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Abstract

Psoriasis is a common autoimmune disorder that affects the skin. Approximately 30% of 

individuals with psoriasis will develop inflammatory arthritis, often in the setting of human 

leukocyte antigen B27. Both forms of disease are thought to be the result of prolonged 

inflammation mediated by T lymphocytes, dendritic cells, and keratinocytes. While there are 

treatments aimed at immunomodulation, targeting T cell co-inhibitory receptors signaling 

pathways may provide therapeutic benefit. This review will discuss in detail four T cell co-

inhibitory receptors and their potential application for the treatment of psoriasis and psoriatic 

arthritis.

Psoriasis (Ps) is a common autoimmune skin disorder affecting nearly 2% to 4% of the 

global population.1 Despite its broad dispersion in the global population, these conditions 

are more commonly associated with the American, Canadian, and European populations 

compared to African, African-American, and Asian populations.2,3 Men and women are 

affected with equal frequency. The disease may begin at any age. There are five different 

types of psoriasis: plaque, guttate, inverse, pustular, and erythrodermic.4 Plaque psoriasis, 

also known as psoriasis vulgaris, makes up about 90% of cases. It typically presents with 

plaques that have an erythematous base and a silvery surface. Areas of the body most 

commonly affected are the back of the forearms, shins, around the navel, and the scalp. 

Psoriasis can also cause changes to the nails, such as pitting or onycholysis, hyperkeratosis 

under the nails, and horizontal ridging. Being multifactorial, psoriasis has both genetic and 

environmental factors that trigger the onset of disease.1 Identical twins are three times more 

likely to be affected compared to non-identical twins. Certain environmental conditions, 

such as stress, can also trigger psoriasis.5 Psoriasis has many comorbidities associated with 

it. These include, but are not limited to, cardiovascular disease, inflammatory bowel disease, 

nonalcoholic fatty liver disease, and lymphoma.6,7 Current treatments include topical agents, 
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phototherapy, non-biologic systemic agents (e.g., methotrexate, cyclosporine, and retinoids), 

and biologics (e.g., anti-TNF-α, anti-IL-12/23, and anti-IL-17 monoclonal antibodies).

About 30% of people with Ps develop psoriatic arthritis (PsA). PsA is classified as a 

seronegative spondyloarthropathy and occurs more commonly in patients with human 

leukocyte antigen (HLA) type B27. Psoriatic arthritis is characterized by asymmetrical 

oligoarthritis of the hands and wrists present in most cases as well as dactylitis, a sausage 

like swelling of the fingers. PsA patients can also develop sacroiliitis or spondylitis, which is 

present in a majority of cases. Another important clinical feature of PsA is enthesitis 

frequently affecting the Achilles tendon.

Ps and PsA are autoimmune disorders and according to current view arise as a consequence 

of the aberrant interplay between T cells, dendritic cells, and keratinocytes, giving rise to a 

self-perpetuating loop that amplifies and sustains inflammation in the skin and in the joints. 

In particular, myeloid cell secretion of IL-1, IL-23, and IL-12 activates IL-17-producing T 

cells (TH17) and TH1 cells, leading to the production of additional inflammatory cytokines, 

such as IL-17, IFN-γ, TNF-α, and IL-22. These cytokines mediate effects on keratinocytes, 

thus establishing the inflammatory cycle. Additional T cells subtypes, such as the 

autoreactive CD8 T cells, which were discovered in the 1990s, and the more recent γδ T 

cells, were also implicated in the disease pathogenesis.

Engagement of T cells requires two signals: antigen recognition through the T cell receptor 

(TCR) and major histocompatibility complex (MHC); and co-stimulatory or co-inhibitory 

signals. Chemokine receptors, CD28, CD4, and CD8 are well-known co-stimulatory 

receptors, while cytotoxic T-cell lymphocyte antigen-4 (CTLA-4), programmed-death 

receptor-1 (PD-1), T-cell immunoglobulin and mucin domain-3 (TIM-3), and leukocyte 

activation gene-3 (LAG-3) are co-inhibitory receptors. Several drug therapies utilized today 

involve antagonists of specific receptors in attempt to down-regulate the immune system. 

