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Abstract

Dual-energy X-ray absorptiometry (DXA) is widely used in the evaluation of bone fragility in 

children. Previous recommendations emphasized total body less head and lumbar spine DXA 

scans for clinical bone health assessment. However, these scan sites may not be possible or 

optimal for all groups of children with conditions that threaten bone health. The utility of DXA 

scans of the proximal femur, forearm, and radius were evaluated for adequacy of reference data, 

precision, ability of predict fracture, and applicability to all, or select groups of children. In 

addition, the strengths and limitations of vertebral fracture assessment by DXA were evaluated. 

The new Pediatric Positions provide guidelines on the use of these additional measures in the 

assessment of skeletal health in children.
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Introduction

Dual-energy X-ray absorptiometry (DXA) remains an important component of 

comprehensive bone health assessment in pediatric and adolescent patients with conditions 

known or suspected to increase skeletal fragility. Clinically, the assessment of bone mineral 

content (BMC), areal bone mineral density (aBMD), and bone mineral apparent density 

(BMAD) by DXA is obtained (1) to assist in the diagnosis of patients presenting with a 

clinically significant fracture history, (2) as part of the routine assessment of skeletal health 

in children at high-risk for fractures or poor bone accretion, and (3) to monitor the response 

to bone-active treatments, medical therapies, or disease processes (1-3).

In the 2013 international society for clinical densitometry (ISCD) Pediatric Official 

Positions, the Pediatric Task Force reaffirmed the posterior-anterior lumbar spine and total 

body less head (TBLH) as preferred skeletal sites for DXA assessment in most pediatric 

patients (4). The position also noted that other skeletal sites may be useful depending on the 

clinical need, and included a brief discussion about the use of DXA to assess the proximal 

femur, lateral distal femur (LDF), distal forearm, and for vertebral fracture assessment 

(VFA). At that time, the strengths and limitations of DXA measurements at these additional 

skeletal sites were not fully evaluated. Since then, interest in the use of DXA at these 

alternate skeletal sites in children has grown.

There are many pediatric patients for whom DXA assessments are clinically indicated, yet 

TBLH or lumbar spine scans are not feasible due to the presence of nonremovable artifacts 

(orthopedic hardware, tubes), difficulties with positioning, abnormal skeletal morphometry, 

or severe scoliosis with torsion. For this reason, careful evaluation of DXA assessment at 

other skeletal sites in children is important for the reasons of accessibility, relevance to 

fracture prediction, and monitoring. For example, in conditions where the predominant 

clinical risk factor is reduced ambulation (eg cerebral palsy) a key concern is that of low-

energy femur fracture. This raises the question of whether DXA assessment at the proximal 

or distal femur would be more clinically relevant than TBLH or lumbar spine in these 
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patients. Additionally, many pediatric patients will continue to be at increased risk of 

fractures once they have reached adulthood. Under the current guidelines, the monitoring of 

bone health in these patients is disrupted as the recommended site of DXA assessment 

changes from TBLH to femoral neck at age 18 yr. Finally, the identification of vertebral 

fractures (VF) continues to be a critical component of bone health monitoring in patients 

with congenital bone fragility (such as osteogenesis imperfecta, long-standing 

nonambulation, and those exposed to high dose glucocorticoids). Modern DXA scanners are 

technically capable of producing high resolution lateral spine images for VFA. The prospect 

of transitioning from standard radiography to DXA for vertebral fracture assessment (VFA) 

in pediatric patients to minimize radiation exposure is appealing.

As with the recommended measurement sites of the lumbar spine and TBLH, the alternative 

sites of the forearm, proximal femur, and LDF require reference ranges derived from data in 

healthy children to account for the expected sex differences and age-related changes. 

Furthermore, BMC and aBMD at all skeletal sites are subject to size artifact. The availability 

of reference ranges for size adjusted outcomes including BMAD (3,5) or height Z-score 

adjusted aBMD Z-scores (6) should also be considered. The adequacy of the reference 

ranges is therefore an important factor when considering the utility of other measurement 

sites for clinical use. An additional consideration in children is that precision may be 

adversely affected by smaller bone size, skeletal maturation, poor cooperation, and 

movement. Fracture patterns in healthy children are different from those in adults, and 

certain groups of children are at extremely high risk for vertebral or lower extremity 

fractures. The ability of a DXA assessment to predict fracture at all skeletal sites is an 

important consideration in the clinical evaluation of pediatric bone health.

Key Questions

The Pediatric Task Force was therefore charged with re-evaluating the utility of DXA 

assessment at the forearm, proximal femur, and LDF, and VFA in the pediatric population. 

To inform the development of evidence-based position statements, the following sets of 

questions were developed:

For DXA Assessment at Distal Forearm, Proximal Femur, and LDF

• Are there adequate reference data?

