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Abstract

Background: Clinical and epidemiological studies have shown that obesity is associated with 

asthma and that these associations differ by asthma subtypes. Little is known about the shared 

genetic components between obesity and asthma.

Objective: To identify shared genetic associations between obesity-related traits and asthma 

subtypes in adults.

Methods: A cross-trait genome-wide association study (GWAS) was performed using 457,822 

individuals of European ancestry from the UK Biobank. Experimental evidence to support the role 

of genes significantly associated with both obesity-related traits and asthma via GWAS was sought 

using results from obese vs. lean mouse RNA-seq and RT-PCR experiments.

Results: We found a substantial positive genetic correlation between BMI and later-onset asthma 

defined by asthma age of onset at 16 years of age or older (Rg =0.25, P=9.56×10−22). Mendelian 

Randomization analysis provided strong evidence in support of BMI causally increasing the risk of 

asthma. Cross-trait meta-analysis identified 34 shared loci among 3 obesity-related traits and 2 

asthma subtypes. GWAS functional analyses identified potential causal relationships between the 

shared loci and GTEx tissue eQTLs, shared immune- and cell differentiation-related pathways 

between obesity and asthma. Finally, RNA-seq data from lungs of obese versus control mice found 

that two genes (ACOXL and MYL6) from the cross-trait meta-analysis were differentially 

expressed, and these findings were validated by RT-PCR in an independent set of mice.

Conclusions: Our work identified shared genetic components between obesity-related traits and 

specific asthma subtypes, reinforcing the hypothesis that obesity causally increases the risk of 

asthma, and identifying molecular pathways that may underlie both obesity and asthma.

Graphical Abstract
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Capsule Summary:

This large-scale genome-wide cross-trait study discovers shared genetic etiology of obesity- and 

glycemic-related traits with specific asthma subtypes in adults and reinforces the idea of genetic 

instruments of obesity causally increases the risk of asthma.

Keywords

obesity; metabolic disorder; asthma subtypes; shared genetics; genome-wide association study; 
RNA-seq; RT-PCR

Introduction

Asthma is a common chronic disease that accounts for a substantial burden of disease 

worldwide1. Metabolic disorders, such as obesity and type 2 diabetes (T2D), have become 

highly prevalent globally and in the US2, and numerous studies have linked metabolic traits 

with increased asthma risk3, 4. Asthma is a highly heterogeneous disease; both age of onset 

and atopic status play important roles in currently recognized asthma subtypes5. Early-onset 

asthma is highly heritable and associated with atopy, while later-onset asthma is often non-

atopic and resistant to treatment6. Recent studies indicate that different asthma subtypes are 

related disproportionally with metabolic traits, such as obesity7. For example, obesity 

appears to have a stronger association with non-atopic asthma than atopic asthma8.

Metabolic disorders and asthma are highly heritable traits, and the parallel rise in prevalence 

of metabolic disorders (especially obesity) and asthma worldwide suggests these conditions 

share genetic and environmental risk factors1. Understanding the shared genetic architecture 

across various complex traits has been a topic of recent interest. For example, shared genetic 

risk factors have been identified between sleep disturbance and metabolic traits9, and type 2 

diabetes and coronary heart diseases10. Additionally, we previously performed a cross-trait 

genome-wide association study (GWAS) to identify shared genetic variants among asthma 
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and allergic diseases11, Alzheimer’s disease and metabolic traits12, and chronic obstructive 

pulmonary diseases and cardiovascular traits13. Previous studies that have investigated 

shared genetic associations between obesity-related traits (i.e., obesity and high-density 

lipoprotein [HDL]) and asthma14-16 have found that genes such as GNPDA2, PTPRD and 

ROBO1 are associated with both body-mass index (BMI and asthma, these studies were 

limited by small sample size). Therefore, it remains to be determined to what extent the 

phenotypic association between obesity-related traits and asthma is due to genetic effects, 

and whether the shared genetic factors with obesity differ among main asthma subtypes: 

early-onset and later-onset asthma. In the current study, we conducted a large-scale GWAS 

cross-trait analysis between asthma (early-onset, later-onset asthma, atopic asthma and non-

atopic asthma) and obesity traits (i.e., BMI, BMI adjusted waist-to-hip ratio [WHRadjBMI], 

and BMI adjusted waist circumferences [WCadjBMI]) using UK Biobank and other publicly 

available GWAS data for obesity-related metabolic traits, including T2D from the 

DIAGRAM Consortium17, fasting glucose (FG) and fasting insulin (FI) from the MAGIC 

Consortium18, and blood lipids (i.e. low-density lipoproteins [LDL], HDL, total cholesterol 

[TC], triglycerides [TG]) from the ENGAGE Consortium19.