There have also been several suggestions to use agonists of the co-inhibitory receptors in an 

attempt to treat inflammation. This review will focus on four major co-inhibitory receptors 

and their respective backgrounds in light of their potential therapeutic application in 

autoimmunity.

Cytotoxic T Lymphocyte Antigen (CTLA)-4

CTLA-4 is a type I transmembrane protein that is part of the immunoglobulin superfamily. It 

is considered a homologue of CD28 that is capable of binding to both CD80 and CD86 

expressed on antigen presenting cells (Fig. 1), but unlike CD28, CTLA-4 is functionally a 

co-inhibitory receptor.8 CTLA-4 has a cytoplasmic tail containing an YxxM motif that plays 

an important role in downstream signaling as well as in its subcellular localization.9 In 

resting cells, CTLA-4 is expressed predominately intracellularly in vesicles, the Golgi 

apparatus, endosomes, and lysosomes.9–11 CTLA-4 can be detected on the cell surface upon 

activation downstream of the TCR. Next, the YxxM motif is phosphorylated, and CTLA-4 is 

stabilized on the surface of T cells. Its surface expression is also based on calcium flux.12–15 

When intracellular calcium levels increase, cell surface expression increases as well. When 

the YxxM motif is dephosphorylated, it can interact with the clathrin-associated adaptor 
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protein AP-2, and CTLA-4 becomes endocytosed.12,13,16,17 While expression on effectors T 

cells must be induced by activation,11,18,19 CTLA-4 is constitutively expressed on the 

surface regulatory T cells (Treg).

The mechanism for CTLA-4-mediated cellular inhibition has not been well defined, but 

there are a few models for the means of its inhibition. Both CTLA-4 and CD28 can bind to 

the same ligands CD80 (B7–1) and CD86 (B7–2), but CTLA-4 binds at higher affinity.11 

Thus, due to the competitive binding of B7 to CTLA-4, it can prevent the co-stimulatory 

signal that is provided by CD28.15,20–22 Following the engagement of either B7–1 or B7–2 

ligands to the MYPPPY binding ecto-motif of CTLA-4, a decrease in T cell proliferation, 

cytokine production, and overall responsiveness ensue. Intrinsic models for inhibition 

involve the cytoplasmic tail of CTLA-4. At the molecular level, both proximal TCR 

signaling events and downstream signaling that are normally enhanced by CD28 and B7–1 

or B7–2 are inhibited. Conceptually, there are two proposed modes for CTLA-4-mediated 

inhibition: threshold and attenuation.20 In the threshold model, CTLA-4 integration into the 

immunological synapse raises the threshold level for activation of T cells and by that 

controls the response in an antigen-dependent manner.23 In the attenuation model, CTLA-4 

essentially reduces the signals delivered by CD28.

Several studies have reported involvement of the CTLA-4/CD28/B7 system in Ps and PsA 

pathogenesis (Table 1). One study performed by Summers and coworkers examined the 

expression of both CD80 and CD86 on synovial dendritic cells (DC) isolated from patients 

with PsA. Low levels of both CD80 and CD86 were found in the majority of patients. The 

conclusion of this study was that lack of expression of CD80 and CD86 on synovial DC 

might explain the altered cellular immune responses in these patients.24 Another prospect is 

that the low levels of CD80 and CD86 on these cells explain why CTLA-4 itself is not 

properly engaged to inhibit T cell signaling and functions.

To gain a better understanding of the surface markers expressed on T cells in patients with 

Ps, Ferenczi and colleagues studied epidermal T cells from skin lesions through flow 

cytometry. They found that most T cells isolated from Ps patients express CD80 

constitutively, along with other activated T cell markers,25 but there were no significant 

differences in the levels of CD86 or CTLA-4 expression.

