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Abstract

Rodents’ ultrasonic vocalizations (USVs) provide useful information for assessing their

social behaviors. Despite previous efforts in classifying subcategories of time-frequency pat-

terns of USV syllables to study their functional relevance, methods for detecting vocal ele-

ments from continuously recorded data have remained sub-optimal. Here, we propose a

novel procedure for detecting USV segments in continuous sound data containing back-

ground noise recorded during the observation of social behavior. The proposed procedure

utilizes a stable version of the sound spectrogram and additional signal processing for better

separation of vocal signals by reducing the variation of the background noise. Our proce-

dure also provides precise time tracking of spectral peaks within each syllable. We demon-

strated that this procedure can be applied to a variety of USVs obtained from several rodent

species. Performance tests showed this method had greater accuracy in detecting USV syl-

lables than conventional detection methods.

Introduction

Various species in the rodent superfamily Muroidae (which includes mice, rats, and gerbils)

have been reported to vocalize ultrasonic sounds in a wide range of frequencies up to around

100 kHz [1]. Such ultrasonic vocalizations (USVs) are thought to be associated with specific

social behaviors. For several decades, laboratory mice (Mus musculus domesticus and Mus
musculus musculus) have been reported to produce USVs as part of courtship behaviors [2,3].

Their vocalizations are known to form a sequential structure [4] which consists of various

sound elements, or ‘syllables’. Almost all USV syllables in mice exhibit spectral peaks between

50–90 kHz with a time duration of 10–40 ms, though slight differences in the syllable spectro-

temporal pattern were observed among different strains [5]. On the other hand, it has been

also well described that laboratory rats (Rattus norvegicus domesticus) produce USV syllables

which have two predominant categories: one has a relatively higher frequency (around 50

kHz) with short duration (a few tens of milliseconds), and the other has a lower frequency
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(~22 kHz) but much a longer duration. These two USV syllables are here named as ‘pleasant’

and ‘distress’ syllables since these are generally considered to be indicators of positive and neg-

ative emotional states, respectively [6–9]. This categorization appears to be preserved in differ-

ent strains of rats, though a slight difference in duration has been reported [10]. In another

rodent family, Mongolian gerbils (Meriones unguiculatus), vocalizations have also been exten-

sively studied as animal models for both the audio-vocal system and for social communication

[11–14]. They produce various types of USV syllables with a frequency range up to ~50 kHz

and distinct spectrotemporal patterns [15,16].

In general, rodent USVs have been thought to have ecological functions for male-to-female

sexual display [2,3,17–20], emotional signal transmission [21–26], and mother-infant interac-

tions [27–30]. Mouse USVs can be discriminated into several subcategories according to their

spectrotemporal patterns [31–35], and these patterns could predict mating success [35,36],

though subcategories are not consistent between studies. Their USV patterns are innately

acquired rather than a learned behavior [34,37], though sociosexual experience can slightly

enhance the vocalization rate [38]. In rat USVs, the pleasant (~50 kHz) and distress (~22 kHz)

calls have been suggested to have a communicative function since these calls can transmit the

emotional states of the vocalizer to the listener and can modify the listener’s behavior such as

mating [26,39], approaching [40], or defensive behavior [41,42]. It has been suggested that per-

ception of these calls can also modulate the listeners’ affective state [21]. Further discrimina-

tion of subcategories within the pleasant call has been studied to better understand their

functional differences in different situations [6–9].

From these characteristics and functions, rodent USVs are expected to provide a good win-

dow for studying sociality and communication in animals. Mouse USVs have been used for

studying disorders of social behavior, with a particular focus on autism spectrum disorder

[43–46]. Thanks to recent genetic manipulation techniques, social disorders can be modeled

in mice and then studied directly through USV analysis to quantify social behavior. On the

other hand, studies utilizing rat USVs have focused on elucidating the neural mechanisms for

the emotional system [6–9], maternal behavior [47–49], and social interactions [50]. USVs of

other species in the same superfamily of rodents have also been studied as a variety of research

models, including parental behaviors, auditory perception and vocal motor control in gerbils

[11,51,52]. Thus, a unified analysis tool for analyzing rodent USVs is helpful to transfer knowl-

edge obtained across different species.