Methods

Study Population and Design

The UK Biobank study has been previously described in detail11, 20. All participants 

provided informed consent to the UK Biobank. Our overall study design is shown in Figure 

1. To identify genetic variants that contributed to self-reported obesity traits and doctor-

diagnosed asthma, we performed GWAS using phenotype data provided for UK Biobank 

participants (N = 487,409). We restricted subjects to 457,822 individuals of European 

ancestry (457,822 with BMI measures, 457,690 with WHR and WC measures, 13,435 with 

early-onset asthma, 33,418 with later-onset asthma, 28,862 with non-atopic asthma, 23,982 

with atopic asthma) with high-quality genotyping and complete phenotype/covariate data. 

We did not remove related samples because we used a linear mixed model (LMM) method 

for phenotype-genotype association analysis that appropriately accounted for relatedness21. 

Detailed demographic information is provided in Supplementary Table 1.

Ascertainment of asthma in UK Biobank

Asthma subjects were subset in two ways: by age of onset and atopic status. Early-onset 

asthma was defined as an individual with doctor-diagnosed asthma that developed before 16 

years of age and later-onset asthma as doctor-diagnosed asthma that developed at 16 years of 

age or older. Non-atopic asthma was defined as doctor-diagnosed asthma without hayfever/

allergic rhinitis or eczema. Atopic asthma was defined as doctor-diagnosed asthma with 

hayfever/allergic rhinitis or eczema. UK Biobank data field 6154 was used to determine 

doctor-diagnosed asthma or allergic diseases; data field 3786 was used to determine age of 

asthma onset. There were 21,434 cases who had later-onset and non-atopic asthma; 15,172 

cases who had later-onset and atopic asthma; 6,640 cases who had early-onset and non-

atopic asthma; and 7,999 cases who had early-onset and atopic asthma.
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GWAS analysis

Genome-wide genotyping was performed in UK Biobank participants using the UK Biobank 

Axiom array and UK BiLEVE Axiom™ Array from Affymetrix20. Genotype imputation 

was performed using the Haplotype Reference Consortium panel22. We selected variants that 

did not deviate from Hardy-Weinberg Equilibrium (P>1×10−6), have per-variant missing call 

rates <10%, have per-sample missing rate <10%, and did have minor allele frequency >1% 

and imputation quality score >0.8. Detailed quality control (QC) and imputation information 

is provided in the Supplementary Appendix. We used BOLT-LMM v2.321 to conduct 

association tests. For continuous outcomes, we carried out LMM association analyses while 

adjusting for age, age squared, sex, genotyping array and twenty ancestry principal 

components (PCs) to assess association between the inverse normally transformed 

phenotype residuals and imputed genotype dosages. For binary phenotypes, we performed 

LMM association analyses while adjusting for age, sex, genotyping array, twenty ancestry 

PCs. The effect estimate output of BOLT-LMM linear regression was transformed into log 

odds ratio.

After association analyses, we used the PLINK clumping function (parameters: --clump-p1 

5×10−8 --clump-p2 1×10−5 --clump-r2 0.2 --clump-kb 500) to determine top loci that were 

independent of each other (i.e., variants with p-value less <1×10−5, r2 >0.2 and within 500kb 

of a given peak's clump).

Linkage disequilibrium score regression (LDSC) analysis

LDSC estimates genetic correlation between the true causal effects of two traits (ranging 

from −1 to 1) from summary statistics using the fact that the GWAS effect size estimate for 

each SNP incorporates the effects of all SNPs in linkage disequilibrium with that SNP. 

LDSC applies a self-estimated intercept during the analysis to account for shared subjects 

between studies11, 23.

Analysis of sex-specific effects

Previous studies have shown that the association between asthma and metabolic traits differs 

by sex24 and that girls with early age at menarche have lower lung function and increased 

risk of asthma in adulthood25. Thus, we performed sex-stratified analyses to evaluate the 

genetic correlation between obesity traits and asthma subtypes according sex and without 

the effect of age at menarche in female obesity traits and asthma.

