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Premature birth occurs during a period of rapid brain growth. In this context, interpreting clinical neuroimaging can be compli-

cated by the typical changes in brain contrast, size and gyrification occurring in the background to any pathology. To model and

describe this evolving background in brain shape and contrast, we used a Bayesian regression technique, Gaussian process regres-

sion, adapted to multiple correlated outputs. Using MRI, we simultaneously estimated brain tissue intensity on T1- and T2-

weighted scans as well as local tissue shape in a large cohort of 408 neonates scanned cross-sectionally across the perinatal

period. The resulting model provided a continuous estimate of brain shape and intensity, appropriate to age at scan, degree of

prematurity and sex. Next, we investigated the clinical utility of this model to detect focal white matter injury. In individual

neonates, we calculated deviations of a neonate’s observed MRI from that predicted by the model to detect punctate white matter

lesions with very good accuracy (area under the curve 4 0.95). To investigate longitudinal consistency of the model, we calculated

model deviations in 46 neonates who were scanned on a second occasion. These infants’ voxelwise deviations from the model

could be used to identify them from the other 408 images in 83% (T2-weighted) and 76% (T1-weighted) of cases, indicating an

anatomical fingerprint. Our approach provides accurate estimates of non-linear changes in brain tissue intensity and shape with

clear potential for radiological use.
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Introduction
Neuroimaging during the perinatal period is both

practically and technically challenging (Lodygensky and

Thompson, 2017). Over a very short period, the brain

changes in size and shape, tissue contrast changes, and

transient developmental structures disappear (Kostović

and Jovanov-Milošević, 2006). These changes occur rapidly

over periods from days to weeks and often follow non-

linear and regionally specific trajectories (Dubois et al.,

2016; Makropoulos et al., 2016) reflecting regionally and

temporally asynchronous developmental processes such as

myelination and synaptic proliferation (Harris et al., 2011;

Lebenberg et al., 2019). When investigating perinatal brain

injury this evolving background represents a substantial

hurdle, as imaging changes themselves can be both spatially

and temporally heterogeneous (Rutherford et al., 2006).

Because of this complexity, studies have shown inter- and

intra-rater reliability in interpreting neonatal MRI to be

moderate to low (Morel et al., 2016). This is especially

the case with age-related image intensity or shape changes

that may indicate dysmaturation, such as diffuse white

matter injury, small punctate white matter lesions or ven-

tricular dilation. Sometimes visually subtle, these features

may be ‘normal’ or expected in one context but not in

another. For example, diffuse white matter high signal in-

tensity may be a general feature of the premature brain,

seen in the majority of preterm infants at term age, but it

has limited prognostic significance (de Bruı̈ne et al., 2011).

Myelination may be disrupted by brain injury and prema-

turity and the degree of disruption can be dependent on

both the actual pathology and the age of insult (Volpe,

2009).

The question for interpreting a clinical neonatal MRI is

therefore complex: what is abnormal in the brain, given a

particular age and clinical history? Research studies inves-

tigating the perinatal period have helped address some of

this complexity, creating maps of a typical brain at differ-

ent gestational ages. Statistical models of brain growth or

image intensity change have begun describing development

continuously in a way analogous to growth charts

(Kuklisova-Murgasova et al., 2011; Dean et al., 2014;

Holland et al., 2014). These growth curves often rely on

strong assumptions on the shape of that curve that have to

be tailored and optimized to different magnetic resonance

modalities, brain regions and age spans (Mills and Tamnes,

2014). This has led to clinical studies being restricted to

narrow or fixed age ranges (Oishi et al., 2019), with

increased statistical power but a reduced likelihood of clin-

ical translation.

As an alternative, non-parametric approaches to model-

ling normative developmental variation have been proposed

that are less dependent on strong hypotheses of the shape

of a curve and have been successfully applied in neuroima-

ging data (Ziegler et al., 2014; Marquand et al., 2016). An

advantage here is that, just as with standard growth curves,

the resulting models can be used to generate a score char-

acterizing the deviation of an individual subject from an

expected average shape/intensity (as a percentile or Z-

score) but with respect to multiple clinically meaningful

variables, not just age or sex. Importantly, this can be

quantified in single observations of an individual. In the

context of prematurity, this property is especially important

as brain effects are both clinically and spatially variable so

group average comparisons may occlude real effects (Sled

and Nossin-Manor, 2013).