• What is the precision?

• Does it predict fracture or other proxy outcomes?

• Should it be used in all children or restricted to special groups?

For VFA

• Should VFA be used as a substitute for spine radiography in the identification of 

symptomatic / asymptomatic osteoporotic VF in children?

• When does an abnormal VFA in a child require follow-up spine imaging?
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• What is the VFA method that should be used to detect an osteoporotic VF in 

children?

• Are there technical and biological factors that limit the accuracy of DXA-based 

VFA in children (for example DXA model and software, age, sex, pubertal stage, 

obesity)?

Methodology

Two members of the Pediatric Task Force were assigned to each of the 4 topics (proximal 

femur, LDF, distal forearm, VFA). Literature searches were performed using electronic 

databases including PubMed, Ovid/Medline, EmBase, and Scopus. Specific details of the 

literature search applied to each topic, including search terms, dates of searches, and the 

number of articles initially identified and ultimately included in the literature review are 

provided in Appendix 1. The full texts of the manuscripts included in the final literature 

reviews were obtained and provided to all Task Force members. Key findings of the included 

manuscripts were initially summarized in tabular form for Task Force review, and then used 

to develop the position statements put forth in this document. The processes used to review 

and adopt proposed Official Positions have been previously described (7), and were very 

similar for the present position development conference (PDC). The 2019 ISCD PDC 

Executive Summary has been submitted for publication (C. Shuhart, personal 

communication, May 14, 2019).

Utility of DXA Forearm Measurements

International Society for Clinical Densitometry Official Position

DXA measurements at the 33% radius (also called 1/3 distal radius) may be used clinically 

in ambulatory children who cannot be scanned at other skeletal sites, provided adequate 

reference data are available.

Grade: Fair, B, W.

Rationale

The forearm offers several advantages as a site for bone health evaluation. The radius and 

ulna are the most commonly fractured bones in childhood (8,9). Therefore, forearm 

assessment may be particularly advantageous for fracture prediction. Cortical and trabecular 

bone occur in varying proportions along the length of the radius, so forearm measurements 

can be used to evaluate changes in both compartments. The forearm may be useful for 

patients who cannot be scanned at standard sites.

Discussion

Are There Adequate Reference Data?

Reference data (Table 1) for forearm BMC and aBMD are available for several large 

international samples of healthy children using Hologic densitometers (10-13). Some 

reference data sets include the radius only, whereas others report combined values for the 
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radius and ulna. Commonly used sites include the 1/3 distal region, comprised primarily of 

cortical bone, and the ultradistal region, comprised of primarily trabecular bone. Forearm 

aBMD is affected by arm dominance (10-14), and some reference data report nondominant, 

while others report left forearm measures (10-13). It is important for comparability that the 

region of interest (ROI) and measurement technique, including measurement of and size-

adjustment for forearm length, conform to those used to generate the applicable reference 

data-set. The largest study generating high-quality reference data is the Bone Mineral 

Density in Childhood Study (BMDCS), which utilized the 33% radius of the nondominant 

forearm (13). The BMDCS reference data are accompanied by a method that allows for size 

adjustment of BMC and aBMD Z-scores by height Z-score.

What is the Precision?

The BMDCS reported that the precision for the 33% radius was the poorest of the 4 skeletal 

sites examined (Table 2) (15), but this and other studies (11,16,17) reported coefficient of 

variation values ≤1.9%, the minimum acceptable precision for the lumbar spine for adults 

[https://www.iscd.org/official-positions/2015-iscd-official-positions-adult/]. The monitoring 

time interval was determined to be about 1 yr for children under 18 yr, supporting the 

conclusion that the precision is reasonable for clinical use. Positioning challenges and 

motion artifact are likely to be greater in children with medical illnesses and disabilities.

Does it Predict Fracture or Other Proxy Outcomes?

Retrospective, cross-sectional, case-control, and prospective studies in healthy children 

report associations between forearm DXA measurements and fractures of the forearm and 

other long bones (18-25). However, a recent prospective study found that forearm aBMD in 

boys was less predictive of fractures than lumbar spine and total hip aBMD (26). Forearm 

aBMD is responsive to the positive effects of upper limb impact-loading activities (16,27). 

The ability of forearm aBMD to identify children with underlying skeletal disorders or who 

are at-risk for fragility fractures or fractures in locations associated with significant 

morbidity (such as vertebral compression and femoral fractures) is unknown.

Should it be Used in all Children or Restricted to Special Groups?