Considering that CTLA-4 could play an important role in the development of Ps vulgaris, 

Tsunemi and associates26 looked at polymorphisms in the CTLA-4 gene that could 

designate susceptibility of developing the disease. One hundred fifty-three unrelated 

Japanese patients were compared for single nucleotide polymorphisms (SNPs) in the 3’ 

UTR (318 C/T) and in the first exon (49 A/G), and compared them with 104 healthy control 

individuals. No significant differences were found between patients diagnosed with Ps 

vulgaris and the control individuals.26 A similar study by Kim and coworkers27 was 

performed on 137 individuals of Korean descent, compared to a control group of 191 

individuals without Ps. The frequency of the CTLA-4 49 A/G variance was slightly higher in 

Ps patients versus the control group (54.7% vs. 45%), and the CTLA-4 49 G/G homozygous 

genotype was lower in Ps patients (45.3% vs. 55%).27 Another similar study by Luszczek 

and colleagues28 was performed on Caucasian patients with Ps vulgaris. They compared 
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additional CTLA-4 SNPs (1147 C/T, 318 C/T, and 49 A/G) from 116 Caucasians diagnosed 

with Ps vulgaris, and 123 healthy blood donors. Again, no statistically significant difference 

was found among the two groups. Their study was taken a step further by testing serum for 

soluble CTLA-4 levels (sCTLA-4). They found that patients who developed Ps before the 

age of 40 years old had higher levels sCTLA-4. They hypothesized that elevated levels of 

sCTLA-4 could compete with activated T cells expressing CTLA-4 by blocking its ability to 

regulate T cell responses.28

As mentioned, CTLA-4 is constitutively expressed on Tregs. T cell activation plays a critical 

role in the development of Ps, but CD4+CD25+ Treg effector dysfunction could be another 

possible explanation for their uncontrolled phenotype. In a study by Sugiyama and 

associates,29 the group successfully revealed that Ps CD4+CD25+ Treg are dysfunctional 

when compared to cells isolated from normal individuals. Ps CD4+CD25+ Treg showed only 

60.6% inhibition of CD4+CD25− Teff proliferation compared to 87.8% in normal 

individuals. An 8-fold increase in the ratio of Treg:Teff was required to achieve a 50% 

proliferation inhibition in CD4+CD25− Teff cells. Ps CD4+CD25− Teff also showed 

increased proliferative response with allogenic APCs compared to normal CD4+CD25− 

Teffcells. The investigators indicated that the source of the dysfunction could be associated 

with a proliferative functional deficit in the Ps Treg compartment.29

Ryder and coworkers30 suggested that Treg may be dysfunctional in PsA patients. They 

found that Foxp3 (Treg transcription factor) expression in CD4+ Treg was elevated in both 

synovial fluid and peripheral blood of PsA cells compared to healthy individuals. 

Interestingly, CTLA-4 mRNA expression was not increased in synovial fluid CD4+ Treg and 

was decreased in peripheral blood CD4+ Treg for arthritis patients. These findings may 

indicate that synovial fluid and peripheral blood Treg are induced locally or selectively 

recruited to the sites of inflammation in joints.30

Moving to interventional patient data, Abrams and coworkers performed phase I drug testing 

on Ps patients. They used previous knowledge that activated T cells plays a critical role in 

the development of Ps. Toward that end, they treated the patient with CTLA-4-Ig 

(abatacept), a fusion protein that contained an extracellular domain of human CTLA-4 and a 

fragment Fc portion of human IgG1. This soluble chimeric protein could bind B7 proteins 

on APC and effectively block co-stimulatory signals to CD28. They found that 46% of 

patients had a total of 50% or greater improvement in their disease activity indexes 

compared to the baseline upon drug treatment. The efficacy of the drug was further proved 

in another study published by the same group in the year 2000. During administration of the 

drug intravenously, they noticed a decrease in mature DCs and replacement with immature 

DCs, which could be due to a decreased co-stimulation provided by T cells that was blocked 

through the administration of the CTLA-4-Ig.31 CTLA-4-Ig has also been used to treat PsA. 

In a randomized double-blind study, 48% of PsA patients administered CTLA-4-Ig at 10 

mg/kg for 6 months showed improvement in their clinical disease activity compared to only 

19% in the placebo group. The study also showed that patients receiving CTLA-4-Ig at 10 

mg/kg without prior anti-TNF agents achieved ACR20 of 56% compared to 31% for those 

previously treated with anti-TNF agents. However, when evaluating its effectiveness for 

treatment for Ps, the results were inconsistent.32,33
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Another study utilizing CTLA-4-Ig by Davenport and colleagues34 exploited 

immunocompromised mice and transplanted them with CD45RBhi T cells and 

staphylococcal antigen. None of the mice treated with CTLA-4-Ig developed clinical or 

histological skin lesions, while all mice left untreated developed skin lesions. This study 

demonstrated that immunocompromised mice treated with CTLA-4-Ig were able to 

successfully inhibit the development of induced Ps.34

Anti-CTLA-4 based immune therapies have also been extensively used in cancer treatment. 