In this work, we take advantage of multi-contrast struc-

tural MRI data acquired across a wide range of ages as

part of the developing Human Connectome Project

(dHCP). We use a Bayesian non-parametric model estima-

tion technique, Gaussian process regression (GPR), imple-

mented within a multi-output framework (Álvarez et al.,

2011) so as to be able to take advantage of cross-sectional

correlation between the outputs (Liu et al., 2018), and

therefore provide better predictions. We simultaneously

model the mean and expected variance of tissue intensities

and shape from anatomical T1- and T2-weighted images

sampled across the perinatal period (26 to 45 weeks) in

both premature and term-born neonates. From this we

derive a family of multimodal 4D growth curves, provid-

ing statistical measures of variation across the cohort.

From this we show that individuals develop along trajec-

tories defined by these growth curves and have a multi-

modal brain imaging fingerprint that persists with

increasing chronological age; that focal abnormalities

such as punctate white matter lesions are reflected by de-

viations from these typical trajectories at a voxel level in

individual infants, allowing accurate automated detection

of lesions; and that the global effects such as premature

birth can lead to detectable deviations in global and local

brain morphology, which can also be quantified by data-

driven approaches.
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Materials and methods

Participants

All subjects participated in the dHCP, and written informed
parental consent was obtained before enrolment to the study.
The training sample consisted of 408 (189 female) neonates
ranging in age at scan (post-menstrual age; PMA) from 26 to
44 weeks, with a gestational age at birth (GA) of 23–42 weeks
(mean PMA 39.2 weeks, mean GA 37.4 weeks) (Fig. 1A).
Datasets acquired from both singletons and twins were
included in this study. These images were visually inspected
and datasets with substantial motion on MRI or major focal
parenchymal lesions at the time of their first scan were
excluded. We did not exclude neonates with radiologically-re-
ported punctate white matter lesions (PWML), small subepen-
dymal cysts or small haemorrhages in the caudothalamic
notch, as these are a common finding in the preterm popula-
tion in particular.

Two further datasets were included. Of the 408 neonates in
the training sample, 46 of those born preterm (mean PMA at
first scan 33.5 weeks, range 27–36, mean GA 30.9 weeks,
range 23–36 weeks) had an additional scan on a second occa-
sion (mean PMA at second scan 40.7 weeks, range 38–44
weeks) (Fig. 1B). In addition, an independent dataset of 40
neonates with PWML were identified. See Table 1 and Fig. 1
for summary sample demographics and sample age
distribution.

All datasets were acquired on a Philips Achieva 3 T scanner
at the Evelina Newborn Imaging Centre using a dedicated 32-
channel neonatal head coil (Hughes et al., 2017). All anatom-
ical volumes were collected as part of the dHCP and are
described in detail in Makropoulos et al. (2018).

For both T1- and T2-weighted anatomical scans, turbo spin
echo (TSE) sequences were used with two stacks per weighting,
sagittal and axial. For T2-weighted scans, the parameters were:
repetition time = 12 s, echo time = 156, SENSE = 2.11 (axial)
and SENSE = 2.58 (sagittal). For T1-weighted stacks an inver-
sion recovery TSE sequence was used. Images were acquired
with a repetition time = 4.8 s, echo time = 8.7, inversion time
= 1740, SENSE factor of 2.26 (axial) and 2.66 (sagittal). For
all images the in-plane resolution was 0.8 � 0.8 mm with a
slice thickness of 1.6 mm, with a slice overlap of 0.8 mm. The
resulting images were motion corrected as described in
Cordero-Grande et al. (2018) and super-resolution reconstruc-
tion was performed as in Kuklisova-Murgasova et al. (2012),
resulting in 3D volumes resampled to 0.5 mm isotropic reso-
lution, taking between 30 min and 3 h on a GPU (graphics
processing unit) depending on the input data size (number of
slices). The resulting images were also corrected for bias field
inhomogeneities.

Initial image registration to a
common space

Twenty individual neonatal datasets were selected across a
wide age range from 29 to 43 weeks (Table 1). A combined
representative template was created from this sample based on
two imaging features: T2-weighted image volume intensity and
the cortical mantle (the tissue between the white/grey matter

boundary matter and pial surface), derived from the dHCP
structural pipeline (Makropoulos et al., 2018). This template
was created using the antsMultivariateTemplateConstruc
tion.sh script (Avants et al., 2011, https://github.com/ANTsX/
ANTs). As contrast and shape changes are rapid over this age
range, this template image is not representative of any specific
age group, but acts as an initial middle space. The sample
included in this study is predominantly term age (see histogram
in Fig. 1), therefore, the purpose of this template was to be a
midpoint in the sample age range, but not representative of the
entire sample itself.

