether or not heterozygous *BLM* carriers are at a higher risk of various cancers, with most studies examining colorectal carcinoma risk.² Previous case-control studies have not found an association between *BLM* carrier status and prostate or ovarian cancer.³ However, in prostate cancer, both a genome-wide haplotype association study in the Chinese population and a study of familial prostate cancer have preliminarily identified certain risk variants associated with the *BLM* gene.^{4,5} Germline mutations in DNA-repair genes occur at higher incidence in metastatic prostate cancer patients⁶; however, the potential role of *BLM* in prostate cancer remains unknown. Herein we examined the potential significance of germline pathogenic *BLM* mutations in prostate cancer patients.

2 | MATERIALS AND METHODS

A total of 796 metastatic prostate cancer patients underwent germline genetic testing as part of routine clinical care at 3 academic centers. Patients with heterozygous *BLM* mutations were identified from Tulane Cancer Center (TCC), Johns Hopkins (JH), and University of Washington (UW). The clinical testing was performed through commercial germline testing (Invitae), the UW-BROCA panel, or whole-exome sequencing. Tumor tissue was also analyzed for somatic alterations in those patients who had a germline pathogenic mutation. Control data using a population sample were extracted from the Genome Aggregation Database (gnomad.broadinstitute.org).

3 | RESULTS

Of the 796 prostate cancer patients interrogated, 5 heterozygous *BLM* germline mutations (prevalence, 0.63%) were identified; 2 of 295 TCC patients, 2 of 172 JH patients, and 1 of 302 UW patients (see Table 1). All mutations were loss-of-function truncating alterations (see Table 2). None of the mutations were *BLM*^{Ash}. The control population (gnomAD) frequency of pathogenic or likely pathogenic *BLM* mutations was much lower at 0.18% (212 of 116 653). The relative risk (RR) of *BLM* mutations in metastatic prostate cancer

Prostate. Author manuscript; available in PMC 2020 February 10.

Ledet et al.

patients was 3.4 (95% CI, 1.42-8.33; P < .0062) compared to gnomAD controls. Tumor DNA sequencing in all 5 *BLM* carriers showed no evidence of "second hit" somatic *BLM* mutations. Interestingly, 3 of 5 *BLM* carriers on tumor sequencing had bi-allelic *BRCA2* inactivation; one of these patients had both germline and somatic mutations in *BRCA2*. Excluding the patient with the germline *BRCA2* mutation (*BLM* prevalence, 4 of 796: 0.50%) still yielded a statistically significant finding when comparing prostate cancer patients with *BLM* mutations vs the gnomAD controls (RR, 2.8; 95% CI, 1.02-7.39; P < 0.04).

4 | DISCUSSION

In conclusion, pathogenic germline *BLM* mutations may influence risk of developing metastatic prostate cancer as evidenced by the increased frequency of *BLM* pathogenic mutations in these analyses. Though these findings are intriguing, the frequency of germline *BLM* alterations in prostate cancer patients should be validated and assessed in a larger study population. The concurrent somatic *BRCA2* inactivation found in a subset of prostatic tumors is notable, and may suggest a cancer-specific interaction between these two genes known to be involved in homologous recombination.

ACKNOWLEDGEMENT

This study was partially supported by National Institutes of Health Cancer Center Support Grant P30 CA006973 (Antonarakis).

Funding information

National Cancer Institute, Grant/Award Number: CA006973

DISCLOSURES

Dr. Sartor is a consultant for AstraZeneca, Bayer, Bellicum, Bristol-Myers Squibb, Celgene, Dendreon, EMD Serono, Johnson & Johnson, Oncogenex, Pfizer, Sanofi-Aventis, Constellation, Endocyte, Advanced Accelerator Applications (AAA), Bavarian-Nordic; Research support to institution from Bayer, Endocyte, Innocrin, Johnson & Johnson, Invitae, Sanofi-Aventis, Merck; cochair of GU Committee; Consultant on the Board of Scientific Counselors for NCI. Dr. Antonarakis is a paid consultant/advisor to Janssen, Astellas, Sanofi, Dendreon, Medivation, ESSA, AstraZeneca, Clovis, and Merck; he has received research funding to his institution from Janssen, Johnson & Johnson, Sanofi, Dendreon, Genentech, Novartis, Tokai, Bristol Myers-Squibb, AstraZeneca, Clovis, and Merck; and he is the coinventor of a biomarker technology that has been licensed to Qiagen.