Few studies have examined the association of forearm aBMD with skeletal outcomes in 

children with medical illnesses, limited mobility, and physical disabilities, and results are 

conflicting. Radius aBMD correlated with deficits at other skeletal sites in children with 

Duchenne muscular dystrophy (17) and juvenile idiopathic arthritis (28), and was lower in 

nonambulatory girls with Rett syndrome (29), but not in children with anorexia nervosa (30), 

bone marrow failure syndromes (31), and neurofibromatosis type 1 (32). However, the 

forearm may be measured under circumstances when other skeletal sites cannot be measured 

safely, accurately, or without artifact interference.

Future Directions

Further research is needed to determine if forearm DXA assessment is useful for predicting 

fractures, monitoring bone accrual, and assessing the response to medical interventions, 

especially in children with limited ambulation, physical disabilities, or who have conditions 
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where cortical and trabecular bone may be differentially affected. Reference ranges are 

needed for: forearm measures in children <5 yr of age; for the ultra-distal radius ROI for all 

ages; and for general electric (GE) Lunar densitometers. The need for size adjusted 

measures to improve fracture prediction also requires investigation. Precision data for the 

forearm in children have been derived from healthy populations, and may differ from 

precision estimates in children with disorders affecting the skeleton. To what extent younger 

age, lower bone density, underlying disease, and technician experience influence precision 

measurements of the proximal femur in children should be further explored.

Utility of DXA Proximal Femur Measurements

International Society for Clinical Densitometry Official Position

Proximal femur DXA measurements may be used, if reference data are available, for 

assessing children with reduced weight bearing and mechanical loading of the lower 

extremities or in children at-risk for bone fragility who would benefit from continuity of 

DXA measurements through the transition into adulthood.

Grade: Fair, B, W

Rationale

The total body DXA scan primarily quantifies cortical bone mass in children, but the 

reported Z-score is an average of the entire skeleton, so clinically significant deficits in 

weight-bearing bones may be masked by normal upper extremity bone mass (33).The 

proximal femur previously was not considered an optimal site for DXA assessment because 

of concerns related to variability in skeletal maturation of the hip (4). However, pediatric 

sex- and race-specific normative BMC, aBMD, and BMAD (for femoral neck) data are 

available. DXA assessment at the proximal femur allows for the evaluation of both cortical 

(total hip) and trabecular (femoral neck) skeletal compartments of the lower extremity. The 

ability to assess lower extremity bone mass may be important in children with limited 

ambulation or weight-bearing activity. Precision of proximal femur scans in children may be 

affected by scan acquisition issues (positioning and movement), and analysis issues 

(presence of open growth plates, ability to image the lesser trochanter, and placement of 

ROI). Older children with, or at-risk for future skeletal fragility may benefit from having 

proximal femur measurements obtained to allow for better longitudinal assessment of bone 

mass across the transition to young adulthood.

Discussion

Are There Adequate Reference Data?

Cross-sectional and longitudinal reference data (Table 1) for DXA measurements of the 

proximal femur have been established in numerous geographic regions (13,34-54). Most 

reference data were obtained on Hologic densitometers. Published reference data from GE 

Lunar densitometers are available from children living in India for the femoral neck and 

Mexico for the total hip. Pediatric reference data are limited to children 5 yr and older, with 

the exception of 1 study that reported aBMD of the entire femur in a sample of Canadian 
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children from 0 to 12 mo (48). Based on comparisons between DXA manufacturers and 

models for the spine and total body, manufacturer specific reference data should be used (4).

What is the Precision?

Few studies provide details regarding the number and age of children assessed for precision 

estimates (see Table 2). There is measurement error in each DXA measurement due to 

machine error and patient positioning. When following individuals over time, knowledge of 

precision helps to determine when a difference between measurements exceeds that of 

measurement error. Precision estimates combined with expected rates of change are needed 

to inform monitoring time interval, the time interval within which a significant change (ie, 

one that exceeds measurement error) in aBMD is expected to occur due to growth, or a 

pharmaceutical agent or intervention. In the largest pediatric precision study (n = 155, ages 

5–16) (15), precision estimates for the total hip were similar to those of the whole body and 

spine. In this study, the monitoring time interval for total hip and proximal femur aBMD was 

at or below 1 yr, depending on age.

Does it Predict Fracture or Other Proxy Outcomes?

Many (19,22,23,25,55-57), but not all (58,59) case-control studies report lower proximal 

femur aBMD in those with a history of fracture compared to those with no such history. 