Administration of ipilimumab, a mouse anti-CTLA-4 blocking monoclonal antibody, has 

shown to have adverse side effects in the treatment of melanoma with patients who have 

baseline autoimmune disorders. A study by Johnson and associates35 showed that up to 27% 

of the patients who had previously been diagnosed with an autoimmune disorder showed 

recurrent manifestations of their symptoms, which included worsening plaques in psoriasis. 

This study concluded that that anti-immune suppressive therapy has the potential to 

exacerbate autoimmune disorders such as Ps.35

Another standard dermatological therapy for Ps is utilization of 8-methoxypsoralen plus 

UVA photochemotherapy (PUVA). A study by Singh and coworkers36 sought to understand 

the mechanisms involved in regulating Ps by using K5.hTGF-β1 transgenic mice that 

develop scaly erythema and skin lesions similar to those of humans with Ps. They found that 

administration prolonged the survival of mice with Ps-like skin alterations, as compared to 

similar results with humans that have pustular or erythrodermic Ps. Following PUVA 

treatment, there was an up-regulation of the number of CD4+CD25+ Treg. They were also 

capable of suppressing the proliferation of Teff cells (unlike normal Ps Treg cells whose 

suppressive activity is dysfunctional). To understand the suppressive mechanism of these 

Tregs, K5.hTGF-β1 mice undergoing PUVA treatment were administered anti-CTLA-4 

monoclonal antibodies. Following this treatment, PUVA was unable to suppress disease in 

K5.hTGF-β1 mice, unlike the administration of the isotype control antibodies. While these 

results are based on mice models, the results were promising due to similarities in Ps 

development in both the K5.hTGF-β1 murine model and humans.36

In conclusion, the CTLA-4/CD28/B7 system has still yet to be explored further as a 

potential therapy for Ps or PsA. Despite other studies where polymorphisms of CTLA-4 

have been linked to autoimmune disorders, such as systemic lupus erythematosus, 

rheumatoid arthritis, Grave’s disease, Hashimoto’s thyroiditis, and type I diabetes,37 this has 

not been the case for either Ps or PsA. While manipulating the pathways has been utilized 

efficiently by drugs, such as abatacept, this form of treatment takes advantage of its binding 

capabilities to B7–1 or B7–2 and out-competes CD28. PUVA treatment has also proven to 

be efficient in murine models, likely by helping improving the function of Treg. To further 

understand the mechanism of this system in Ps and PsA additional studies using both 

CTLA-4 agonist and antagonist are needed.

Programmed Cell Death (PD)-1

PD-1 is a co-inhibitory receptor found mainly on the surface of activated T cells, as well as 

on other hematopoietic cell types, such as B cells, macrophages, natural killer T cells 
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(NKT), and certain types of dendritic cells (DC).38,39 Structurally, PD-1 contains an Ig 

variable-type (V-type) domain, a transmembrane domain, and a cytoplasmic domain. The 

cytoplasmic domain contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) and 

an immunoreceptor tyrosine-based switch motif (ITSM).38,40–42 Phosphorylated ITSM 

binds to the phosphatase SHP-2 that in return acts on and deactivates key signaling proteins 

downstream of the TCR.

PD-1 is first seen on the surface of double negative (CD4− CD8−) T cells during their thymic 

development.40,43 In more mature cells, PD-1 is expressed on single positive CD4+ and 

CD8+ T cells upon activation in the periphery.39,40 PD-1 binds to either PD-L1 (B7-H1; 

CD274) or PD-L2 (B7-DC; CD273),42,44,45 (Fig. 1) and has a three-fold higher affinity for 

the later.40 PD-1 engagement by its ligands causes a decrease in T cell proliferation, 

cytokine production, cytolytic function, protein synthesis, and overall cell survival.40,46

The expression of PD-1 in Ps was first reported in 2014 when skin biopsies were collected 

from patients with erythrodermic Ps (Table 1). Half of the patients had up to 50% dermal 