REFERENCES

- 1. Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4–23. [PubMed: 28232778]
- Gruber SB, Ellis NA, Scott KK, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002;297(5589):2013. [PubMed: 12242432]
- 3. Antczak A, Klu niak W, Wokołorczyk D, et al. A common nonsense mutation of the BLM gene and prostate cancer risk and survival. Gene. 2013;532(2):173–176. [PubMed: 24096176]
- Wang Q, Lv H, Lv W, et al. Genome-wide haplotype association study identifies BLM as a risk gene for prostate cancer in Chinese population. Tumour Biol. 2015;36(4):2703–2707. [PubMed: 25472581]
- Johnson AM, Zuhlke KA, Plotts C, et al. Mutational landscape of candidate genes in familial prostate cancer. Prostate. 2014;74(14):1371–1378. [PubMed: 25111073]

Ledet et al.

6. Pritchard CC, Mateo J, Walsh MF, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016;375(5):443–453. [PubMed: 27433846]

~
-
<u> </u>
_
-
_
\mathbf{O}
$\underline{\circ}$
~
5
ШU
-
_
<u> </u>
ŝ
-
\mathbf{C}
-
9
-

Author Manuscript

TABLE 1

BLM mutation carriers

1JH59Caucasian $5 + 4$ 5 mo 2JH68Caucasian $4 + 4$ At diagnosis3TCC62Caucasian $4 + 3$ Undetermined4TCC63Caucasian $4 + 3$ At diagnosis5UW63Caucasian $4 + 4$ 11 yNote: Claucasian $4 + 4$ 11 y	Patient Sit	Patient Site Age at diagnosis Race	Race	Gleason score	Gleason score Time between diagnosis and metastatic disease Family history	Family history
2 JH 68 Caucasian 4 + 4 At diagnosis 3 TCC 62 Caucasian 4 + 3 Undetermined 4 TCC 63 Caucasian 4 + 3 At diagnosis 5 UW 63 Caucasian 4 + 4 11 y	1 JH	59	Caucasian	5+4	5 mo	Mother with breast cancer, and brother with Hodgkin lymphoma
3TCC62Caucasian $4 + 3$ Undetermined4TCC63Caucasian $4 + 3$ At diagnosis5UW63Caucasian $4 + 4$ 11 yNote: Clinical characteristics and family history for BLM mutation carriers.	2 JH	68	Caucasian	4 + 4	At diagnosis	Father with colorectal cancer
4 TCC 63 Caucasian 4 + 3 At diagnosis 5 UW 63 Caucasian 4 + 4 11 y <i>Note:</i> Clinical characteristics and family history for <i>BLM</i> mutation carriers.	3 TC	XC 62	Caucasian		Undetermined	Mother with breast and skin cancer, and brother with skin cancer
5 UW 63 Caucasian 4+4 11 y <i>Note:</i> Clinical characteristics and family history for <i>BLM</i> mutation carriers.	4 TC	XC 63	Caucasian	4 + 3	At diagnosis	Father with prostate and lung cancer, and grandfather with prostate cancer
<i>Note:</i> Clinical characteristics and family history for <i>BLM</i> mutation carriers.	5 UV	N 63	Caucasian	4+4	11 y	Mother and grandmother with colon cancer
	<i>lote:</i> Clinical	characteristics and fami.	ly history for <i>B</i>	<i>LM</i> mutation carri	iers.	

Abbreviations: JH, Johns Hopkins; TCC, Tulane Cancer Center; UW, University of Washington.

Author Manuscript	
Author Manuscript	

Author Manuscript

BLM alterations detected in five prostate cancer patients

allele Variant allele Gene Protein change Annotation	Concurrent BRCA2 (somatic)
$NM_{-000057}$, c.98 + 1 G > A	Yes ^a
NM_000057.3, c.3210 + 2delT	Yes
<i>BLM</i> p.L751Kfs*25 NM_000057, c.2250_2251insAAAT	No
<i>BLM</i> p.D1010Mfs*24 NM_00057, c.3028del	No
TAGATTC BLM p.Y736Lfs*5 NM_000057.2, c.2207_2212delATCTGAinsTAGATTC Yes	ATTC Yes

Abbreviations: JH, Johns Hopkins; TCC, Tulane Cancer Center; UW, University of Washington.

^a Patient 1 has both germline and somatic BRCA2 variants.