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Abstract

Due to the massive data sets available for drug candidates, modern drug discovery has advanced to 

the big data era. Central to this shift is the development of artificial intelligence approaches to 

implementing innovative modeling based on the dynamic, heterogeneous, and large nature of drug 

data sets. As a result, recently developed artificial intelligence approaches such as deep learning 

and relevant modeling studies provide new solutions to efficacy and safety evaluations of drug 

candidates based on big data modeling and analysis. The resulting models provided deep insights 

into the continuum from chemical structure to in vitro, in vivo, and clinical outcomes. The relevant 

novel data mining, curation, and management techniques provided critical support to recent 

modeling studies. In summary, the new advancement of artificial intelligence in the big data era 

has paved the road to future rational drug development and optimization, which will have a 

significant impact on drug discovery procedures and, eventually, public health.
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INTRODUCTION

Drug research and development is a complex, expensive, time-consuming procedure and has 

a high attrition rate (1). Drug attritions that happen in clinical studies induce great resource 

loss, and currently, nine out of ten drug candidates fail between phase I clinical trials and 

regulatory approval (2). Compared to traditional animal models, both in vitro and in silico 

approaches have great potential to lower the cost of drug discovery. The application of in 

vitro and in silico protocols in the early stages of the drug research and development 

procedure can reduce the number of drug attritions by identifying drug candidates with 

suitable therapeutic activities and excluding unsuitable compounds with undesirable side 

effects (3–6). However, the results of in vitro and in silico testing normally have low 

correlations to drug activities in vivo, especially for efficacy and complex side effects (7, 8).
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Artificial intelligence (AI), which is sometimes presented as machine intelligence, refers to 

the ability of computers to learn from existing data. Computational modeling based on AI is 

a promising method to evaluate compounds for their potential biological activities and 

toxicities. Existing computational models, such as those based on quantitative structure-

activity relationship (QSAR) approaches (9), can be used to quickly predict large numbers of 

new compounds for various biological end points. The existing models (e.g., those available 

in commercial drug discovery software) can make predictions of simple physicochemical 

properties (e.g., logP and solubility) and thus are relatively precise in predicting the 

pharmacokinetic properties of new compounds with simple mechanisms; however, the 

models for complex biological properties (e.g., drug efficacy and side effects) are far from 

optimal (8, 10) (Figure 1). Critical issues existed in previous QSAR modeling studies such 

as the use of small training sets (11), experimental data errors in training sets (12, 13), and a 

lack of experimental validations (14). The resulting QSAR model predictions of new 

compounds were questionable due to their coverage of a limited chemical space (15), 

existing activity cliffs (16), and overfitting (17, 18). The primary hypothesis of QSAR 

modeling (i.e., similar compounds will have similar activities) sometimes proved to be 

flawed (10, 19–21), indicating that training sets with only chemical structure information 

and target activity are not enough to answer the above challenges.

With the great progress of combinatorial chemistry since the 1990s, large chemical libraries 

have become the major source of new chemical development procedures (22, 23). Over the 

past ten years, this effort has also stimulated the development of high-throughput screening 

(HTS) techniques (24–26). HTS is a process that screens thousands to millions of 

compounds using a rapid and standardized protocol. Current HTS techniques are usually 

combined with robotic methods and require few resources to test a chemical library. Parallel 

HTS data processing and assay miniaturization have become increasingly popular in 

pharmaceutical industries and regulatory agencies as they greatly reduce the cost of 

experimental testing (27, 28). The chemical-response data obtained from HTS keep growing 

daily and contribute to the current big data environment. Facilitated by the combined efforts 

of HTS and combinatorial chemical synthesis, modern screening programs produce 

enormous amounts of biological data, especially regarding drug responses on specific targets 

(29, 30).

The challenges raised by big data are known as the “four Vs”: volume (scale of data), 

velocity (growth of data), variety (diversity of sources), and veracity (uncertainty of data) 

(31, 32). The data sets available for drug development, especially in pharmaceutical 

industries, may involve many compounds (e.g., from 100,000 to several million) that were 

tested against many targets (33), and traditional QSAR modeling and machine learning 

approaches are not always suited to dealing with these types of data under these conditions. 