Partitioned genetic correlation analysis

To characterize the genetic correlation at the level of functional categories, we estimated 

genetic correlations between metabolic traits and asthma (later-onset and non-atopic) using 

partitioned LDSC in 11 annotation categories: transcribed region, super enhancer, intron, 

transcription factor binding sites (TFBS), DNaseI digital genomic footprinting (DGF) 

region, DNase I hypersensitivity sites (DHSs), fetal DHS, and histone marks H3K4me1, 

H3K4me3, H3K9ac, and H3K27ac26, 27. For each annotation category, we re-calculated LD 

scores for SNPs assigned to that particular category and then used the annotation-specific 

LD scores for estimating the metabolic trait-asthma genetic correlation.
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Genetic causal inference analysis

We used generalized summary data-based Mendelian Randomization (GSMR)28 and Latent 

Causal Variable (LCV)29 to infer putative direction of causality between BMI and asthma 

phenotypes. While both GSMR and LCV perform causal inference based on GWAS 

summary statistics, GSMR estimates effect of exposure on outcome using SNPs 

significantly associated with exposure28, whereas LCV estimates genetic causality 

proportion (GCP) using all common SNPs and is robust to confounding by pleiotropy29. A 

significant effect of exposure on outcome and a GCP close to 1 are strong evidence of causal 

relationship. Because samples shared across GWAS induce bias in causal inference30, we 

avoided sample overlap by using summary statistics obtained from our UK Biobank analysis 

for asthma phenotypes and publicly available summary statistics from the GIANT 

consortium for BMI31. We did not use other obesity-related phenotypes (i.e., WHRadjBMI 

and WCadjBMI) for causal inference analyses, as these phenotypes are adjusted for heritable 

covariates and are thus prone to collider bias32, 33. We removed strand-ambiguous SNPs and 

SNPs in the MHC region (chr6:25-34M) only in MR analyses due to its strong pleotropic 

effect.

Cross-trait meta-analysis

Cross Phenotype Association (CPASSOC) combines effect estimates and standard errors of 

GWAS summary statistics to test the hypothesis of association between a SNP with two 

traits34. We used heterogonous version of CPASSOC (SHet) that is based on a fixed effect 

model and is more powerful when there is a heterogonous effect present between studies, 

which is common35. SHet uses the sample size for a trait as a weight and accounts for 

correlation due to overlapping or related subjects within and among different studies.

Fine mapping credible-set analysis

In order to identify the most credible genes within the clumping results, we identified a 

credible set of variants that were 99% likely to contain the causal variant at each of the 

shared loci obtained from the cross-trait meta-analysis using the Bayesian-likelihood fine-

mapping algorithm36. This algorithm maps the primary signal using a flat prior with steepest 

descent approximation.

Overrepresentation enrichment analysis

To identify biological pathways that significant genes after cross-trait meta-analysis 

(Pmeta<5×10−8) were involved in, we used the WebGestalt tool37 to assess overrepresented 

enrichment of gene sets in Gene Ontology (GO) biological process categories.

Colocalization analysis

We used the R package coloc38 to determine whether cross-trait meta-analysis association 

signals of shared loci co-localized at the same variant. After extracting summary association 

data for variants within 500kb of the index SNP at each of the shared loci, we calculated the 

posterior probability that the two traits were associated with different causal variants (H3) or 

that the two traits were associated and shared one common causal variant (H4). Loci were 

considered to be co-localized if the posterior probability H4 was >0.7. In addition, since the 
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GTEx eQTL signals by themselves are pervasive, we conducted the colocalization analysis 

between cross-trait meta-analysis results and 48 single GTEx tissue cis-eQTL (version 7) to 

determine if the same genetic variants were related to expression and the diseases.

Mouse lung gene expression changes with obesity

We obtained two independent measures of differential lung expression, one with RNA-Seq 

and one with RT-PCR, to identify gene expression changes in lung between (1) mice on a 

high fat diet (HFD) vs. a low fat diet (LFD) mice and (2) autosomal recessive diabetes 

mutation (db/db) vs. wild-type mice. Such differentially expressed genes were sought as 

providing evidence linking obesity to asthma vis-à-vis potential changes in lung tissue. A 

detailed description of gene expression analyses is provided in the Supplementary Appendix.

Results

Single Trait GWAS Results

We identified 1,636 genome-wide significant independent loci associated with BMI, 1,074 

with WHRadjBMI, 1,260 with WCadjBMI, 77 with later-onset asthma, 219 with early-onset 

asthma, 101 with non-atopic asthma, and 198 with atopic asthma (Supplementary Table 2-8, 

Supplementary Figure 1-7). The genomic inflation factor intercepts from LDSC were 1.12 

for BMI, 1.19 for WHRadjBMI, 1.17 for WCadjBMI, 1.03 for later-onset asthma, 1.06 for 

early-onset asthma, 1.04 for non-atopic asthma and 1.05 for atopic asthma (Supplementary 

Figure 8-14). Given the small genomic inflation factor intercept values, we attributed the 

lift-off of QQ plots (high lambda GC) to polygenicity and not population stratification.