PD-1 expressing T cells. While this study did not make any conclusions on the utilization of 

PD-1 expression as marker for Ps, it did show that PD-1 is expressed on activated epidermal 

T cells.47

A more recent study has shown that PD-1 can actually play an important role in regulating 

Ps disease activity. Imai and coworkers48 tested the effects PD-1 blockade, either by genetic 

knockout or monoclonal antibodies administration, on a murine imiquimod-induced 

psoriasis model. At moderate concentrations of imiquimod, there was enhanced psoriaform 

dermatitis in mice that had PD-1 blockade, suggesting that PD-1 might have a regulatory 

function in psoriasiform dermatitis. Interestingly, the lesions were characterized by 

increased neutrophilic infiltration, epidermal hyperplasia, and increased expression of TH17 

cytokines.48 Another study by Kim and colleagues49 showed that PD-1 was over-expressed 

on T cells from an imiquimod-induced Ps model and on human T cells collected from Ps 

patients. Moreover, the same group reported that IL-17 T cells obtained from Ps patients had 

higher expression of PD-1 compared to that of normal individuals. Furthermore, imiquimod-

induced murine Ps treated with PD-L1-Fc showed decreased inflammation,49 suggesting that 

PD-1 may exert an anti-inflammatory effect in this model.

Additionally, it has been observed that patients treated with anti-PD1 immunotherapy in the 

treatment of malignancy develop psoriatic lesions. This was first discovered in a patient with 

metastatic melanoma treated with nivolumab, who developed Ps plaques scattered over the 

trunk and extremities.50 Subsequently, this was also reported in a patient with metastatic 

non-small cell lung cancer undergoing treatment with pembrolizumab who developed 

diffuse erythematous and scaly plaque-like psoriasis lesions in his upper and lower limbs, 

trunk, and back.51

Our group has investigated the role of the potential role of PD-1 as a treatment modality for 

PsA. Due to PsA being a T cell mediated autoimmune disorder, we analyzed the expression 

levels of PD-1 in T cells isolated from patients with PsA and from healthy controls. PD-1 

was expressed in 11% ± 2% of the CD3+ T cells isolated from the patients, compared to 
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1.2% ± 5% of the cells collected from the healthy population. Furthermore, the disease 

activity scores inversely correlated with PD-1 expression levels, suggesting insufficient PD-1 

signaling might contribute to disease pathogenesis.52 Clearly, more data about PD-1 biology 

(e.g., polymorphism, signaling, and function) is absolutely needed prior to any attempt to 

engage the PD-1 receptor aimed at treatment of Ps and PsA.

T cell Immunoglobin and Mucin Domain-3 (TIM-3)

Previously known as a receptor for galectin-9 and phosphatidylserine, TIM-3 is a 33 Kd type 

I transmembrane protein. It is expressed on terminally differentiated TH1 cells, TH17 cells, 

DC cells, macrophages, natural killers cells, and some cancer cells.53–58 Like other 

inhibitory receptors, it mediated exhaustion TH1 responses by regulating the interaction with 

APCs. It consists of an IgV and mucin extracellular domains, a single transmembrane 

domain, and a cytoplasmic tail. The IgV domain is capable of binding phosphatidylserine 

molecules that are found on the surface of APCs.59

Differential functions are the results of interaction with different ligands. Some inhibitory 

effects are shown following engagement with galactin-9 (Fig. 1). One study showed that 

binding induces an intracellular calcium influx and cell death for TH1 cells60 while another 

study also suggested that Bat3 is released from the cytoplasmic tail of TIM-3 and activates 

the cell death pathway.61 Overall binding to galactin-9 leads to immune suppression of T 

cells, and following injection of galactin-9, there has been an upregulation of Treg cells.
59,62–64

Due to its immunosuppressive capabilities, TIM-3 has been studied for potential therapeutic 

use in Ps (Table 1). It has been shown that TIM-3 is expressed in activated TH1 cells but is 

also expressed in murine TH17 cells.65 Considering that galactin-9 was found in skin lesions 

of Ps patients, Kanai and associates66 studied if TH1 and TH17 cells in blood expressed 