Results from prospective studies are also variable. In a preliminary report from the 

prospective population-based Generation R Cohort study (n = 1848), femoral neck aBMD 

and hip structural analysis at 6 yr of age predicted future fractures (60). In another smaller 

prospective study, each standard deviation decrease in femoral neck aBMD was associated 

with an odds ratio for fracture of 1.8 in healthy males aged 6.5–8.5 yr followed for 7.4 yr 

(60,61). However, further follow-up to a mean age of 22.6 yr showed no differences in 

aBMD measurements at any skeletal site among those who did or did not have fractures 

(26). In contrast, baseline proximal femur measurements did not predict fractures in 125 

healthy girls who completed 8.5 yr of follow-up, but trochanteric aBMD was lower in the 

group with fractures at follow-up (18). Other prospective studies have shown no association 

between proximal femur measurements and subsequent fracture (24,62). A limitation of all 

studies is that they examined the predictive value of proximal femur measurements for upper 

limb or all fractures, but not specifically hip or other lower extremity fractures. Hip fractures 

are rare in youth, especially among otherwise healthy individuals, and associations are thus 

difficult to detect.

Can it be Used in all Children or Restricted to Special Groups?

Children with limited physical activity are at significant risk for low proximal femur bone 

mass. Generally, this encompasses individuals with substantially reduced mobility from 

neurological, neuromuscular or muscular disorders, immobilization subsequent to trauma or 

burns, activity restriction due to fear of fractures, hypotonia, or difficulty engaging with 

peers. Children in the latter group include those with autism spectrum disorder (63-65) who 

have a greater risk of hip (66), but not upper limb fractures, and limited engagement in 

sports and other physical activities (66,67) The increased risk of hip fracture in this 

population persists into adult life. A cohort of steroid-naïve patients with Duchenne 

muscular dystrophy was found to have aBMD deficits of the proximal femur that were 
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greater in magnitude and apparent at a younger age compared to the lumbar spine (68). In 

contrast to what is observed in healthy children, the femur was the most common site of 

fracture (40% of all fractures) in these participants. Greater deficits in proximal femur 

aBMD compared to other skeletal sites have also been identified in cohorts of children with 

osteogenesis imperfecta (69) and childhood survivors of acute lymphoblastic leukemia (70). 

In the latter study, proximal femur aBMD deficits persisted over 12 mo despite 

normalization of bone mass at other sites. While these studies are limited by small sample 

sizes, they serve as examples of clinical situations where proximal femur DXA assessment 

may yield additional clinically relevant information.

Studies of children with other conditions at risk for skeletal fragility did not find associations 

of proximal femur BMC or aBMD with fractures (eg, anorexia nervosa (71,72), exercise 

induced amenorrhea (72,73), inflammatory bowel disease (74), Turner syndrome (75), 

suspected primary osteoporosis (76), transfusion dependent thalassemia (77), and childhood 

survivors of solid tumors (78)). However, many of these studies were not powered to detect 

fractures.

Importantly, many children with chronic conditions that threaten bone health and are at 

increased risk of fracture are likely to require ongoing monitoring of bone density into 

adulthood. Proximal femur measurements have good precision and a monitoring time 

interval at or below 1 yr of age, so it is a suitable choice for monitoring changes over time, 

especially in groups such as survivors of acute lymphoblastic leukemia. Importantly, the use 

of proximal femur measurements would allow for continuity of DXA measurements through 

the adult transition. While there are no studies to support the specific age at which proximal 

femur measurements should be acquired for continuity of care, as a general rule they should 

be considered once statural growth is completed.

Future Directions

Further research is needed to determine the utility of proximal femur scans and ROI (ie, total 

hip vs femoral neck) in predicting hip and other fracture risk, and monitoring treatment or 

disease progression. It is unknown if adjustment of proximal femur DXA measurements for 

height Z-score, pubertal stage, bone age, or other factors improves fracture prediction in 

high-risk children. The optimal age ranges and specific patient populations that would 

benefit need to be further delineated. Manufacturers should partner worldwide with pediatric 

bone researchers to develop and optimize proximal femur reference databases.

Proximal femur precision data in children have been derived from healthy populations, and 

may differ from precision estimates in children with disorders affecting the skeleton. To 

what extent younger age, lower bone density, underlying disease, and technician experience 

influence precision measurements of the proximal femur in children should be further 

explored.

It is unknown whether children with low proximal femur bone mass in childhood retain 

residual deficits into adulthood, or whether a catch-up effect occurs over time. Large, long-

term prospective studies that follow children through adulthood are needed to determine 
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whether proximal femur measurements at various time points (prepuberty, puberty, and 

postpuberty), as well as other skeletal sites, predict future fracture risk at 1 or more sites.

Utility of DXA LDF Measurements

International Society for Clinical Densitometry Official Position

LDF DXA measurements correlate well with increased lower extremity fragility fracture 

risk in nonambulatory children. LDF DXA may be used, if reference data are available, to:

a. Assess BMD in children when the presence of nonremovable artifacts 

(orthopedic hardware, tubes), positioning difficulties, abnormal skeletal 

morphometry, or severe scoliosis with torsion interfere with DXA acquisition at 

other anatomical sites.

b. Monitor the effects of changes of weight-bearing in nonambulatory children.