Previous studies have proposed analysis toolkits such as VoICE [53], MUPET [54] or

DeepSqueak [55], which are successful when the recorded sounds have a sufficiently high sig-

nal-to-noise ratio. These analysis tools can be less effective when recordings are contaminated

with background noise introduced during recording. Noise can be short and transient (e.g.,

scratching sounds) or stationary (e.g., noise produced by fans or air compressors). Such noise

greatly deteriorates the segmentation of USV syllables, and smears acoustical features (e.g.,

peak frequency) of the segmented syllables, possibly reducing the reliability of classification of

vocal categories and quantification of acoustical features of vocalizations.

Despite a variety of behaviors and functions among species, rodent USVs generally tend to

exhibit a single salient peak in the spectrum, with few weak harmonic components, if any (see

Fig 1A for example). This tendency is associated with a whistle-like sound production mecha-

nism [56]. From a sound analysis point of view, this characteristic provides a simple rule for

isolating USV sounds from background noise; that is, narrow-band spectral peaks can be cate-

gorized as vocalized sounds whereas broadband spectral components can be categorized as the

background. Thus, emphasizing the spectral peaks while flattening the noise floor should

improve discrimination of vocalized signals from background noise.

Robust segmentation of ultrasonic vocalizations in rodents

PLOS ONE | https://doi.org/10.1371/journal.pone.0228907 February 10, 2020 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0228907


Here, we propose a signal processing procedure for robust detection of USV syllables in

recorded sound data by reducing acoustic interference from background noise. Additionally,

this procedure is able to track multiple spectral peaks of the segmented syllables. This proce-

dure consists of five steps (see Fig 1B): (i) make a stable spectrogram via the multitaper

method, which reduces interaction of sidelobes between signal and stochastic background

noise, (ii) flatten the spectrogram by liftering in the cepstral domain, which eliminates both

pulse-like transient noise and constant background noise, (iii) perform thresholding, (iv) esti-

mate onset/offset boundaries, and (v) track spectral peaks of segmented syllables on the flat-

tened spectrogram. The proposed procedure is implemented in a GUI-based software

Fig 1. Spectrogram of a rodent ultrasonic vocalization (USV) and proposed method for detection of vocal elements in continuously recorded data. (A) Example

spectrogram of a mouse vocalization. The brief segment of vocalization (a few ten to a few hundred milliseconds) is defined as a ‘syllable’, and the time interval between

two syllables is called a ‘gap’. (B) Schematic diagram of the proposed signal processing procedure. (C, D) Example of a multitaper spectrum and a flattened spectrum,

respectively. The flattening process subtracts an estimated noise floor (green line), and the segmentation process detects spectral components above the defined threshold

(blue line) as syllables. Example multitaper (E) and flattened (F) spectrograms obtained from a recording of a male mouse performing courtship vocalizations to a female

mouse. (G) Processed result of USV data (same as E,F) showing detected syllable periods and spectral peak traces of the syllables (blue highlighted dots). Dark gray zones

show non-syllable periods and light gray zones indicate a margin inserted before and after a syllable period.

https://doi.org/10.1371/journal.pone.0228907.g001
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(“USVSEG”, implemented as MATLAB scripts; available from https://sites.google.com/view/

rtachi/resources), and it outputs segmented sound files, image files, and spectral peak feature

data after receiving original sound files. These output files can be used for further analyses, for

example, clustering, classification, or behavioral assessment by using other toolkits.

The present study demonstrated that the proposed procedure can be successfully applied to

a variety of USV syllables produced by a wide range of rodent species (see Table 1). It achieves

nearly perfect performance for segmenting syllables in a mouse USV dataset. Further, we con-

firmed that our procedure was more accurate in segmenting USVs, and more robust against

elevated background noise than conventional methods.