All 408 training images, the 46-s scan images and the 40
images with PWML were registered to this common space,
with a single MRI modality, the T2-weighted image, used for
rigid and affine linear registration steps, and two channels, the
T2-weighted and cortical mantle images, used as input chan-
nels for the non-linear registration step. The T1- and T2-
weighted images were resampled into this standard space in
a single step using BSpline interpolation and the affine and
non-linear transformations were recorded. With the exception
of this interpolation step performed during resampling, no fur-
ther spatial smoothing was performed. See Supplementary Fig.
1 for a diagram of the registration process.

Multiple output Gaussian process
regression

To fit the observed intensity and shape data, we used a non-
parametric approach, GPR (Rasmussen and Williams, 2006).
GPR is a data-driven approach that provides a posterior dis-
tribution of functions (here growth curves), given an input
dataset and model. The T1- and T2-weighted images in tem-
plate space, as well as the inverse displacement fields (the x, y
and z component images, describing local tissue shape) were
used as the five outputs of a multi-output Gaussian process
regression (MOGP). Instead of running five serial models for
intensity and shape, we used this MOGP to capitalize on the
shared information between our model outputs (image inten-
sity and shape, which occur concurrently over this age period).
The used multi-output model was the intrinsic co-regionaliza-
tion model as summarized in Álvarez et al. (2012). All
Gaussian process model estimations were calculated using the
GPy package (https://github.com/SheffieldML/GPy).

The design matrix for the multi-output model coded for
PMA, gestational age and sex. A linear sum of three
Gaussian process covariance kernels were used when estimat-
ing the relationship between the three input and output vari-
ables: a linear, a squared exponential and a white noise kernel
(Rasmussen and Williams, 2006). These were chosen because
of prior work showing a combination of parametric smooth
sigmoidal and slower, effectively linear, terms can provide a
better fit over wider age ranges in older age groups (Dean
et al., 2014). MOGP models were estimated for every voxel
(n = 292 449) separately and model hyper-parameters were
optimized according to log marginal likelihood.

Model accuracy was quantified using a 5-fold cross-valid-
ation approach, with every fifth infant, in sequential order of
when they took part in the study, left out of each training fold
and accuracy quantified using mean absolute error of the pre-
dicted image intensity compared to the observed. To test the
fidelity of these individual models to the whole brain tissue
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contrast, the ratio of predicted T1- and T2-weighted values to
observed value was calculated for the entire brain.

To model global shape changes over this period, the affine
transformation was decomposed into stretch and shear com-
ponents and these six elements were modelled separately in a
single output GPR with the same design matrix and cross-val-
idation approach as the voxelwise MOGPs. The rotation and
translation components were ignored.

To illustrate the model prediction of brain growth in the ex
utero neonatal brain, we combined the predicted affine and
warps from 20 weeks (earlier than we have observations) to
44 weeks (later), with GA fixed to 2 weeks prior to scan (al-
though after 41 weeks, it was fixed to 40 weeks). To illustrate
the model prediction of prematurity on the term age brain, we
fixed PMA to 41 weeks with estimated GA in weekly incre-
ments from 28 to 40 weeks.

For every neonate, a voxelwise deviation score was calcu-
lated for their T1 and T2 intensity images. This was the differ-
ence between the model expected mean value (point
prediction) and the observed data from each neonate (calcu-
lated on its out-of-fold prediction), scaled by the square root of
the predicted variance (e.g. standard deviation). This gave a
measure of deviance for each image from the expected image
intensity or shape in units of standard deviation (Z) (termed
normative probability maps in Ziegler et al., 2014).

Quantifying punctate white matter
lesions in neonatal structural images

In 40 neonates, PWMLs were identified by two authors
(J.O.M. and S.C.) and manually outlined on their T1-weighted
image in native (acquired) space using fslview, part of the FSL
package (Smith et al., 2004) and saved as binary mask volume

files. The resulting PWML labels were resampled from native
to template space in a single nearest-neighbour interpolation
step. These PWML labels were used as true positive labels.