Furthermore, the uncertainty of available data (or data sparsity) is one of the major obstacles 

of using big data (32). Unfortunately, when coupled with more complex biological 

mechanisms such as drug responses, the sparsity and variety of the resulting data increased 

dramatically from in vitro to in vivo studies (Figure 1). This big data scenario necessitated 

the development of new computational approaches to deal with high-volume, 

multidimensional, and high-sparsity data sources to predict drug efficacy and side effects in 

animals and/or humans.
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The challenges to using big data discussed above and the involvement of new types of data 

(e.g., images) have demanded the recent development of novel AI approaches to advance 

predictive modeling in modern drug discovery (34–36). The popular AI approaches in the 

current big data era are based on deep learning (3, 4, 37). One of the early efforts of 

applying deep learning in the drug discovery process in pharmaceutical industries was the 

2012 QSAR machine learning challenge supported by Merck (38). In this challenge, deep 

learning models showed significantly better predictivity than traditional machine learning 

approaches for 15 absorption, distribution, metabolism, and excretion (ADME) and toxicity 

data sets for drug candidates developed at Merck. Since then, and with the development of 

neural network approaches [e.g., convolutional neural networks (CNNs)], deep learning has 

been widely applied to drug discovery approaches. Although still viewed as a black box 

algorithm (39, 40), the current progress of AI supported by deep learning has shown great 

promise in rational drug discovery in this era of big data. The big data challenges; relevant 

AI developments; and modeling for drugs and drug candidates, especially those studies 

using deep learning and other new techniques, are the primary focus of this review.

BIG DATA IN DRUG DISCOVERY

The term big data describes a collection of data sets that are so large and complex that they 

are too difficult to process with traditional data analysis tools (41). Big data is gaining 

increasing recognition in clinical studies and other research areas driven by biological data 

(42, 43). As one of the fields generating a massive amount of data, modern drug discovery 

has moved into the big data era. The need for novel computational techniques, including 

data mining/generation, curation, storage, and management, brings new challenges and 

opportunities to the research community.

Several data-sharing projects, in parallel with the developments of HTS techniques in 

various screening centers, were also initiated in the past ten years. For example, PubChem is 

a public repository for chemical structures and their biological properties (44–46). In ten 

years, the number of PubChem compounds increased from 25 million in 2008 (46) to 96 

million in 2018 (47). During the same period, the number of bioassays that were deposited 

into PubChem increased from 1,197 in 2008 (46) to over a million in 2018 (47). The current 

statistics of PubChem indicate that the repository contains 97.3 million compounds and 1.1 

million bioassays (https://pubchem.ncbi.nlm.nih.gov). The tremendous amount of PubChem 

bioassay data that are updated daily constitutes a publicly accessible big data resource for 

compounds, including most drugs and drug candidates, with a variety of target response 

information. Similar to PubChem, ChEMBL is a database containing binding, functional, 

ADME, and toxicity data for numerous compounds (48). Compared to PubChem, ChEMBL 

contains a large amount of manually curated data from the literature. Currently, the 

ChEMBL database consists of over 2.2 million compounds tested against over 12,000 

targets, resulting in activity data for 15 million compound-target pairs (https://

www.ebi.ac.uk/chembl/).

Several other data sources are specifically designed for drugs and drug candidates. For 

example, DrugBank (https://www.drugbank.ca) is a publicly available database containing 

all approved drugs with their mechanisms, interactions, and relevant targets (49). The latest 
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release of DrugBank (version 5.1.2, released December 20, 2018) contains 12,110 drug 

entries, including 2,553 approved small-molecule drugs, 1,280 approved biotech (protein/

peptide) drugs, 130 nutraceuticals, and over 5,842 experimental drugs. DrugMatrix (https://

ntp.niehs.nih.gov/results/drugmatrix/index.html), on the other hand, focuses on the 

toxicogenomic data of drugs to reduce the time to formulate a xenobiotic’s potential for 

toxicity. The current DrugMatrix database contains large-scale gene expression data from 

tissues of rats administered over 600 drugs, mostly targeting several major organs (e.g., 

liver). The Binding Database (BindingDB) is a public, web-accessible resource of drug-

target binding data, shown as measured binding affinities (50). The targets included in 

BindingDB are proteins/enzymes that are considered drug targets. BindingDB currently 

contains 1,587,753 binding data for 7,235 protein targets and 710,301 small molecules 

(https://www.bindingdb.org/bind/index.jsp).