Results

Overview of USV segmentation

Rodents USVs consist of a series of brief vocal elements, or ‘syllables’ (Fig 1A), in a variety of

frequency ranges, depending on the species and situation. For instance, almost all mouse

strains vocalize in a wide frequency range of 20–100 Hz, while rat USVs show a focused

Table 1. Rodent USV dataset for performance tests.

Species Strain and Condition Data ID File duration (s) # syllables

Mouse

(Mus musculus)

C57BL/6J

male courtship

A / Aco59_2 113.4 333

B / Aco59_2 115.5 85

C / Can15-1 97.6 371

D / Can15-1 97.0 217

E / Can16-1 135.9 394

F / Can16-1 118.7 171

G / Can9_2 104.7 420

H / Can9_2 205.9 306

I / Aco65-1 98.6 383

L / Can3_1 104.9 119

BALB/c

male courtship

BALB128-4 60.0 168

ClnBALB124-4 53.0 203

Shank2-

male courtship

Shank2_S2-4-65 65.1 261

Shank2_S2-4-103 65.1 193

Shank2_S2-4-108 65.1 326

C57BL/6J

isolated pup call

Rin3-1pup 175.0 62

Rin3-3pup 175.0 41

Rin3-7pup 175.0 117

Rin3-8pup 175.0 112

Rin3-9pup 175.0 74

Rat

(Rattus norvegicus domesticus)
LEW/CrlCrlj

pleasant call

a14 33.2 100

a18 51.6 100

a42 28.7 100

LEW/CrlCrlj

distress call

a55 110.0 37

a57 142.0 57

a58 100.0 29

a60 100.0 32

Gerbil

(Meriones unguiculatus)

male courtship uFMdata 27.5 124

uSFMdata 59.0 112

https://doi.org/10.1371/journal.pone.0228907.t001
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frequency around 20–30 kHz when they are in distress. These vocalizations are sometimes dif-

ficult to detect visually in a spectrogram because of unavoidable background noise. Such situa-

tions provide a challenge to the detection and segmentation of each USV syllable from

recorded sound data. Here, we assessed a novel procedure consisting of several signal process-

ing methods for segmentation of USV syllables (Fig 1B). A smooth spectrogram of recorded

sound was obtained using the multitaper method (Fig 1C and 1E) and was flattened by cepstral

filtering and median subtraction (Fig 1D and 1F). The flattened spectrogram was binarized

with a threshold that was determined in relation to the estimated background noise level.

Finally, the signals that exceeded the threshold were used to determine the vocalization period

(Fig 1G). Additionally, our procedure detects spectral peaks at every timestep within the seg-

mented syllable periods. In this procedure, users only need to adjust the threshold value based

on the signal-to-noise ratio of the recording, and they do not need to adjust any other parame-

ters (e.g., maximum and minimum limits of syllable duration and frequency) once appropriate

values for individual animals have been determined. Note that we provided heuristically deter-

mined parameter sets as reference values (see Table 2).

Searching for an optimal threshold

To assess the relationship between the threshold parameter and segmentation performance,

we validated the segmentation performance of our procedure on a mouse USV dataset (Fig 2).

The actual threshold was defined as the multiplication of a weighting factor (or “threshold

value”) and the background noise level, which was quantified as the standard deviation (σ) of

an amplitude histogram of the flattened spectrogram (Fig 2A; see Methods for details). With

low or high threshold values, the segmentation procedure could miss weak vocalizations, or

mistakenly detect noise as syllables, respectively (Fig 2B). To find an optimal threshold value

for normal recording conditions, we conducted a performance test on a dataset including 10

recorded sound files obtained from 7 mice that had onset/offset timing information defined

manually by a human expert (Table 1). We calculated hit and correct rejection (CR) rates to

quantify and compare the consistency of segmentation by the proposed procedure with that of

manual processing (see Methods). The results showed a tendency for the hit rate to decrease

and the correct rejection rate to increase as the threshold value increased (Fig 2C). We also

quantified the consistency by an inter-rater consistency index, Cohen’s κ [57]. As the result,

we found the κ index tended to increase along increasing threshold values, and was sufficiently

high (> 0.8) [58] when the threshold value was 3.5 or more (Fig 2D). Note that we used an

identical parameter set for the performance tests in this (see Table 2) with varying the thresh-

old value only.