As punctate lesions can be very small, we avoided perform-
ing any smoothing on the T1-weighted contrast images, though
this carries a risk of a high level of false positives (Salmond
et al., 2002). To address this, we used a patch-based anomaly
detection method as described by Mah et al. (2014). In short,
for every voxel in a PWML dataset Z-map we (i) extracted a
patch of voxels in that voxel’s immediate neighbourhood
(n = 27); (ii) calculated the similarity of the extracted patch
with the same patch in a reference set of 80 other neonates
randomly sampled; and (iii) calculated a ‘zeta’ distance from
the individual neonate patch to the nearest of k-clusters in the
reference set (here k was set to 8), providing a type of outlier
magnitude index. This index takes into account neighbouring
voxels without resorting to blurring the underlying data.

Receiver operator characteristic (ROC) curves were used to
quantify the ability of these normative probability maps to
classify PWMLs, as in O’Muircheartaigh et al. (2019). For
the T1-weighted scans only, the area under the ROC curve
(AUC) was calculated for every neonate using (i) the simple
sample Z-score; (ii) the MOGP calculated Z-score; and (iii) the
zeta anomaly score. These AUCs were compared pairwise
using a non-parametric Friedman test followed by post hoc
Wilcoxon test (Demšar, 2006).

Quantifying longitudinal consistency
of deviation maps

In a subset of 46 neonates with a second scan acquired entirely
held out from the model construction (Fig. 1B), we quantified
their deviation from the predicted T1- and T2-weighted

Figure 1 Sample demographics. (A) Age distribution of the infants that contributed towards model training (blue); infants with punctate

white matter lesions (n = 40), held out of the training dataset, are highlighted in red. (B) In a premature born subset of this larger cohort (n = 46),

additional repeat scans (green dots) were available at term equivalent age. Repeat scans were also held out of the training set.
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intensity images and calculated the spatial correlation of this
map with the 408 other deviation maps calculated earlier. We
ranked the resulting correlations and counted the number of
times the most similar image to the second time point was the
same neonate at an earlier time point.

Data availability

The anonymized neuroimaging data that support the findings
of this study are available through the developing Human
Connectome Project (http://www.developingconnectome.org/
project/) in a minimally preprocessed form. Secondary pro-
cessed neuroimaging datasets (deviation maps and GPR pre-
diction maps) will also be available through this website. The
image processing scripts used in the study are available via
github https://github.com/jonnyomuir/NeonatalGP.

Results
The GPR model estimated T1- and T2-weighted intensity

growth curves at every voxel in the brain, with associated

continuous estimates of variability. Figure 2 illustrates these

curves averaged in three sets of regions of interest deli-

neated on a single slice: cortex (Fig. 2A), white matter

and transient periventricular structures (Fig. 2B), and sub-

cortical regions (Fig. 2C). The curves show estimates of

image intensity between 25 and 45 weeks PMA. Data

points from individual neonates are overlaid on the

curves. There is clear variability of growth curve shape,

depending on the structure, and direction, depending on

contrast. In regions analogous to the subventricular and

intermediate zones, there is a rapid change towards term-

equivalent age as the structures resolve to white matter. In

other white matter regions, the development is linear.

Scaling the entire raw T1- and T2-weighted image inten-

sity range to the median of the held-out prediction in these

regions of interest, acting as a form of intensity normaliza-

tion, provided closer matches to the curves and the

histograms of model deviations were more readily compar-

able between subjects (Supplementary Fig. 2).

In addition to image intensity, local tissue shape was

estimated using the parameters from the non-linear warps

from each individual neonate to the template, and global

tissue shape was estimated using the 12 degrees of freedom

linear affine parameters to the template. Using these data,

Fig. 3 shows a tripartite representation of the T1- and T2-

weighted intensity data: the top row represents intensity

changes only (templates have been non-linearly aligned,

and thus global and local shape changes have been

removed); the middle row shows local shape and intensity

changes (templates have only been affinely aligned); and the

bottom row shows global, local and intensity changes (tem-

plates are only rigidly aligned).

The mean absolute error of the model prediction against

the (held-out) raw image intensity is shown on the right of

Fig. 3, in units of standard deviation (lower values indicate

better performance). The T2-weighted images showed the

smallest error in subcortical regions and in white matter.