The public big data sources can also be characterized by the size of electronic files for these 

data sets. For example, the current PubChem bioassay database has around 240 million 

bioactivities, which are contained in 30 GB of XML files. Instead of using personal 

computers with central processing units, the use of new hardware techniques such as cloud 

computation (41, 51) and graphics processing units (GPUs) (52) is necessary to process and 

analyze these available big data.

BIG DATA MODELING CHALLENGES: MISSING DATA AND BIASED DATA

The response profiles of 2,118 approved drugs tested against 531 PubChem assays (each 

assay having at least 25 active responses among these drug molecules) are shown in Figure 

2. The results were generated using an in-house automatic data profiling tool (http://

ciipro.rutgers.edu/) (53). There are more than a million data points in this response profile. 

Nevertheless, many responses in this profile were shown as missing data (Figure 2). 

Furthermore, the ratio of active versus inactive responses is also biased (approximately 1:6 

in this profile). For example, two well-known drugs were included in this profile: 

acetaminophen (CAS 103-90-2), which has 16 active and 213 inactive responses, and 

acetylsalicylic acid (aspirin, CAS 50-78-2), which has 14 active and 237 inactive responses. 

Due to the nature of the HTS techniques, the HTS data normally consist of much fewer 

active than inactive responses (21, 54), especially for the drugs. In an early review of 

pharmacological space based on 4.8 million unique compounds, only 275,000 of them 

showed one (or more) active response when tested against 1,036 targets (55), indicating that 

most of the testing results were negative. Notably, the drugs that showed the most active 

responses in public big data sets are for chemotherapy purposes, which normally have 

critical side effects and other off-target interactions. For example, bortezomib (CAS 

179324-69-7) is a chemotherapy drug used to treat multiple myeloma and mantle cell 

lymphoma. It has the most active responses (258 actives and 49 inactives) in the response 

profile of Figure 2.

The missing data issue is a common problem of big data modeling (56). In previous studies, 

a common solution was to develop QSAR models for individual assays and use the resulting 

models to predict target compounds that were not tested against these assays (19, 20, 57). 

This approach was applicable only when the predicted data used for model development had 
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simple biological mechanisms (e.g., logPs or structural rigid target bindings). However, this 

process still introduced uncertainty into the modeling process due to the prediction errors 

from QSAR models (57). When dealing with heterogeneous and complex data (e.g., clinical 

data), advanced statistical methods such as multiple imputations are needed (58, 59). To 

reflect the biased nature of HTS data, emphasis should be given to active rather than inactive 

results during modeling procedures (53). Early-stage computational studies normally used 

pharmacophore modeling to identify chemical features that were responsible for relevant 

bioactivities (60–62). The later modeling projects using machine learning approaches 

needed the biased training sets to be preprocessed by using various methods such as 

downsampling to balance active and inactive results (63–65).

ADVANCING ARTIFICIAL INTELLIGENCE FROM MACHINE LEARNING TO 

DEEP LEARNING

The historical progress of AI coupled with the increase of the data size used for model 

development and hardware improvement in drug discovery is summarized in Figure 3. The 

concept of AI was born in the 1950s (66) and was used in drug discovery after the first study 

of QSAR was presented in the 1960s (67). In the early stage of drug discovery (e.g., before 

the 1990s), the common computational approaches used for model developments were linear 

regressions (68). In these early studies, the chemical descriptors used for modeling were also 

limited to chemical structural features, such as atomic type and fragmental descriptors (69, 

70). The advancement of AI in drug discovery was first facilitated by the development of 

novel chemical descriptors such as topological descriptors (71) and molecular fingerprints 

(72, 73), which greatly increased the size/categories of descriptors calculated from training 

sets. Instead of using all available descriptors, descriptor selection was integrated into the 

modeling procedure, e.g., the genetic algorithm (74, 75) and simulated annealing (76). 

Instead of using linear regression, new machine learning approaches, which were developed 

based on nonlinear modeling algorithms such as k-nearest neighbors (77), support vector 

machines (78), and random forest (79, 80), were used frequently in modeling studies from 

the 1990s to the 2000s. In the same period, model validation was emphasized and treated as 

a must-have component of modeling (81). Instead of only showing self-correlations, the 

developed models using these new machine learning approaches were always validated 

using cross-validations, external validations, and/or experimental validations (14, 63, 82, 

83). In addition, the applicability domain became standard practice for model development 

(17, 84–86). In the early 2000s, QSAR modeling, together with relevant studies (e.g., 

docking), became a well-developed workflow based on the progress of AI discussed above 

(Figure 3). These milestones of AI in drug discovery are emphasized in other reviews (9, 

87–91).