Table 2. Chosen parameter sets for different species and situations.

Species/Strain/Condition min.

frequency

(kHz)

max.

frequency

(kHz)

min.

duration

(ms)

max.

duration

(ms)

min.

gap

(ms)

threshold value

(σ)

Mice (C57BL/6J) 40 120 3 300 30 4.0

Mice (BALB/c) 40 120 3 300 30 3.5

Mice (Shank2-) 40 120 3 300 30 3.5

Mice (C57BL/6J pup) 40 120 3 300 30 3.0

Rats (pleasant call) 20 100 3 500 40 3.0

Rats (distress call) 12 40 100 3000 40 6.0

Gerbils 20 60 5 300 30 4.0

https://doi.org/10.1371/journal.pone.0228907.t002
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Segmentation performance for various USVs

To demonstrate applicability of the proposed procedure for a wide variety of rodent USVs, we

tested segmentation performance on the USVs of two strains of laboratory mice (C57BL/6J

and BALB/c), two different call types from laboratory rats (PC and DC), and USV syllables of

gerbils, respectively. We conducted performance tests for each dataset using manually detected

onset/offset information (Table 1). Note that PC and DC in rats show a remarkable difference

in both duration and frequency range even when produced in the same animal; thus we treated

the two calls independently and used different parameter sets for them. Similar to threshold

optimization, we calculated hit and CR rates to quantify matching of segmentation between

automatic methods and manual segmentation by human experts. Results show that when

using heuristically chosen parameter sets (Table 2), our procedure has over 0.95 accuracy in

segmenting various USV syllables (Fig 3). Slight variability in the accuracy and κ index was

observed across conditions, and this can be explained by differences in the background noise

level during recording (as shown in the spectrogram for gerbil vocalizations containing scratch

noises).

Fig 2. Relationship between thresholding and segmentation performance for mouse USVs. (A) Computation scheme of the threshold value. All data points (pixels)

of the flattened spectrogram were pooled and used to make a histogram as a function of amplitude in dB (black line). The background noise distribution was

parameterized by a standard deviation (σ) of the gaussian curve (green broken line). The threshold value was defined as a weighting factor of σ (shown as blue vertical

lines for example values: 2.5, 4.0 and 5.5). (B) Example segmentation results for threshold values at 2.5, 4.0 and 5.5 (σ). Uppermost panel shows the original flattened

spectrogram with segmented periods as syllables performed by a human expert (blue shaded area). Lower three panels depict thresholded binary images and results of

our automatic segmentation for three different threshold values (orange shaded areas). Typically, the false detection rate decreases and the miss rate increases as the

threshold value increases. (C) Segmentation performance of our procedure as a function of threshold value. The hit rate (blue line) tends to decrease, while the correct

rejection (red) tends to increase as the threshold value increases. The accuracy score (black) showed a balanced index of the performance. (D) Cohen’s κ index as a

function of threshold value, showing consistency of detections between the automatic and the manual segmentations. The κ index tends to increase as the threshold

value increases.

https://doi.org/10.1371/journal.pone.0228907.g002
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Comparison with conventional methods

We compared our procedure with conventional signal processing methods (Fig 4), which

include a single-window (or “singletaper”) method for generating the spectrogram, and long-

term spectral subtraction (“whitening”) and have been previously used in other segmentation

procedures [59]. As in this previous study, we used the hanning window as a typical singletaper

Fig 3. Example results of segmentation and spectral peak tracking on various rodent species. (A-C)Mice courtship calls obtained from three different strains: (A)

C57BL/6, (B) BALB/c, (C) a disease model for mutation in ProSAP1/Shank2 proteins (“Shank2-”). (D) Pup calls obtained an isolated juvenile mouse (C57BL/6). (E-F)