Genetic Correlation between Metabolic Traits and Asthma

We estimated the genetic correlation of metabolic traits with four asthma subtypes. As 

shown in Figure 2 and Supplementary Table 9, obesity traits were positively genetically 

correlated with later-onset asthma (Rg=0.25, P=9.56×10−22 for BMI; and Rg=0.08, 

P=1.19×10−3 for WHRadjBMI), but not with early-onset asthma. Sex-specific analyses 

found no significant difference between the later-onset asthma/BMI genetic correlation in 

males and females, but did find a significant difference between later-onset asthma and 

WHRadjBMI genetic correlation (Supplementary Table 10-11). When we extended our 

analysis to atopic and non-atopic asthma, we observed a positive genetic correlation between 

obesity traits and non-atopic asthma (Rg=0.24 , P=5.75×10−17 for BMI; and Rg=0.07, 

P=0.02 for WHRadjBMI), but only a modest association between BMI and atopic asthma 

(Rg=0.08, P=1.70×10−3). In addition, T2D, FG, and FI had significant positive genetic 

correlations with later-onset asthma (Rg: 0.20, 0.15, and 0.19; P: 1.39×10−6, 0.02, and 

9.21×10−3, respectively) and non-atopic asthma (Rg: 0.12, 0.16, and 0.15; P: 4.19×10−3, 

5.72×10−3, and 0.04, respectively) but not with early-onset asthma. We did not find 

significant genetic correlations between lipids (i.e., HDL, LDL, TC, TG) and any asthma 

subtypes. To evaluate whether certain annotation categories contributed disproportionately to 

the observed whole-genome genetic correlation between later-onset/non-atopic asthma and 

obesity-related traits, we performed LDSC for 11 functional annotation categories 

(Supplementary Table 12-13). Generally, the partitioned LDSC by functional categories 

were consistent and had similar magnitude as genome-wide genetic correlations. For 
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example, BMI was significantly correlated with later-onset asthma (Rg ranges from 0.21 to 

0.25, P<0.05/110) and non-atopic asthma (Rg ranges from 0.18 to 0.26, P<0.05/110) for 

nine functional categories (i.e., transcribed region, TFBS, DGF, DHSs, fetal DHS, 

H3K4me1, H3K4me3, H3K9ac, and H3K27ac) after correcting for multiple comparisons. 

The Intron category had Rg=0.37 but was not statistically significant after multiple 

comparisons correction (P= 0.0043). No functional category had a disproportionate 

contribution to the genetic correlation between later-onset/non-atopic asthma and obesity-

related traits. Thus, our results provided evidence that obesity-related traits and later-onset/

non-atopic asthma are genetically correlated and motivated us to further investigate the 

genetic components shared between these traits.

Causal Inference

We performed causal inference between BMI (GIANT consortium) and UK Biobank asthma 

phenotypes using GSMR and LCV. A strong positive causal effect of BMI on asthma 

phenotypes (later-onset asthma, non-atopic asthma, and atopic asthma) but not vice versa 

was observed with GSMR (Table 1). For example, the estimated effect of BMI on later-onset 

asthma was significant with an OR=1.21 (P=6.3×10−7), but the estimated effect of later-

onset asthma on BMI was not (OR=1.00; P=0.70), where the odds ratio (OR) in the former 

case represents the increase in the odds of having asthma, per standard deviation increase in 

BMI. Our estimated causal effect of BMI on asthma was comparable to that obtained by 

Skaaby et al. (OR=1.07, 95% CI: [1.03, 1.10] based on a GWAS of sample size N=162,124 

and 26 instruments)39, and that obtained by Granell et al. (OR=1.55, 95% CI: [1.16, 2.07] 

based on a GWAS of sample size N=4,835 and 32 instruments)40.

Because BMI and asthma are polygenic traits11, 31, inferred causal relationships between 

them are prone to confounding due to pleiotropy. Therefore, we also applied LCV, a method 

robust to pleiotropy confounding, to infer the genetic causality proportion (GCP) between 

BMI and asthma phenotypes. GCP is a unitless measure of causality and equal to 1 under 

full causality. Reassuringly, we found that the LCV estimates of GCP for all inferred causal 

relationships were close to 1 (Table 1). For example, the estimated GCP for the causal 

direction BMI → later-onset asthma was 0.90 (S.E. 0.09), not significantly different from 1. 

Taken together, both GSMR and LCV provided strong evidence in support of the putative 

model that BMI causally increases the risk of asthma. Detailed causal inference results are 

provided in Supplementary Table 14.