In addition to the development of AI, the computational power of hardware and the available 

data for modeling were also significantly improved to facilitate this progress (Figure 3). The 

early-stage computational modeling of small training sets by simple algorithms (e.g., linear 

regressions) did not require significant computational power. The advancement of 

computational power and the availability of biological data for drugs enabled the application 

of novel modeling techniques such as large-scale networks to address challenges in drug 
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discovery. The first application of the neural network, which was designed as a 

computational tool in the 1980s (92), in drug discovery was reported in 1989 (93). Since 

then, various neural network approaches have been applied to drug discovery (90, 94). The 

first popular approach was the artificial neural network (ANN) (95, 96), which focuses on 

the variable selection procedure (97). This approach is a machine learning algorithm 

inspired by biological neural networks such as those in the human brain. With several 

variables as the input (e.g., chemical descriptors), ANN approaches form hundreds of 

artificial neurons, which are connected with relationships (quantified as weights) in the form 

of a network. A single neuron might have some effectiveness in predicting output, but the 

actual predictions are made by the network consisting of hundreds or even thousands of 

neurons. Since they learn from the input data, ANNs represent an excellent machine learning 

approach for constructing nonlinear relationships among the variables and the target 

biological activities (98). The advanced computational models using various machine 

learning approaches, such as ANNs, required powerful computers and benefited directly 

from the hardware developments in the 1990s (Figure 3).

The concept of deep learning was originally presented together with ANNs in the 1980s (4). 

However, neural networks did not show significant advantages over other machine learning 

approaches when data used for model development are limited (99, 100). From the 1990s to 

2000s, computer hardware was still not adequate for training neural networks with many 

hidden layers and/or when the data sets for model development were large. In the 2010s, 

hardware development reached the milestone of using GPUs and cloud computing, which 

directly benefited neural network modeling studies (Figure 3). Advanced as one of the major 

interests of AI by various information technology companies, deep neural networks (DNNs), 

sometimes referred to as deep neural nets, with many hidden layers were developed to 

address challenging questions such as speech recognition (101). In the Google DeepMind 

project of 2015, an AI program based on a DNN with 13 hidden layers first mastered the 

game of Go, which has long been viewed as the most challenging of the classic games for AI 

(102). The milestone paper of deep learning was published at almost the same time (103), 

and the big data concept was proposed the next year (41, 104). Deep learning was 

immediately applied to the life sciences and demonstrated its capability to identify complex 

patterns in biological systems (4, 105). The first project in which deep learning approaches 

showed significantly better performance than other machine learning approaches for drug 

discovery was a QSAR machine learning challenge supported by Merck (38). Another 

similar effort organized by the National Center for Advancing Translational Sciences of the 

National Institutes of Health (NIH) was to model around 12,000 chemicals, including many 

drugs, for 12 different toxic effects (106). In this competition, DeepTox, a computational 

toxicity model based on DNNs outperformed other models based on machine learning 

approaches (107).

Besides the modeling challenges mentioned above, there have been various individual deep 

learning studies for drug discovery in the past three years. For example, Wen et al. (108) 

reported a deep learning model developed to predict interactions between drugs and their 

biological targets based on 15,524 drug-target pairs obtained from the DrugBank database. 

Another similar deep learning study was performed using transcriptome data obtained from 

the Library of Integrated Network-Based Cellular Signatures program (109). Furthermore, 
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multitask learning based on DNNs is a modeling approach that allows multiple related tasks 

to be modeled simultaneously. Modeling several biologically related end points (i.e., 

bioactivities sharing similar mechanisms) for drug discovery purposes through multitask 

learning has shown superior performance to traditional QSAR models by reducing 

overfitting, solving issues of biased data, and identifying variables from related tasks (110–

113). The high performance of these DNN models demonstrates the advantages of using 

deep learning approaches to model large data sets and select meaningful features. However, 

there were also recent reports that showed mixed results from the comparison between deep 

learning and machine learning modeling (114, 115). Since deep learning is a brand-new 

concept being applied to computer-aided drug discovery, there are no universal criteria for 

selecting relevant modeling parameters and/or constructing the modeling workflow (115).