Rats calls in the context of pleasant (E) and distress (F) situations. (G) Representative USV sounds of gerbils, named upward sinusoidal frequency modulated (uSFM)

calls. (H-I) Detection performance on all seven dataset conditions. All conditions showed more than 0.95 accuracy scores (H) and sufficiently high κ-index values (I) on

the dataset (see Methods for details).

https://doi.org/10.1371/journal.pone.0228907.g003
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to generate the spectrogram. The performance test was carried out with four conditions con-

sisting of combinations of two windows (multitaper vs. singletaper) and two noise reduction

methods (flattening vs whitening) (see “Comparison with conventional methods” in Meth-

ods). The dataset used for searching for the optimal threshold was also used for this perfor-

mance test. Results demonstrated greater performance with flattening than whitening, and

slightly higher performance in multitaper compared to singletaper spectrograms (Fig 4A). A

statistical test showed a significant effect of noise reduction method (two-way ANOVA; F

(1,36) = 19.02, p< 0.001), but not of windowing method (F(1,36) = 0.17, p = 0.681), and there

was no significant interaction between them (F(1,36) = 0.00, p = 0.960). Further, to determine

robustness of the segmentation methods against noise, we added white noise to the sound

dataset at levels of −12, −6, 0, and 6 dB higher than the original sound (see “Noise addition” in

Methods), and ran the performance test again. In particular, we compared performance

between the multitaper and singletaper spectrograms using only flattening for the noise reduc-

tion. The result of this test clearly showed that the multitaper method was more robust for

degraded signal-to-noise situations than the singletaper method (Fig 4B). The statistical test

showed significant main effects of both additive noise level and windowing method with sig-

nificant interaction between them (two-way ANOVA; noise level: F(4,90) = 51.54, p< 0.001;

window: F(1,90) = 19.59, p< 0.001; interaction: F(4,90) = 6.42, p< 0.001).

Discussion

The proposed procedure showed nearly perfect segmentation performance for variable USV

syllables of a variety of species and strains in the rodent superfamily. The procedure was

designed to emphasize vocal components in the spectral domain while reducing variability of

background noise, which inevitably occurs during observation of social behavior, and usually

interferes with the segmentation process. This process helped to discriminate vocal signals

from the background by thresholding according to the signal-to-noise ratio. Additionally, our

procedure also provides a precise tracking of spectral peaks within each vocalized sound. The

proposed method was more robust than the conventional method for syllable detection, in

particular, under elevated background noise levels. These results demonstrated that this proce-

dure can be generally applied to segment USVs of several rodent species.

Fig 4. Segmentation performance of various combinations of signal processing methods. (A) Accuracy scores of

segmentation on flattened or whitened spectrogram produced by a multitaper (blue) or singletaper (red) method. We

used the hanning window as the single taper condition. (B) Performance sensitivity to additive noise. Segmentation

with multitaper (blue) and single-taper (red) spectrograms against experimentally added background noise. White

noise was added to the original data at levels of −12, −6, 0, or 6 dB before processing.

https://doi.org/10.1371/journal.pone.0228907.g004
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Our procedure was designed to emphasize distribution differences between vocal signals

and background noise, under the assumption that rodent USV signals generally tend to have

narrow-band sharp spectral peaks. In this process, we employed the multitaper method which

uses multiple windows for performing spectral analysis (Thomson 1982), and has been used in

vocal sound analyses for other species, e.g., songbirds [56]. We also introduced the spectral

flattening process in which the broadband spectrum in each timestep was flattened by cepstral

filtering. As we demonstrated in the performance comparison tests, a combination of multita-

per windowing with flattening showed better performance than the conventional method of

single-taper windowing with long-term spectral subtraction that has been used in a previous

mouse USV analysis [59]. In particular, the difference in performance was seen under

degraded signal-to-noise conditions. Note that our experimental results did not focus on appli-

cability for lower-frequency (i.e. <20 kHz), harmonic-rich, or harsh noise-like vocalizations

since these types of sounds are outside of the scope of the processing algorithm.