Grade: Fair, B, W

Rationale

LDF measurements assess bone density at an easily accessible, weight-bearing skeletal site 

that is responsive to mechanical loading and is also a clinically relevant fracture location 

(79,80) for patients with conditions that limit mobility, such as cerebral palsy, Rett 

syndrome, spinal muscular atrophy, and Duchenne muscular dystrophy. These children are at 

high risk for low energy fractures of the lower extremities, particularly of the distal femur 

(80-86). This skeletal site may be important for children with limited ambulation or weight-

bearing physical activity to avoid underestimating their degree of skeletal compromise and 

to optimize the timing of necessary therapeutic interventions. Discordance between lumbar 

spine aBMD and LDF aBMD has been described in patients with limited mobility 

(33,87-92). Thus, relevant information regarding bone health in these patients might be 

missed if only the lumbar scan is obtained (89,91).

The LDF scan provides information about 3 types of bone: Region (R)1 is metaphyseal and 

is comprised primarily of trabecular bone, R2 is metadiaphyseal and comprised of a mixture 

of cortical and trabecular bone, and R3 is diaphyseal which is primarily cortical bone (103) 

(see Fig. 1). These regions can respond differently to various medical conditions and/or 

treatments, as shown with decreasing ambulation in children with spinal muscular atrophy 

(86), functional motor status in boys with Duchenne muscular dystrophy (33), 

immobilization following orthopedic surgery (93), and with bisphosphonate use (82,94,95). 

The total body DXA scan primarily quantifies cortical aBMD in children, but the reported 

Z-score is an average of the entire skeleton, so clinically significant deficits in weight-

bearing bones may be masked by normal upper extremity aBMD (33). The LDF site may be 

important to identify those at increased risk for fracture, to optimize the timing of necessary 

therapeutic interventions, to monitor treatment effect for children with limited ambulation or 

weight-bearing physical activity, and to better delineate the effect of weight-bearing activity 

as a crucial modifier of cortical bone mass.
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Discussion

Are There Adequate Reference Data?

Reference data (Table 1) for the LDF are available for scans acquired on Hologic pencil 

beam (96) and fan beam (97) densitometers. Few centers are using pencil beam 

densitometers. The reference data for fan beam densitometers were generated from a robust 

sample allowing for age, sex, and race-specific ranges for children aged 6–18 yr. However, 

measurements were obtained only at a single clinical center. The LDF aBMD results are not 

as strongly influenced by height compared to lumbar spine and total body aBMD (13,96,97).

Clinical utility of the LDF scan is hampered by the lack of a broad age range of normative 

data. Young children with chronic medical conditions known to negatively impact bone can 

experience fragility fractures in the first 1–2 yr of life (86,98). Pediatric patients with 

complex medical needs are living longer and an increased fracture may risk persist through 

young adulthood (99-101).

What is the Precision?

Precision estimates for the LDF scan are approx 3% (range 1.2%–7.1%) (Table 2). In 

general, precision estimates are better for aBMD than BMC, and at cortical regions 

compared to trabecular regions. Precision estimates for repeat analyses (0.7%–1.8%) are 

better than for repeat scans (100,102). Compared to other ISCD recommended skeletal sites, 

precision estimates are slightly worse than average precision error for the lumbar spine 

(<2%–3%) and total body (1%–2%) (103).

Does it Predict Fracture or Other Proxy Outcomes?

Lower extremity fractures, specifically at the distal femur, are the most common type of 

fracture in non-weight-bearing children (84,104). In a study of 619 children with cerebral 

palsy and Duchenne muscular dystrophy (80), a strong correlation between LDF aBMD and 

prior fracture was demonstrated: 35%–42% of those with LDF aBMD Z-scores <5.0 had 

fractured compared with 13%–15% of those with aBMD Z-scores >1.0. There are no large, 

longitudinal studies demonstrating a direct association between LDF aBMD and subsequent 

fracture.

The responsiveness of LDF aBMD to loss of weight-bearing activity has been shown 

(33,86,105) in patients with acute immobilization (93,95) and spinal cord injury (106). LDF 

aBMD also associates with indicators of ambulation (gross motor function classification 

system level, phenotype severity, activity level), therapeutic interventions (87,98), nutritional 

status, severity of medical comorbidities, and medication use (91,101). Collectively, these 

studies demonstrate that LDF aBMD has utility to monitor the effects of disease or 

treatment.

Should it be Used in all Children or Restricted to Special Groups?