Cross-Trait Associations Between Metabolic Traits and Asthma

In total, we identified 8 independent loci shared between BMI and later-onset asthma and 10 

shared between BMI and non-atopic asthma (Psingle trait<1×10−5 and Pmeta<5×10−8) (Table 

2). The credible set of SNPs for each of these shared loci was also identified (Supplementary 

Tables 15 and 16). Our results found both similarities and differences in the shared genetic 

components of obesity-related traits with later-onset and non-atopic asthma. Three out of the 

8 significant shared loci between BMI and later-onset asthma were also significantly shared 

between BMI and non-atopic asthma at the same top variant (including 12q13.2 [ERBB3, 

index SNP: rs4759229], 1p35.2 [COL16A1, index SNP: rs6681149], and 17q25.1 
[UNC13D, index SNP: rs111365807]). Interestingly, the strongest shared signal of BMI with 
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later-onset and non-atopic asthma was at chromosome 12q13.2 (ERBB3, index SNP: 

rs4759229) (Pmeta=1.67×l0−23 for later-onset asthma and Pmeta=1.75×10−21 for non-atopic 

asthma). Other shared genetic components between BMI and later-onset asthma included 

1q24.1 (POU2F1 or Oct-1), 2q13 (ACOXL), 3q26.32 (TBL1XR1), 4q12 (near USP46), and 

6q24.2 (PLAGL1). POU2F1 (Oct-1) and TBL1XR1 are both involved in glucocorticoid 

receptor regulation, while loss of TBL1XR1 drives glucocorticoid resistance41, and thus, 

may play a functional role in the glucocorticoid resistance observed in obese asthmatics42. 

Shared loci between BMI and non-atopic asthma were 1p36.23 (RERE), 6p21.32 (near 

HLA-DQB1), 7p21.1 (near ABCB5), 11q13.2 (ACTN3), 17q21.1 (PSMD3), 17q25.3 (near 

TIMP2 and USP36), and 18q12.3 (near PIK3C3), genes involved in cell cycle processes 

including cellular differentiation, apoptosis, or proliferation43-45.

We identified 6 and 7 independent shared loci of WHRadjBMI with later-onset and non-

atopic asthma, respectively (Table 2). The credible set of SNPs for these shared loci is 

provided in Supplementary Tables 17 and 18. Similar to the results of BMI, we observed 3 

common loci shared among WHRadjBMI, later-onset asthma, and non-atopic asthma (two 

shared at the same index SNP, and one at different index SNP): 15q22.33 (SMAD3, index 

SNP: rs10152595, Pmeta=2.56×10−20 for later-onset asthma and Pmeta=1.40×10−20 for non-

atopic asthma), 19q13.32 (FOXA3, index SNP: rs8103278, Pmeta=1.30×10−11 for later-onset 

asthma and Pmeta=5.12×10−11 for non-atopic asthma), and 11q23.1 (near LAYN, index SNP 

for later-onset asthma: rs4616071, index SNP for non-atopic asthma: rs11213940, 

Pmeta=5.85×10−12 for later-onset asthma and Pmeta=1.73×10−13 for non-atopic asthma).

We investigated shared loci for three glycemic metabolic traits (i.e., T2D, FG, and FI) that 

were genetically correlated with asthma (Table 2) and identified the credible set of SNPs for 

these shared loci (Supplementary Table 19-20). A locus at chromosome 11q12.2 was 

common for FG, later-onset asthma, and non-atopic asthma (FADS2, index SNP: rs174583 
for FG with both asthma subtypes). Interestingly, FADS2 (index SNP: rs174584 for T2D 

with both asthma subtypes) was also a suggestive shared loci betweenT2D and both asthma 

subtypes when we set the single trait GWAS threshold at P<1×10−3 and Pmeta<5×10−8 

(Supplementary Table 21-22). No significant shared loci were identified for FI with later-

onset or non-atopic asthma.

Colocalization Analysis

To determine whether obesity traits colocalized at the shared loci with asthma, we performed 

colocalization38 analysis (Supplementary Table 23). Seven out of the eight independent loci 

that were in common between BMI and later-onset asthma colocalized at the same candidate 

causal variant (PPH4>0.7) and one (3q26.32) colocalized with different candidate causal 

variants (PPH3>0.7). Among the ten loci shared between BMI and non-atopic asthma, 4 

colocalized at the same candidate causal variant within each loci (PPH4>0.7), three 

colocalized with different candidate causal variants (PPH3>0.7), and three loci did not 

colocalize. Most shared loci between WHRadjBMI and both asthma subtypes colocalized at 

the same candidate causal variants or colocalized with different candidate causal variants. 