We here employed a redundant way to represent the spectral features of USVs, and export-

ing up to 3 candidates for spectral peaks for every timestep. This provides additional informa-

tion about harmonics, as well as an appropriate way to treat “jumps,” which are sudden

changes in the spectral peak tracks [4]. Researchers have attempted to distinguish syllables into

several subcategories according to their spectrotemporal features so they can analyze sequen-

tial patterns to understand their syntax [32,35,36,60]. The procedure proposed in the present

study will allow for better categorization of USV syllable subtypes.

Methods

Proposed procedure

Our procedure consists of five steps: multitaper spectrogram generation, flattening, threshold-

ing, detecting syllable onset/offset, and spectral peak tracking. In particular, the multitaper

method and flattening were core processes for suppressing the variability of background noise

as described below in detail.

Multitaper spectrogram generation. We used the multitaper method [61] for obtaining

the spectrogram to improve signal salience against background noise distribution. Multiple

time windows (or tapers) were designed as a set of 6 series of discrete prolate spheroidal

sequences with the time half bandwidth parameter set to 3 [62]. The length of these windows

was set to 512 samples (~2 ms for 250 kHz sampling rate). In each time step, the original wave-

form was multiplied by all six windows and transformed into the frequency domain. The six

derived spectrograms were averaged into one to obtain a stable spectrotemporal representa-

tion. This multitaper method reduces background noise compared to a typical single-taper

spectrogram, while widening the bandwidth of signal spectral peaks.

Flattening. To emphasize spectral peaks for detectability of vocalization events, we

reduced the variability of background noise by flattening the spectrogram. This flattening con-

sists of two processes. First, transient broadband (or impulse-like) noises were reduced by lif-

tering in every time step, in which gradual fluctuation in the frequency domain, or spectral

envelope was filtered out by replacing the first three cepstral coefficients with zero. This pro-

cess can emphasize spectral peaks of rodent USVs since they are very narrow-band and have

few or no harmonics. Then, we calculated a grand median spectrum that had median values of

each frequency channel, and subtracted it from the liftered spectrogram.

Thresholding and detection. After flattening, we binarized the flattened spectrogram

image at a threshold which was determined based on the estimated background noise level.

The threshold was calculated as the multiplication of a weighting factor (or “threshold value”)

and the standard deviation (σ) of a background distribution (Fig 2A). The σ value was
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estimated from a pooled amplitude histogram of the flattened spectrogram as described in a

previous study for determining onsets and offsets of birdsong syllables [63]. The threshold

value is normally chosen from 3.5–5.5 and can be manually adjusted depending on the back-

ground noise level. After binarization, we counted the maximum number of successive pixels

along the frequency axis whose amplitude exceeded the threshold in each time frame, and con-

sidered the time frame to include vocalized sounds when the maximum number counted was

5 or more (corresponding to a half bandwidth of the multitaper window).

Timing correction. A pair of detected elements split by a silent period (or gap) with a

duration less than the predefined lower limit (“gap min”) was integrated to omit unwanted

segmentation within syllables. We usually set this lower limit for a gap around 3–30 ms accord-

ing to specific animal species or strains. Then, sound elements with a duration of more than

the lower limit (“dur min”) were judged as syllables. If the duration of an element exceeded the

upper limit (“dur max”), then the element was excluded. These two parameters (dur min and

max) were differentially determined for different species, strains, and situations. The heuristi-

cally determined values of these parameters are shown in a table (Table 2) for reference.

Spectral peak tracking. We also implemented an algorithm for tracking multiple spectral

peaks as an additional analysis after segmentation. Although the focus of our study is temporal

segmentation of syllables, we briefly explain this algorithm as follows. First, we calculated the

degree of salience of spectral peaks by convolving a second-order differential spectrum of the

multitaper window itself into the flattened spectrum along the frequency axis. This process

emphasizes the steepness of spectral peaks in each time frame. Then, the strongest four local

maxima of spectral saliency were detected as candidates. We grouped the four peak candidates

to form a continuous spectral object according to their time-frequency continuity (within 5%

frequency change per time frame). If the length of the grouped object was less than 10 time

points, the spectral peak data in the object was excluded as a candidate for a vocalized sound.