LDF aBMD measurements respond positively to exercise in healthy, typically developing 

children (105,107), and is sensitive to disease processes and treatments affecting bone 

strength such as changes in weight-bearing over time in children with chronic conditions 
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that affect ambulation (33,86); temporary immobilization; and bisphosphonate treatment in 

children with cerebral palsy, osteogenesis imperfecta, and other chronic conditions 

associated with low aBMD (82,94,95,98). LDF is a clinically valid technique in patients 

with skeletal dysplasia (108,109) in whom abnormal skeletal morphometry limits aBMD 

assessment at standard sites.

Future Directions

The broader use of LDF scans in children requires improvements in reference data, with 

expanded age ranges for younger children and into adulthood, and reference ranges for GE 

Lunar devices. It is unknown whether fracture prediction using LDF aBMD is improved 

with size adjustment. The assessment of LDF aBMD has been validated in adults with 

neuromuscular impairment, although it requires a slightly different analysis technique since 

the growth plate landmark used in the pediatric bone analysis is no longer present (100). 

Importantly, the need for standardized scan acquisition protocols, software analysis and 

reporting programs supported by DXA manufacturers for LDF scans is paramount.

Longitudinal studies in typically developing healthy children are needed to establish the 

expected change in LDF aBMD for longitudinal monitoring of chronically ill children. This 

change, plus the least significant change of the clinical center acquiring the scans, must be 

known to interpret serial changes. It is unknown if precision estimates at the LDF are 

different for ambulatory children compared to nonambulatory children. This is clinically 

relevant given the less favorable precision estimates noted in some studies involving 

medically complex children and importance of DXA technician training for this technique. 

To what extent younger age, lower bone density, underlying disease, and technician 

experience influence precision measurements of the proximal femur in children should be 

further explored.

Larger, prospective, longitudinal studies are needed to evaluate the predictive value of LDF 

aBMD for fracture in children with medical conditions that negatively impact bone, 

especially those at increased risk for lower extremity fragility fractures and impaired weight-

bearing ability. Further studies are necessary to elucidate the sensitivity of the 3 LDF ROIs 

to treatment interventions and the recommended interval for repeat monitoring to assess for 

therapeutic response.

International Society for Clinical Densitometry Official Position

Precision assessment at each skeletal measurement site should be calculated in a sample 

representative of the patient population being evaluated.

Grade: Fair, A, W

Rationale and Discussion

It is widely recognized that ascertainment of precision is necessary for determining least 

significant change when monitoring individuals over time. It is also helpful for interpreting 

DXA measurements at a single time point, since it provides a frame of reference for the 

potential range of measurement error for a single measurement. In the pediatric population, 
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precision may be influenced by factors contributing to movement, positioning, and ability to 

cooperate such as developmental age, cognitive ability, and movement disorders, or 

technical factors such as bone edge detection in small bones. Many published studies of 

precision have been based on healthy children who are able to cooperate. These values may 

not reflect precision in patient groups, such as children with limited mobility, for whom 

results of DXA scans may affect clinical care, nor do they reflect the skill level of DXA 

operators at individual centers. Precision assessment in samples representative of the patient 

populations being evaluated requires time, effort, and parental consent, and must be 

performed within local regulations for radiation safety. However, such information would 

potentially benefit these pediatric populations.

Utility of VFA in Children

International Society for Clinical Densitometry Official Position

DXA VFA may be used as a substitute for spine radiography in the identification of 

symptomatic and asymptomatic VF, provided the evaluator has experience in the assessment 

of pediatric VF

Grade Fair, B, W

International Society for Clinical Densitometry Official Position

Following VFA, additional spine imaging should be considered in the following 

circumstances:

a. Vertebrae that are technically unevaluable by VFA (ie not sufficiently visible), 

provided the detection of a VF would change clinical management.

b. Assessment of a single, Genant Grade 1 VF, if confirmation of a Grade 1 VF 

alone would change clinical management.

c. Radiographic findings that are not typical for an osteoporotic VF (eg suspected 

destructive inflammatory or malignant processes, congenital malformations, 

acquired misalignments, or dislocations)

Grade: Fair, B, W

International Society for Clinical Densitometry Official Position

The Genant semi-quantitative method should be used for VFA in children.

Grade: Fair, C, W

Rationale

Low-trauma VFs are a frequent manifestation of osteoporosis in high-risk pediatric 

populations, including children with osteogenesis imperfecta (110) and glucocorticoid-

treated disorders (Fig. 2) (111-113). Recent studies in children with glucocorticoid-treated 

illnesses have shown that moderate and severe prevalent VFs are the strongest independent 
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predictors of incident VF, even more so than aBMD. Even mild VFs are independent 

predictors of future VF in children (111,114).