Further, FG was colocalized at rs174583 with both later-onset and non-atopic asthma 

(PPH4=0.99).
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We next conducted colocalization analysis to identify shared genetic components from the 

cross-trait meta-analysis between the two asthma subtypes and BMI (Supplementary Tables 

24-25 and Supplementary Figures 15-16), WHRadjBMI (Supplementary Tables 26-27 and 

Supplementary Figures 17-18), and FG (Supplementary Tables 28-29 and Supplementary 

Figures 19-20), while including GTEx eQTL results across 48 tissues. We observed a 

significant amount of colocalized signals between metabolic traits and asthma in specific 

tissues, including skeletal muscle, esophagus mucosa and transformed fibroblast cells. The 

shared variant between BMI and asthma at 12q13.2 (rs4759229) was also a potential causal 

eQTL variant for ERBB3, MYL6B, or SUOX across 28 GTEx tissues.

Pathway Analysis

To investigate the biological pathways represented by shared genes, we assessed enrichment 

of independent loci for each trait and shared genes between obesity traits and asthma 

subtypes in GO biological process categories and observed several significant shared 

pathways (FDR: q <0.05) (Supplementary Table 30). Common pathways for genes shared 

between asthma and BMI or WHRadjBMI, included cell differentiation, cell proliferation, 

cell migration, and inflammatory response.

Lung Tissue Gene Expression in Obese Mice

We evaluated whether shared associated genes (Table 2) were differentially expressed in 

lung tissue using results from RNA-Seq studies of two obese mouse models: HFD mice and 

db/db genetically obese mice. Compared to their age-matched controls, both HFD and db/db 
mice are obese and exhibit innate airway hyperresponsiveness, a hallmark feature of 

asthma46. We found 3 genes from 34 loci to be differentially expressed in lung tissues for 

these mouse models compared to their corresponding controls. In the set of db/db vs. WT 

mice, we found that ACOXL was significantly differentially expressed (P=2.93×10−6) 

(Figure 3A and Supplementary Table 31). In HFD vs. LFD mice, genes near the top GWAS 

loci, MYL6 (sentinel SNP: rs4759229) (Figure 3B) and DPP3 (sentinel SNP: rs540874) 

were differentially expressed (P=7.99×10−5 and 1.28×10−5) (Supplementary Table 32).

To confirm RNA-Seq findings for these 3 genes, we performed a RT-PCR in independent 

sets of mice. ACOXL gene expression decreased in lungs of db/db mice compared to WT 

mice (Figure 3C). Transcript levels of MYL6 in lung tissue from HFD mice which were fed 

a HFD for 4 months were increased significantly over lean control (1.38 ± 0.02-fold, P < 

0.05, Figure 3D). We also found that mRNA levels of MYL6 in lung tissue reached peak 

values at 4 months after feeding WT mice a HFD diet, and this effect was attenuated at 5 

months (Figure 3E). No significant difference of Dpp3 expression in the lung was found 

between HFD-fed and lean mice via RT-PCR.

Discussion

In the present study, we found positive genetic correlation between obesity traits and 

glycemic traits with later-onset and non-atopic asthma, but not with early-onset and atopic 

asthma. Sensitivity analysis showed a significantly higher genetic correlation between later-

onset asthma and WHRadjBMI in male than female, but not for BMI and WCadjBMI, 
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suggesting the differences in genetic background of obesity traits in relation to asthma. 

Cross-trait meta-analysis identified independent shared loci between obesity traits and 

asthma subtypes, highlighting the role of airway remodeling via changes of cell 

proliferation, differentiation, migration, apoptosis, and accumulation of extracellular 

matrices (ECM) proteins.

Our study found more evident genetic correlation of obesity traits with later-onset asthma 

and non-atopic asthma than with early-onset asthma and atopic asthma. In epidemiological 

studies, results for early-onset asthma were inconsistent. For example, Guibas et al. found 

that BMI was not associated with asthma in preschool children47, while a recent meta-

analysis observed a significant association between high body weight and asthma in 

children48. Unlike early-onset asthma, later-onset asthma was usually non-atopic and 

occurred in parallel with obesity6. The most important difference between patients with 

atopic and non-atopic asthma is the different airway inflammation patterns49. Atopic asthma 

is characterized by high eosinophils, mast cells, and T lymphocytes, while non-atopic 

asthma displays high neutrophils and mast cells49. Muc et al. reported that the main change 

in obese asthmatics was the shifts of immune response from T helper (Th) 2 (a typical atopic 

immunological profile) to Th150. Thus, the type of airway inflammation driven mainly by 

neutrophil51 in obese subjects might partially explain the stronger relationship of obesity 

with later-onset and non-atopic asthma.

Obesity was closely related with metabolic disorders and age at menarche genetically and 

phenotypically. Although BMI was inversely correlated with age at menarche in the current 

study (Supplementary Table 26), sensitivity analysis after adjusting for age at menarche 

showed consistent genetic correlation between BMI and asthma (Supplementary Table 10). 