At the final step, the algorithm outputs up to three peaks in each time step.

Output files. The software can output a variety of processed data in multiple forms (Fig

1B). Segmented syllables are saved as sound files (WAV format), and image files of either flat-

tened or original spectrograms (JPG format). A summary file (CSV) contains onset and offset

time points and an additional three acoustical features for each segmented syllable: duration,

max-frequency (maxfreq), and max-amplitude (maxamp). Maxfreq is defined as the peak fre-

quency of the time frame that has the highest amplitude in that syllable, and maxamp is the

amplitude value of the maxfreq. These features are widely used in the field of USV studies [35–

37]. Furthermore, the software generates the peak frequency trace of each syllable so that users

can perform post-processing after segmentation to obtain additional features.

Dataset

For testing the segmentation performance of our procedure, we prepared datasets consisting

of recorded sounds and manually detected onset/offset timing of syllables for three species in

the rodent superfamily (Table 1). The manual segmentation for each species was performed by

a different human expert. These experts segmented sound materials by visual inspection of a

spectrogram, independently of any automatic segmentation system. They were not informed

about any of the results of our procedure beforehand. Finally, we collected segmented data for

each condition (species, strains, or contexts) as described below. For all species/strain/context

conditions, ultrasonic sounds were recorded using a commercial condenser microphone and

an A/D converter (Ultra-SoundGate, Avisoft Bioacoustics, Berlin, Germany; SpectoLibellus2D,

Katou Acoustics Consultant Office, Kanagawa, Japan). All data were resampled at 250 kHz to

have the same sampling rates before starting performance tests for consistency across datasets,
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though our procedure can be applied to data with much higher sampling rates. The whole

dataset is available online (https://doi.org/10.5281/zenodo.3428024).

Mice. We obtained 10 recording sessions of courtship vocalizations from 6 mice (Mus
musculus; C57BL/6J, adult males), under the same condition and recording environment as

described in our previous work [38]. Briefly, the microphone was set 16 cm above the floor

with a sampling rate of 400 kHz. Latency to the first call was measured after introducing an

adult female of the same strain into the cage and then ultrasonic recording was performed for

one additional minute. The data recorded during the first minute after the first ultrasound call

was analyzed for the number of calls. For all recording tests, the bedding and cages for the

males were changed one week before the recording tests, and these home-cage conditions

were maintained until the tests were completed. These sound data files were originally

recorded as part of other experiments (in preparation), and shared on mouseTube [64] and

Koseisouhatsu Data Sharing Platform [65]. Note that we chose 10 files from the shared data

and excluded two files (“J” and “K”) which did not contain enough syllables for the present

study. To assess the applicability of our procedure for a wider range of strains and situations,

we also obtained data from another strain (“BALB/c”), a disease model (“Shank2-”), and an

isolated juvenile’s pup call (“Pup”). For the disease model, we used the dataset of ProSAP1/

Shank2-/- mice [33], which was also available on mouseTube. These mice have mutated Pro-

SAP1/Shank2, which is one of the synaptic scaffolding proteins mutated in patients with

autism spectrum disorders (ASD). The experimental procedure used for BALB/c mice was the

same as for C57BL/6J mice. For Shank2- mice, the procedure was similar but see reference for

details [33].

Mouse pups. For recording pup USVs, we used C57BL/6J mice at postnatal day 5–6. The

microphone was set 16 cm above the floor with a sampling rate of 384 kHz. After introducing

a pup into a clean cage from their nest, ultrasonic recording was performed for three minutes.

These sound data files were originally recorded as part of other experiments (in preparation).