The Steroid-induced Osteoporosis in the Paediatric Population research program showed 

that VF can occur with aBMD Z-scores greater than −2.0 (111,114,115), the historic cut-off 

to define osteoporosis in children. This fact, along with the observation that significantly 

different lumbar spine aBMD Z-scores are generated depending on the normative database 

used (115-117), aligns with the ISCD’s 2013 recommendation that aBMD Z-score cut-off is 

not required in a child with a low-trauma VF (118).

Pediatric VFs are frequently asymptomatic (119), and go undetected in the absence of 

routine surveillance (112,120-122). These observations have led to recommendations which 

promote periodic screening for VF by spine radiographs in at-risk children, and heighten the 

need for a VF detection method that is efficient and involves low radiation. VFA by DXA is 

one such method, with additional advantages that the entire spine can be visualized on a 

single cassette, and that parallax is eliminated, both of which facilitate a radiologist’s 

assessment of vertebral morphology.

Discussion

Should VFA be Used as a Substitute for Spine Radiography in the Identification of 
Symptomatic/Asymptomatic Osteoporotic VF in Children?

Six pediatric studies (Table 3) have evaluated the sensitivity and specificity of DXA-based 

VFA in comparison to spine radiographs (123-128). Studies vary in manufacturer/models, 

analysis software, VF detection techniques, study design, and morphometric definitions of 

fractures. VF occur most frequently in children in the mid-thoracic region (120,129), and 

this area was not evaluated in 1 study (126). Nevertheless, these studies showed that: (1) 

sensitivities and specificities for VF identification were highest for expert reader appraisal 

using the Genant semi-quantitative method rather than automated or human 6-point 

morphometric analysis (123-125,128); and (2) assessment by expert readers was the most 

important determinant of high sensitivities and specificities on both Hologic (Discovery) 

(125) and GE Lunar (iDXA) (124) devices (there were no published studies using the 

Hologic Horizon instrument, Lunar models earlier than the iDXA, or Norland machines). 

These results emphasize the importance of VFA assessments by expert readers (ie 
radiologists with expertise in pediatric vertebral morphology). Importantly, 1 study showed a 

3–5-fold lower radiation exposure by VFA compared to radiography (123,124).

When Does an Abnormal VFA in a Child Require Follow-up Imaging?

In patients with a high risk of VF, especially in those where management will be influenced 

by the presence of VF, unevaluable vertebrae by VFA should be reimaged by conventional 

radiography or MRI. Conventional radiography should be considered first due to its ease, 

rapid availability, and low cost. However, mid- and upper thoracic vertebrae may also be 

poorly visible on conventional radiographs (123,124), so MRI may be required following 

conventional radiography. MRI will also be useful in identifying additional clinical signs of 

VF, such as edema, that may facilitate diagnosis.
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The thoracic region is the most frequent site of VF in children and adults (130), yet it is also 

the most frequent site of unevaluable vertebrae by VFA, particularly in the upper thoracic 

area (T4–7) (124,125). Vertebrae in the thoracic region (124,125) may be unevaluable due to 

obscuration by overlying lung tissue and scapulae. Anterior wedging due to normal 

physiology in the mid-thoracic region can also occur. Thoracic vertebra evaluation is further 

complicated in younger children because vertebrae have a rounded appearance due to lack of 

or emerging ossification of the ring apophysis. This appearance can be mistaken for a VF by 

an inexperienced reader (124,125,129). In borderline cases, an expert reader with the ability 
to distinguish the radiographic features of the developing spine from the signs of VF 
(including loss in vertebral height ratio plus other discrete signs such as endplate 
interruption, anterior cortical buckling, and loss of endplate parallelism) is particularly 
important. Incidental findings of deformities that are not typical for osteoporotic fractures 

(eg, Schmorl’s nodes, fibrous dysplasia, osteomyelitis, congenital vertebral abnormalities, 

endplate infarcts due to sickle cell disease, infection, or malignancy) should be further 

evaluated by conventional radiography or MRI as clinically indicated.

It is well-established in both children and adults that agreement is lowest for Grade 1 VF, 

whether by DXA VFA or conventional radiography (124,125,131,132). Incident Genant 

Grade 1 VF in patients with minimal or equivocal risk factors for osteoporotic VF and 

without previous fractures, should undergo follow-up radiography or MRI for accurate VF 

identification, particularly if identification of a Grade 1 VF would alter patient management.

What is the VFA Method That Should be Used to Detect an Osteoporotic VF in Children?

The Genant semi-quantitative method is the most widely used, standardized method to 

diagnose VF in children and adults alike (118,133,134). Vertebral bodies are graded 

according to the extent of the reduction in height ratios when the anterior vertebral height is 

compared with the posterior height (anterior wedge fracture), middle height to the posterior 

height (biconcave fracture), and posterior height to the posterior height of adjacent vertebral 

bodies (crush fracture). The definition of a VF is >20% loss in vertebral height ratio.