The T1-weighted images showed the smallest error through-

out white matter and cerebellum in particular.

Supplementary Videos 1–6 show the GPR estimate of

brain development as a function of age at scan, with age

at birth fixed at 1 week prior to scan, mirroring the six

rows of Fig. 3. Supplementary Videos 7–12 illustrate the

estimated effect of prematurity on the brain at a fixed age

at scan of 40 weeks and age at birth ranging from 20 to 39

weeks.

Individual differences from the model
are longitudinally consistent towards
term age

In 46 neonates who had MRI collected at a second time

point, deviations (z-scores) from the model predicted T1-

and T2-weighted intensity curves were calculated voxelwise.

Table 1 Sample demographics

Training Longitudinal PWMLb Template

Time 1a Time 2b

Sample size 408 46 – 40 20

Postmenstrual age at scan, weeks

Mean 39.3 33.5 40.8 37.2 37.4

Median 40.3 34.3 40.7 37.1 38.4

Range 26–45 28–37 38–43 29–43 29–42

Gestational age at birth, weeks

Mean 37.6 30.9 – 35.9 34.6

Median 39.14 31.3 – 36.3 36

Range 23–42 24–36 – 27–41 23–41

Sex

Male 219 28 – 23 12

Female 189 18 – 17 8

aThis sample is included in the training dataset.
bThis sample is held out of the training dataset.
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Comparing these maps to the full cohort of 408 neonates,

the deviation maps of these neonates were, on average,

more correlated with themselves at Time point 1

(Fig. 4A) than with other neonates. Of the 46-s scans, 35

(72%) were most correlated to their own first time point

scan relative to the other 407 scans (T1-weighted images),

and 38/46 (83%) on T2-weighted. However, there was a

strong dependence on the time between time points and

intrasubject scan similarity (Fig. 4B, r = 0.89, P5 0.001).

Deviations from expected tissue
intensity are sensitive to punctate
white matter lesions in neonates

In 40 infants with punctate lesions, manually defined

masks were outlined and used as positive labels in an

ROC analysis. The distribution of these PWMLs is illu-

strated in Supplementary Fig. 3. The AUC was calculated

for each of three methods (a simple sample Z-score,

Figure 2 Image intensity growth charts in regions of interest. Illustrative intensity plots for T1- and T2-weighted images from (A)

cortical, (B) white matter and (C) subcortical regions. Individual data points are overlaid on the 1 (dark grey) and 2 (lighter grey) standard

deviation ranges. Mean predictions and prediction interval plots assume the age at birth to be 1 week prior to age at scan. As the effect of

prematurity is not shown here, individual data points are shaded by how far the time of scan is from that neonate’s gestational age at birth (darker

blue = closer). The majority of term-age scanned neonates are also born at normal term age, only �10% were born 44 weeks prior to their

scan. PLIC = posterior limbs of the internal capsule; WM = white matter.
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deviations from the GPR model, and deviations from the

GPR model combined with the zeta outlier detection

method) (Mah et al., 2014) and compared using paired

t-tests. The GPR model significantly outperformed

sample Z-scores (mean AUC = 0.894 versus 0.865,

Wilcoxon W = 98, P5 0.001) and cluster enhancement

increased specificity, again compared to just the GPR

model (mean AUC 0.951 versus 0.894, Wilcoxon

W = 57, P4 0.0001). Four individual babies are shown

in Fig. 5, illustrating punctate lesions and their masks,

as well as the first percentile of values of Z-scores from

the population, from the GPR and after-cluster enhance-

ment. All ROC curves have a single positive class, i.e. we

naı̈vely assumed the only tissue abnormalities for each

infant are the outlined PWMLs.

Figure 6A illustrates the ROC curves for all 40 neonates

in individual plots for each of the three methods. Using

the raw Z-score to quantify PWMLs had an expected

dependence between PMA and AUC (Fig. 6B; Spearman

rho = 0.41, P5 0.01) that was absent using the GPR

model. The differences in performance (in terms of

AUC) are quantified in Fig. 6C. Using the GPR model

provided a mean gain of 0.03 AUC. The performance im-

provement was significantly associated with age at scan

(Fig. 6C; Spearman’s rho = –0.79, P5 0.001). The per-

formance boost by using the zeta anomaly detection

method over the GPR model alone was not age-dependent

(Spearman’s rho = –0.2, P4 0.4) but instead was global,

with a median increase in AUC of 0.05 for each subject,

compared to the GPR model alone (Wilcoxon’s W = 57,

P50.001). The effect of scaling the images to their pre-

dicted median value had a consistent positive effect on

detection accuracy (in all cases, P5 0.001), but the per-

formance gain was quite small, on average AUC improve-

ment 50.01. There was no correlation between PWML

spatial size and AUC.