OTHER AREAS OF COMPUTATIONAL MODELING UTILIZING ARTIFICIAL 

INTELLIGENCE FOR DRUG DISCOVERY

Rational Nanomaterials Design

Modern nanotechnology highly impacts drug discovery by offering biocompatible 

nanomaterials (e.g., nanomedicines with desirable therapeutic activities and low side effects) 

to the drug research and development process, especially as versatile yet reliable carriers for 

the delivery of drugs to treat systemic diseases such as cancers (116, 117). Early efforts of 

using AI in nanomodeling for drug discovery were based on molecular dynamic (MD) 

simulations. For example, several studies using MD simulations detected the insertion of 

nanoparticles in the plasma membranes of the recipient cells and an overall change in the 

cell membrane structure (118). Later, the same approach was used to estimate the affinity of 

carbon nanotubes to organic molecules (119). In another study, a set of nanoparticles was 

tested in vitro in four cell lines, and the potential membrane perturbation effects of these 

nanoparticles were studied (120). The reaction behaviors of individual nanoparticles were 

also investigated under certain conditions using MD simulations (e.g., interactions with or 

passing through membranes), along with the effects of the size, density, position, 

distribution, length, and type of surface ligands on the biological properties of the 

nanomaterials (121). The advantage of MD simulations is that they can precisely simulate 

molecular structures, but the clear disadvantages are that modeling procedures are 

computationally expensive and cannot provide rapid predictions for big databases due to the 

current limitations of computational resources. Another computational approach is to apply 

traditional QSAR modeling methods to nanomaterials. For example, the QSAR technique 

was used to create predictive models for nanoparticles with similar or different metal cores 

(122). Recently, membrane-nanoparticle interactions were modeled based on the atomization 

energy of the metal oxide, the period of the nanoparticle metal, and the primary size of the 

nanoparticle (123).

The current application of AI approaches in nanomodeling has been limited to designing 

new nanomaterials due to a lack of suitable chemical descriptors. Although descriptors 

calculated from only the surface ligands are useful in predicting specific bioactivities/

properties of nanomaterials, as described above, the effects of the nanomaterial’s size/shape, 

density, position, distribution, length, and type of surface ligands were not considered in 
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these studies. Some other nanomodeling studies have incorporated descriptors derived from 

experimental properties (e.g., nanoparticle size) (123, 124) or even biological data (e.g., 

proteomics data) (125, 126). Due to the diversity and complexity of nanomaterial structures, 

Puzyn et al. (127) argued that no universal nano-QSAR model can accurately predict the 

biological properties of variable nanomaterials. Figure 4 presents a recent methodology for 

nanostructure simulations in the modeling procedure (128). Briefly, the properties and 

bioactivities of nanomaterials were largely determined by their surface chemistry. To 

simulate the nano surface chemistry correctly, the surface ligand orientations and 

accessibility of functional groups needed to be considered in the calculations (Figure 4). For 

example, in an early modeling of nanohydrophobicity, the contributions of heavy atoms and 

functional groups to nanologP values were correlated with their accessibility by solvent 

molecules (128). In a recent study, an advanced method of integrating the solvent-accessible 

surface into calculations can be viewed as a universal nanologP calculator (129). A similar 

modeling strategy has been applied to model nanocellular uptake capacities (130) and 

several other nano bioactivities. The resulting models were utilized to design and synthesize 

several new nanoparticles with desired nano bioactivities (130).

Convolutional Neural Networks and Image Modeling

The CNN is a special network modeling approach inspired by neuroscience to imitate 

images within the visual cortex, where individual neurons respond to stimuli only in the 

receptive fields. Different neurons can partially overlap with each other to cover the entire 

receptive field. The CNN architecture is constructed in a way that hidden layers are 

particularly adept at screening multidimensional input such as the red, green, and blue 

saturation values obtained from thousands of pixels for an image. In the training process, the 

CNN approach uses kernels and grids of a predefined dimension to scan the image and learn 

to recognize certain critical features such as lines and contours for a human face. The 

concept of CNNs was proposed in the 1980s for image recognition purposes but did not 

draw great attention until the 2010s (4). This approach has become well known, as it has 

dominated all image recognition challenges since 2012, and it is now the base of image/

speech recognition, video analysis, language understanding, and other relevant applications 

(131).