Further, even though both BMI and WHRadjBMI were consistently correlated with T2D, 

FG, FI, HDL, and TG (Supplementary Table 33), we only observed significant genetic 

correlations of later-onset and non-atopic asthma with glycemic metabolic traits (T2D, FG 

and FI) other than lipid traits, which indicated different shared genetic background with 

asthma for glucose metabolism and lipid metabolism.

We obtained strong and unequivocal evidence supporting the model that BMI causally 

increased the risk of asthma, providing insights into the pathological mechanisms of asthma. 

However, we emphasize that our inferred causal relationships are based on GWAS summary 

statistics from cross-sectional studies. Unadjusted confounders (e.g. population 

stratification) and genetic pleiotropy may bias the causal inference. In addition, longitudinal 

studies are necessary to confirm the inferred causal relationships.

According to previous studies, the hallmark pathological features of asthma includes airway 

inflammation and structure changes (or airway remodeling)52. While it is well known that 

obesity is not only mass loading but also a state of chronic low-grade inflammation53, it is 

reasonable to speculate that inflammation plays a role in it. Shared loci identified from 

cross-trait meta-analysis also supported the involvement of inflammation in the shared 

etiologies between obesity and asthma. For example, SMAD3 protein, encoded by SMAD3, 

is one of the intracellular mediators and important transducer of TGF-β signaling54 and 

TGF-β/SMAD3 signaling regulates inflammatory response and T cells activation and 
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differentiation55, 56 ERBB3 encodes ERBB3 protein which is the receptor for neuregulin 

(NRG). Neuregulin-1 (NRG-1)/ERBB signaling plays a role in the control of 

proinflammatory activation of monocytes57. Additionally, we found a shared locus (6p21.32, 

HLA-DRB1-DQA1-DQB1) at human leukocyte antigen (HLA) region which was well-

established in playing key roles in the immune system58. However, what interests us most 

was that the shared loci were implemented in cell proliferation, metaplasia, and ECM 

remodeling, all of which were reported to be important pathology of airway remodeling59. 

Firstly, except the involvement in inflammatory response, ERBB3 and SMAD3 are also 

important regulators of cell proliferation and differentiation. According to Polosa et al., 

ERBB3 and its family members occurred in bronchial epithelial cells to regulate epithelial 

repair and remodeling after mechanical damage to human bronchial epithelial cells in 
vitro60. DiRenzo et al. reported that elevated TGF-β/Smad3 stimulated the secretion of 

canonical Wnts which in turn enhanced SMC proliferation through β-catenin stabilization61. 

The blockade of TGF-β/SMAD3 was suggested to be beneficial for many diseases including 

obesity and asthma62, 63. Secondly, collagen and hyaluronan are components of ECM, and 

ECM deposition has been identified as an important pathogenic factor for severe asthma64. 

COL16A1 encodes type XVI collagen which is unregulated by TGF-β during tissue repair 

and causes the abnormal accumulation, a character for tissue fibrosis65. LAYN encodes a 

hyaluronan receptor. There was a significant correlation between the severity of asthma as 

measured by airway hyperresponsiveness and the hyaluronan (HA) levels in BAL fluid, 

serum, and lung tissue66. Thirdly, epithelial metaplasia is another feature of airway 

remodeling. FOXA3 was directly related with goblet cell metaplasia67 and body mass 

regulation68. Airway remodeling characterized by increased smooth muscle cell mass, 

goblet cell metaplasia, and ECM deposition was implicated in persistent airway 

hyperresponsiveness, excessive airflow narrowing, and resistance to high-intensity treatment 

and poor prognosis69, 70. Thus, airway remodeling might also be an explanation for 

treatment resistance and potential future therapeutic target for obese asthma patients who are 

characterized by more severe symptoms and poorer prognosis.

Surprisingly, we found some shared variants have opposite sign of effect estimates between 

obesity and asthma even though the overall genetic correlation is positive, which suggests 

the pathways shared by them are heterogeneous.

Finally, we found multiple top genes from cross-trait GWAS also showed differential gene 

expression in two independent mouse experiments, the RNA-seq and RT-PCR gene 

expression in two sets of mice. In the set of db/db vs WT, we identified ACOXL (Acyl-

Coenzyme A oxidase-like) gene, which is proposed to participate in fatty acid β-oxidation, 

fatty acid metabolic process and oxidation reduction71. Fatty acid metabolism, particularly 

mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and 

adaptive immunity72. Obesity causes a decrease in FAO73, and increases inflammation72. 

The pro-inflammatory state found in obesity might be a critical player in the role of lipid 

mediators in asthmatic patients74.