Rats. The pleasant call (PC) or distress call (DC) was recorded from an adult female rat

(Rattus norvegicus domesticus; LEW/CrlCrlj, Charles River Laboratories Japan). For the

recording of PC, the animal was stroked by hand on the experimenter’s lap for around 5 min-

utes. To elicit DC, a different animal was transferred to a wire-topped experimental cage and

habituated to the cage for 5 minutes. Then, the animal received air-puff stimuli (0.3 MPa) with

an inter-stimulus interval of 2 s to the nape from a distance of approximately 5–10 cm. Imme-

diately after 30 air-puff stimuli were delivered, USVs were recorded for 5 min. These vocaliza-

tions were detected by a microphone placed at a distance of approximately 15–20 cm from the

target animal. The detected sound was digitally recorded at a sampling rate of 384 kHz.

Gerbils. Vocalizations of the Mongolian gerbil (Meriones unguiculatus) were recorded via

a microphone positioned 35 cm above an animal cage that was positioned in the center of a

soundproof room. The sound was digitized at a sampling rate of 250 kHz. This sound data was

originally obtained as part of a previous study [15]. Here, we targeted only calls with funda-

mental frequencies in the ultrasonic range (20 kHz or more; i.e., upward FMs and upward

sinusoidal FMs), which are often observed under conditions that appear to be mating and

non-conflict contexts [15].

Performance tests

Segmentation performance score. We quantified segmentation performance of our soft-

ware by calculating accuracy scores. First, onset and offset timestamps of detected syllables for

each data file were converted into a boxcar function which indicated syllable detection status

by 1 (detected) and 0 (rejected) in every 1-ms time step. We counted the number of time
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frames which contained true-positive or true-negative detections as hit and correct-rejection

counts, respectively. Then, the accuracy score was calculated as an average of hit and correct-

rejection rates. We additionally calculated an inter-rater agreement score, Cohen’s κ [58], to

assess degrees of agreement between our software and human experts by the following for-

mula: (pa−pc) / (1 –pc), where pa indicates the accuracy, and pc shows an expected probability

to coincide two raters by chance.

Threshold optimization. When the threshold was set too high, the segmentation proce-

dure would miss weak vocal sounds, or mistakenly detect noises as syllables. To find an opti-

mal threshold value for normal recording conditions, we assessed segmentation performance

on a dataset for mice USVs by changing the threshold value. For this test, we used 10 files of

C57BL/6J mice from the dataset. We varied the threshold value from 3.0 to 6.0 with 0.5 steps.

The optimal value was defined as the value which showed a peak in the accuracy index.

Comparison with conventional methods. To determine to what extent our procedure

improved the detection performance from conventional methods, we compared the perfor-

mance of four conditions in which two processing steps were swapped with conventional

ones. For conventional methods, we employed a normal windowing method (“singletaper”

condition) using the hanning window to replace the multitaper method for making the spec-

trogram. We also used long-term spectral subtraction (“whitening” condition) to replace the

flattening process. These two methods have been used as standard processing methods for sig-

nal detection algorithms [59]. Here, we swapped one or both methods (windowing and noise

reduction) between ours and conventional ones to make four conditions: multitaper+-

flattening, multitaper+whitening, singletaper+flattening, and singletaper+whitening. Then,

the performance of each condition was tested on the mouse USV dataset that was used for the

threshold optimization test. Note that the threshold for bandwidth in the detecting process

after the binarization was adjusted to 3 for the singletaper method (it was 5 for the multitaper)

to correspond to its half bandwidth. A two-way repeated measures ANOVA was performed on

the windowing factor (singletaper vs multitaper) and the noise-reduction factor (flattening vs

whitening) with a significance threshold α = 0.05.

Noise addition. As an additional analysis for assessing the robustness against noise, we

carried out the performance test again on the multitaper+flattening and singletaper+flattening

conditions by adding white noise to the original sound data at levels of −12, −6, 0, and 6 dB,

referring to the root-mean-square of the original sound amplitude. We have not tested the

whitening method here since the method showed clearly lower performance than the flatten-

ing method in the original performance test. A two-way repeated measures ANOVA was per-

formed on the windowing factor (singletaper vs multitaper) and the noise-level factor (none,

−12, −6, 0, 6 dB) with a significance threshold α = 0.05.
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