Figure 3 Model predictions of image shape and intensity over age. Intensity, shape and native space models visualized for each of T2-

and T1-weighted modalities at fixed PMA, assuming age at birth is 1 week prior to scan. The top row for each shows the intensity model in

template space (after removing global and local shape changes), the middle row after deforming the standard space image back to a representative

affine space (only global changes have been removed), and the bottom row shows the expected image in native space (where the image represents

the expected shape, size and intensity of a neonate at that age. The mean absolute error of the prediction of T1 and T2-weighted image intensity is

shown in the images on the right, in units of input data standard deviation. These curves are represented as an animation in Supplementary Videos

1–6.
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Discussion
In prematurity, a neonate’s early life experience is very dif-

ferent to that of a typical term-born child with a combin-

ation of loss of intrauterine environment, medical

treatment, and the hospital environment all providing stres-

sors not experienced by a term-born neonate. Although we

are often more interested in why one individual neonate

does well or badly, given their own context and circum-

stances, prior research has tended to focus on group cohort

studies, with limited applicability for inferring important

differences in a single subject. Using a multi-dimensional

approach to model ex utero brain development over a

wide age window (26–45 weeks PMA), we built continuous

charts of brain shape and image intensity, providing a

brain-wide abnormality index appropriate to developmen-

tal stage and clinical history. In this way, we provide con-

text for growth curves by asking not just what the brain

should look like for a given age but also for a given degree

of prematurity and sex.

The shape of the resulting intensity curves depended on

the structure and content of the tissue being modelled. In

areas such as the globus pallidus, which has a contribution

from tissue iron, and the early myelinating posterior limb

of the internal capsule, the intensity curves from T1 and T2

signal had subtly different direction and trajectories, reflect-

ing the differential sensitivity and unique information con-

tent in these contrasts. Sensory cortex showed more linear

tissue intensity changes compared to frontal cortex, which

is effectively flat over the perinatal period (Fig. 2A).

Developmental changes in global shape were demonstrated

in both typical whole brain growth (Supplementary Videos

1 and 4) and local gyrification (Supplementary Videos 2

and 5). The modelled effect of prematurity in the term-

born brain replicated observations of mild dolichocephaly

in prematurity (Mewes et al., 2007; McCarty et al., 2017)

(Supplementary Videos 9 and 12) as well as enlarged ven-

tricles (Peterson et al., 2003) (Supplementary Videos 8 and

11) and lower intensity of myelin signal in the corticospinal

tract (Supplementary Videos 7 and 10).

In terms of accuracy of modelling tissue intensity, the

model performed very well in white matter as well as cor-

tical areas where morphology is consistent across individual

infants and time points, especially the central and temporal

sulci and the insula (Fig. 3). Where intersubject sulcal vari-

ability is more marked (Li et al., 2015; Dubois et al., 2016;

Bozek et al., 2018), blurring/higher error was evident

(Fig. 3) especially at later PMA. This apparent blurring is

Figure 4 Longitudinal consistency of model deviations. In longitudinal data, individual neonates are more similar to themselves in the

spatial pattern of their individual differences with respect to the model prediction than other infants (A). Pearson’s correlation coefficient matrix

between the model deviations of each pair of images (n = 46) at Time 1 against all follow-up scans at Time 2, with the images on both axes

ordered according to PMA at each scan time. Comparing to the whole cohort of 408 neonates, 35/46 infants are most correlated to themselves at

Time 1 on T1-weighted images, and 38/46 on T2-weighted. The larger the difference in age between scans (B), the less similar the images are

between two time points from the same individual. Red dots indicate classification successes and blue failures (can Time 1 be identified from Time

2 across all 408 training datasets?).
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most likely due to the normal inter-individual variability in

cortical folding in association cortices seen in adults (Van

Essen, 2005) but established just before term age as tertiary

folds develop.