The Steroid-induced Osteoporosis in the Paediatric Population research program 

demonstrated that VF were more common than fractures at other skeletal sites as 

manifestations of osteoporosis in children with glucocorticoid-treated leukemia (135). This 

program provided convincing evidence for the validity of the Genant semi-quantitative 

method in the young (111,114,121). Genant-defined VF in children (1–18 yr of age) were 

associated with clinical predictors including back pain, low and/or declining spine aBMD Z-

scores, and GC exposure (111,114,121). Moderate and severe VF were the strongest 

predictors of incident VF, although mild VF also independently predicted incident VF. 

Prevalent Genant-defined VF further predicted incident non-VF (135).

Are There Technical and Biological Factors that Limit the Accuracy of DXA-Based VFA in 
Children?

Cooperation is required to minimize motion artifact. Children under 5 yr and those with 

developmental delay may pose challenges in image acquisition. Likewise, positioning can be 

challenging in those with neuromuscular disorders. These issues can be mitigated by a DXA 
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technologist with experience in imaging these special groups. Obesity limits edge detection 

in all DXA methodology, but specific limitations to VFA evaluability have not been 

identified. Spinal implants and moderate to severe scoliosis also limit VFA, but in DXA-

based techniques and lateral spine radiography, alike. The published literature does not 

suggest an effect of sex or pubertal stage on image quality. Technical factors limiting the 

accuracy of DXA-based VFA in children across different manufacturers and models have 

not been fully evaluated.

Future Directions

Further research is required to determine the full spectrum of diseases that would benefit 

from routine VFA for detection and monitoring of VF. Low and/or declining spine aBMD Z-

scores, back pain, GC exposure, and increases in body mass index are independent 

predictors of VF to varying extents. However, the sensitivity and specificity of these 

variables, in isolation or in combination, in predicting VF among children with diseases at 

particular risk for VF (eg, GC-treated Duchenne muscular dystrophy, leukemia, rheumatic 

disorders, nephrotic syndrome, and motor disorders (111,113,121,136,137)) remains 

unexplored.

Children with VF have the potential to undergo vertebral body reshaping following transient 

GC exposure, provided there is sufficient residual linear growth to restore normal vertebral 

dimensions through the process of bone modeling (135). “Spontaneous” (medication-

unassisted) vertebral body reshaping may obviate the need for therapy, in the absence of 

additional clinically significant indicators of bone fragility. The utility of VFA in assessing 

vertebral body reshaping following VF has not been explored.

The full impact of DXA make, model and operator experience on image quality requires 

further study, particularly in younger patients. Comparative studies assessing the validity of 

DXA VFA in younger vs older children, and in different osteoporotic conditions are 

warranted. Further assessment of the natural variability in vertebral height ratios at different 

ages and at different locations along the developing spine would also help facilitate 

validation and further implementation of automated vertebral morphometry into pediatric 

clinical practice.

Summary and Overall Future Directions

There are now sufficient data to support the technical validity of DXA assessment at the 

distal forearm, proximal femur, and LDF, and also for VFA in children. The ability to utilize 

these alternate DXA sites will afford clinicians greater flexibility when evaluating bone 

health in pediatric populations. This is particularly relevant when whole body or lumbar 

spine scans cannot be obtained in certain patients, or when the underlying condition 

necessitates evaluation of fracture risk or monitoring of specific skeletal site. Despite the 

growing experience with the use of DXA at these alternate sites, further studies are needed 

to better define which skeletal site(s) and regions of interest provide the most relevant 

information for a given patient group or clinical scenario. More robust reference data are 

needed for both technological platforms (Hologic and GE Lunar devices) to provide 

complete representation according to age, sex, and population ancestry. Additionally, in 
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order to adequately monitor bone health in at-risk groups of children and adolescents, 

precision data are needed in samples representative of the patients for whom DXA scans are 

clinically utilized. As these knowledge gaps are addressed, improvements can be expected in 

earlier identification of risk for fracture, monitoring practices, and the clinical care of 

children and adolescents with a variety of medical conditions who are at risk for 

compromised bone accretion and low energy fractures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Lateral distal femur scan showing the 3 regions of interest. Region (R)1 is metaphyseal and 

is comprised primarily of trabecular bone, R2 is metadiaphyseal and comprised of a mixture 

of cortical and trabecular bone, and R3 is diaphyseal which is primarily cortical bone. 

Reproduced from Zemel et al, (97).
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Fig. 2. 
Five year-old child with osteogenesis imperfecta type III. (A) Lateral spine radiograph. (B) 

Lateral spine DXA VFA. Both show multiple vertebral fractures at T5-11. From Diacinti D, 
et al, (125).
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