TIM-3, and whether its capabilities of immunosuppression were impaired. They found that 

Ps patients’ TH1 and TH17 cells had lower levels of TIM-3 expression compared to healthy 

patients. They also hypothesized that despite high levels of expression of galactin-9 in 

fibroblast cells of skin lesions, the lowered expression of TIM-3 could impair the function of 

TH1 and TH17 cells. The cause of the impairment was suggested to occur during cell 

differentiation or expansion of T cell clones in Ps patients.66

Another study by Niwa and coworkers67 sought to use a stable form of galactin-9 (sGal-9) 

that is resistant to proteolysis and to engage TH1 and TH17 cells to induce T cell apoptosis in 

IL-23 based Ps murine models. Following induction of disease, administration of sGal-9 

reduced epidermal hyperplasia in the ear lobes of mice. They also found that administration 

of sGal-9 increased the numbers of Foxp3+CD25+CD4+ Treg. The sGal-9 resistance of 

proteolytic inactivation of sGal-9 properties make it a potential therapeutic tool to engage 

TH17 cells that can potentially alleviate autoimmune disorders, such as Ps.67

In conclusion, while research in TIM-3 biology and signaling is still ongoing, its ability to 

suppress the autoimmune responses of T cells has therapeutic potential for both Ps and PsA. 

TH17 cells are the main mediators of Ps and PsA, and the fact that they are capable of 
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expressing TIM-3 is promising. By engaging this receptor and inducing apoptosis, we can 

potentially reduce T cell mediated inflammation. Possible side effects of reducing neutrophil 

recruitment during a bacterial infection may occur, since TH17 cells secrete IL-17, a potent 

neutrophil chemo-attractant. The preliminary studies mentioned above provide insight into 

utilizing this inhibitory receptor to our advantage, but further investigations still need to 

occur before a drug is developed for human trials.

Lymphocyte Activation Gene −3 (LAG-3)

LAG-3 is a co-inhibitory receptor that is expressed on the cell surface of hematopoietic cells.
68 More specifically, it is expressed on the surface of B cells, NK cells, NKT cells, 

plasmacytoid DC, γδ T cells, activated T cells, and Tregs.69–76 It represented a homologue 

of CD4, and it is capable of binding to MHC class II molecules but with higher affinity.68 It 

is also expressed intracellularly in close vicinity to microtubule-organizing centers (MTOC).

LAG-3 has different regulatory roles in different cell types. Effector CD4 T cells are capable 

of expressing MHC class II molecules upon activation. The molecular mechanism of LAG-3 

downstream signaling is unclear, but ligand engagement can inhibit T cell proliferation, 

cytokine production, and calcium influx.77,78 Furthermore, LAG-3 can outcompete CD4 for 

binding to MHC class II molecule for activation. LAG-3 has a unique cytoplasmic tail that 

contains three domains. One of those, the KIEELE motif, has been shown to have an 

important role in the suppressive capabilities of CD4 T cells. Naïve CD8 T cells also express 

LAG-3 but at very low levels. Following activation, LAG-3 is upregulated,73 but the exact 

biologic meaning of that is not clear.

Currently, the data is limited in regard to the therapeutic potential of LAG-3 in the treatment 

of Ps or PsA. Due to its immunosuppressive function, it may serve as an additional 

therapeutic target to consider.

Conclusions

Most of the targeted therapies for Ps and PsA have been geared toward immunosuppression; 

while utilization of the natural suppressive capabilities of the immune system have been 

rarely used or poorly understood (Table 1). CTLA-4 has been the most widely studied 

receptor for Ps and PsA treatment therapy but still requires further studies. Other agonists 

targeting the receptors PD-1, Tim-3, and LAG-3 have the potential to be powerful treatments 

for Ps and PsA as well. Another potential therapeutic option is to combine therapies that 

would utilize multiple co-inhibitory receptors to enhance the suppression of dysfunctional T 

cells. There is a fine balance between immunosuppression against autoimmune disorders and 

controlled regulation against malignancy. Again there needs to be more basic and clinical 

research geared toward the co-inhibitory receptors in order to understand their potential as 

treatment modalities against Ps and PsA.
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Figure 1. 
Inhibitory receptors expressed on T cell and their counter ligands.
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