This is also likely due to the dependence of this work on

volumetric registration. Spatial correspondence between

gyri is less optimal than when using a surface representa-

tion that can more accurately register cortical areas in par-

ticular (Robinson et al., 2014). A model built on a surface

representation would also allow a more direct quantifica-

tion of cortical abnormalities (e.g. thicker cortex, abnormal

or immature curvature) that is not possible here but has

been useful in other neurodevelopmental applications, such

as epilepsy (Adler et al., 2017).

The whole brain deviations of individual neonates are

longitudinally consistent. In 83% of neonates with longitu-

dinal data, their pattern of deviation from the GPR inten-

sity model at a second time point identified them uniquely

from the full cohort of 408 infants (Fig. 4A), providing an

anatomical fingerprint. This consistency was lower when

the infant was born at an earlier age (Fig. 4B), around

the time of development of secondary gyri (Chi et al.,

1977) and while transient structures such as the subplate

are still quite prominent (Kostović et al., 2019). Individual

differences in these specific areas may simply be incompar-

able between these developmental stages. An increase in

signal prior to the onset of myelination may be a decrease

in the same area later on depending on the underlying de-

velopmental processes then occurring (e.g. myelination) or

the underlying pathology/injury (inflammation versus

bleed).

From a practical study design and interpretation perspec-

tive, this indicates that individual differences measured at

very early PMA could have different associations with any

form of outcome measure at older ages compared to indi-

vidual differences at later PMA. Previous studies in infants

and older toddlers have demonstrated an age-dependence

on detecting brain-behaviour associations, with consistent

relationships between anatomy (in this case myelin, a pre-

dominantly postnatal process) and cognitive ability being

apparent from around 2 years of age as gross brain

growth slows (O’Muircheartaigh et al., 2013; Dean et al.,

2014). The important question to address in the future will

be when this longitudinal consistency stabilizes (e.g. in lon-

gitudinal studies that cover wider age ranges, for example

in the Baby Connectome Project) (Howell et al., 2019).

We were able to use these intensity charts to detect and

delineate punctate white matter lesions with high accuracy

Figure 5 Four example neonates with punctate white matter lesions. For each case, the T1-weighted image (in template space), the

manually delineated PWML masks, and the distribution of the top 0.5% of values for each of the three methods. The ROC curves for each method

for each individual infant are also shown on the right. GA = gestational age at birth.
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in individual infants. PWMLs are relatively easy to detect

visually on T1-weighted images (Fig. 5), so they represent a

good true positive to evaluate the clinical utility of these

models. Therefore, although longitudinal consistency was

age-dependent, detection of these tissue abnormalities was

not, indicating the possible clinical utility of this type of

approach. Use of the GPR model abolished an age-depend-

ence of abnormality detection of PWMLs, providing very

high accuracy across the age span (Figs 5 and 6). Although

we focused on PWMLs, this sample also included neonates

with small or circumscribed haemorrhages, especially in the

preterm neonates clearly more evident on T2-weighted

images, whereas PWML is predominantly evident on T1-

weighted images (Fig. 7). We did not evaluate regional

tissue size in this work, though this is a natural application

given our modelling of local and global brain shape.

Even if not using model deviations to quantify abnormal-

ity, simply providing estimates of what a ‘normal’ brain

should look like alongside clinical MRIs from patients of

the same age can improve neuroradiology reporting during

this dynamic period (Ou et al., 2017; Prabhu et al., 2018).

For this purpose, model parameters can be held and reused

to generate new images for a given age and sex as needed

by an operator, as well as updated as populations grow or

become more diverse.

This study investigated the postnatal brain exclusively.

An important future question will be to investigate the rela-

tive cross-sectional developmental curves of both the in and

ex utero brain (Bouyssi-Kobar et al., 2016; Lefèvre et al.,

2016; Brossard-Racine et al., 2018), allowing a quantitative

characterization of how pre- and postnatal brain growth

differ at the earliest points in life. Using longitudinal

data, it will also be possible to estimate the relationship

between foetal and neonatal brain structure in those with

prenatally detected brain abnormalities.

A strength of this study is that it used clinical, weighted

images. The images were not initially normalized for inten-

sity and the full range of information in the image was used

in place of segmenting the scan into a small subset of tissue

classes (e.g. grey and white matter probability), as is more

typical in brain morphometry. This was straightforward

here as all images were of one set of protocols from one

scanner (Makropoulos et al., 2018) so the scaling was rela-

tively consistent and comparable across datasets. Using the

Figure 6 White matter injury detection performance. Receiver operating characteristic (ROC) curves for detecting PWMLs in all of the

40 neonates investigated using the three approaches tested here. (A) Curves stretched to the top left corner indicated better performance. An

age dependence on AUC values is evident without the model (B) and reduces substantially when using the Gaussian process (GP) model (B).