As one of the most popular deep learning approaches, CNNs have been used for image 

modeling in clinical diagnoses such as cancer (132), Alzheimer’s disease (133), and heart 

disease (134). In traditional drug discovery, CNNs were also applied to analyze image data 

obtained from experimental drug testing, such as HTS results (135). Due to its unique 

advantages in image recognition, CNNs were also used to recognize 3-D experimental and 

virtual images to predict ligand-protein interactions (136, 137). In some studies, CNNs were 

coupled with other computational approaches to realize specific goals. For example, CNNs 

were used as a new approach to recognize molecular features from drug molecular graphs 

(138). In this study, drug molecules were treated as 2-D graphs with atom features. The 

CNN was used to transform the input molecular graphs into new molecular features for 

training purposes. In another study, an advanced CNN approach called the survival 

convolutional neural network was used to predict the cancer outcomes of patients based on 

histological images and genomic biomarker data (139). Furthermore, CNNs were able to 
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function as a text-mining technique to extract drug-drug interaction data from biomedical 

literature (140).

Personalized Medicine

A drug commonly interacts with multiple targets, including both on- and off-targets, and 

drug efficacy and side effects are greatly affected by this (141). The perturbation of an 

individual biological system (e.g., a patient) by a drug molecule is determined by various 

genetic, epigenetic, and environmental factors. To identify this hidden hierarchical 

information, personalized medicine was designed to respond to the individual characteristics 

of each patient (142). Personalized medicine strongly relies on a scientific understanding of 

how an individual patient’s unique characteristics, such as molecular and genetic profiles, 

make this patient vulnerable to a disease and sensitive to a therapeutic treatment. Driven by 

biomarker studies starting in the late 1990s, hundreds of genes have been identified for their 

contributions to human illness, and genetic variability in patients has been used to 

distinguish individual responses to dozens of treatments (142). Along with the huge amount 

of data generated by these studies, such as the Human Genome Project (143), computational 

modeling has become one of the most important tools for personalized medicine. Drug-

target predictions (144), metabolic network modeling (145), and population genetics pattern 

identifications (146) are several recent advancements in this field that rely on computational 

modeling. Under the NIH Precision Medicine Initiative (147), many data generation and 

sharing initiatives and computational modeling efforts have arisen to support the expansion 

of precision medicine. For example, the Genomic Data Commons program of the National 

Cancer Institute aims to provide a data repository that enables data sharing across cancer 

genomic studies in support of precision medicine (148). So far, 33,549 case studies have 

been submitted and shared via this portal (https://gdc.cancer.gov/). Although it is not the 

focus of this review, genome sequencing analysis has been a widely applied approach 

involving AI techniques, and there are many reviews available on this popular bioinformatics 

topic (149–151).

CONCLUSIONS

AI is a promising method to greatly reduce the cost and time of drug discovery by providing 

evaluations of drug molecules in the early stages of development. In the current big data era, 

clinical and pharmaceutical data continue to grow at a rapid pace, and novel AI techniques 

to deal with big data sets are in high demand. The recent deep learning modeling studies 

have shown advantages compared to traditional machine learning approaches for this 

challenge. However, standard criteria and modeling workflows are still needed for deep 

learning models to be applicable. The applications of AI have been widely extended into all 

relevant areas beyond traditional drug discovery. Coupled with database curation, web portal 

development as data repository servers, and the improvement of computer hardware, AI and 

recent deep learning studies have paved the road to modern drug discovery.
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Figure 1. 
Challenges of data-driven artificial intelligence modeling in modern, computer-aided drug 

discovery.
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Figure 2. 
Bioprofile of 2,118 approved drugs from DrugBank (x axis) represented by the response 

data obtained from 531 PubChem assays(y axis). Each assay against all drug molecules (one 

column) has at least 25 active responses (red spots). Data from DrugBank (https://

www.drugbank.ca) and PubChem (https://pubchem.ncbi.nlm.nih.gov).
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Figure 3. 
The historical progress of artificial intelligence in drug discovery coupled with increasing 

data size and computer power (shown as processor improvement).

Zhu Page 19

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Nanomaterial surface simulations for computational modeling: surface ligand orientations 

and accessibility assessments.
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