Specifically, PWML detection performance improves in an age-dependent fashion when using a Gaussian process model (C, top). Outlier detection

improves detection performance further (C, middle and bottom).
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GPR prediction of the whole image to scale the observed

image improved detection of PWMLs. Although this im-

provement was statistically significant, the effect was

small (an increase in AUROC of �0.01). Nonetheless, the

histograms of the voxelwise deviation scores had a better

overlap with normalization (Supplementary Fig. 2). In more

variable clinical imaging, image scaling is much more im-

portant and some form of adaptation would need to be

performed for multi-site studies or studies with different

acquisitions. Quantitative MRI techniques, such as diffu-

sion MRI or tissue relaxometry (as in Sadeghi et al.,

2013; Dean et al., 2014), would obviate this need for scal-

ing entirely and provide a clearer interpretation of the in-

tensity changes. However, quantitative methods are not in

widespread clinical use, limiting the generalizability of such

models to real world use, whereas weighted T1 and T2

contrasts are standard in almost all clinical MRI systems

and protocols.

Our models were naı̈ve to the intensities or growth func-

tions in the neighbourhood of the voxels being fit so there

was no constraint on the model parameters of surrounding

voxels being similar. Though the model can be extended to

include neighbourhood information, a simpler approach

would be to apply spatial smoothing to the data prior to

fitting the model. Explicitly including a patch of voxel

intensities as further outputs in the model may have

helped further regularize the resulting model parameters,

but would come at the cost of increasing the number of

parameters in the intrinsic co-regionalization model and

may introduce blurring. A reduced-rank approach may be

able to address the redundancy in this parameter space,

while providing a more global spatial context (Kia and

Marquand, 2018).

We also assumed homogeneity of variance across our

input variables. From a developmental point of view this

is unrealistic, gyrification induces considerably more

Figure 7 Four example cases with spatially variable pathologies that are highlighted by the model. Raw data are in the top row of

each section, Gaussian process-derived Z-scores in the bottom row. (A) Subject has a posterior germinal matrix haemorrhage, evident as an outlier

on T2 mainly. (B) Subject has several punctate cerebellar haemorrhages, again evident only on T2. (C) Subject has punctate lesions seen only on

T1. (D) Subject has a germinal matrix haemorrhage in the caudothalamic notch. Pathology visibility using the Gaussian process model reflects the

pathological sensitivity of the scan itself. GA = gestational age at birth.
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inter-individual variability as the neonate moves towards

term-equivalent age so there is likely more true popula-

tion variability as infants get older (Dubois et al., 2008).

This may be reflected here in the relative blurring of

cortex in model predictions of older neonates. A hetero-

scedastic model (estimating input-dependent noise) or

estimating a linear term for the estimated variance may

provide a more accurate description of this type of vari-

ance. In addition, for model estimation we used a

Gaussian likelihood function. This has been shown to

be sensitive to outlier values, probable in noisy imaging

data and clinically the case here, where spatially hetero-

geneous incidental findings (as seen in these infants,

punctate lesions or small bleeds) could influence model

fit and curve shape. In the future, a Student’s t process

approach, though more computationally expensive, may

be more appropriate due to its robustness to outliers

(Tracey and Wolpert, 2018).

Perinatal stress, and especially premature birth, has a

substantial effect on brain development, conferring later

liability to adverse cognitive and health outcomes

(Aylward, 2014). Although MRI has shown some sensitiv-

ity/specificity for predicting later motor outcomes in those

with severe brain injury, there are scant robust links to

cognitive and psychiatric outcome (Johnson and Marlow,

2011; van’t Hooft et al., 2015; Batalle et al., 2018). Studies

focus on affected groups, rarely individuals, assuming

homogeneity in the effect of prematurity that is untenable,

and thus likely averaging out effects that are clinically sig-

nificant on an individual level. Investigating individual neo-

nates as against a growth curve has excellent sensitivity to

pathology, uses standard clinical contrast structural MRI

and provides an easily interpretable approach to detecting

what is atypical in the already atypically developing brain.
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