In the set of HFD-fed vs lean controls, MYL6 (myosin light chain 6) is a protein-coding 

gene that encodes a myosin light chain and has important roles in airway smooth muscle 

(ASM) contractile function75. An increase in contractility of ASM is a contributing factor in 
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the excessive airway narrowing in asthma76. The contractile response of ASM was enhanced 

in obese donors due to elevated intracellular calcium responses to contractile agonists77, 

resulting an increased risk of developing asthma.

We investigated the genome-wide genetic relationships of obesity-related traits with four 

asthma subtypes for the first time. The study has several important strengths. Firstly, the 

current study has large samples size and the ability to classify different types of asthma. 

Although sample overlapping was a concern for cross trait analysis, we used methods that 

are robust to such issue (including LDSC and SHet)11, 27, 34. Moreover, we used the strategy 

of restricting P<1×10−5 in single trait association as a secondary significance criterion in 

meta-analysis, which ensures the meta-analysis signals are at least suggestive signals with 

all of single traits. Finally, our computational analysis provides insights to the molecular 

mechanisms underlying co-morbid obesity and asthma. However, we also acknowledge 

potential limitations. First, we restricted the analysis to individuals of European ancestry in 

order to minimize the population stratification, thus, some findings in this study may not be 

generalizable to other racial/ethnical populations. Second, although cases of asthma and 

atopic diseases were identified using self-reported doctor diagnosed data, there was still 

possibility of misclassification of atopic asthma and non-atopic asthma and future studies 

using biomarkers (such as immunoglobulin E) in diagnosing atopic status are warranted to 

validate our findings. We also noted there is no clear-cut age threshold that defines early- 

and later-onset asthma, thus the definition based on age of 16 cut-point may contains 

heterogamous effect of asthma for young adult age. Third, we observed little evidence of 

significant genetic correlation between adult obesity and early-onset asthma; we encourage 

further studies to investigate the genetic correlation between childhood obesity and early-

onset asthma.

Conclusion

In conclusion, the current study showed substantial evidence of positive genetic correlations 

of obesity traits and glycemic traits with later-onset and non-atopic asthma, which can 

further our understanding of the connection between obesity and different asthma subtypes. 

Our work reinforces common biological pathways related to immune and inflammatory 

systems between obesity and asthma and suggests new treatment avenues for subgroups of 

individuals with asthma.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BMI Body mass index

CPASSOC Cross phenotype association

db/db Autosomal recessive diabetes mutation

DGF DNaseI digital genomic footprinting

DHS DNase I hypersensitivity site

ECM Extracellular matrices

eQTL Expression quantitative trait loci

FAO Fatty acid oxidation

FG Fasting glucose

FI Fasting insulin

GCP Genetic causality proportion

GO Gene Ontology

GSMR Generalized summary data-based Mendelian Randomization

GWAS Genome-wide association study

HDL High-density lipoprotein

HFD High fat diet

HLA Human leukocyte antigen

LCV Latent Causal Variable

LDL Low-density lipoproteins

LDSC LD score regression

LFD Low fat diet

QC Quality control

T2D Type 2 diabetes

TC Total cholesterol

TFBS Transcription factor binding sites

TG Triglycerides

WC Waist circumference

WHR Waist-to-hip ratio

WT Wild-type
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Key Messages:

• This large-scale cross-trait GWAS provides strong evidence for shared genetic 

components between obesity-related metabolic traits and asthma subtypes

• The strongest positive genetic correlation was observed between obesity and 

later-onset asthma

• Mendelian Randomization analysis provided strong evidence in support of 

BMI causally increasing the risk of asthma
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Figure 1. 
Overall study design.

UKBB: UK Biobank; LDSC: LD score regression. GSMR: generalized summary data-based 

Mendelian Randomization; LCV: Latent Causal Variable model
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Figure 2. 
Genome-wide genetic correlation between 4 types of asthma and metabolic traits

The color of each box scales with the magnitude of the genetic correlation. Pairs of traits 

with nominal significant genetic correlation (p < 0.05) are marked by 1 star, and pairs of 

traits with significant genetic correlation after correcting for multiple testing (p < 0.05/40) 

are marked by 2 stars.
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Figure 3: 
ACOXL and MYL6 expression in lean and obese mice

(A) RNA-seq detected ACOXL differential expression in lung tissue from wild-type (WT)

(C57BL/6J) and db/db mice (n = 4 mice/group) (B) RNA-seq detected MYL6 differential 

expression in lung tissue from low fat diet (LFD) and high fat diet (HFD) mice (n = 4 mice/

group). (C) RT-PCR detected ACOXL differential expression in lung tissue from WT and 

db/db mice (n = 6 mice/group). (D) RT-PCR detected MYL6 differential expression in lung 

tissue from LFD and HFD mice (n = 4 mice/group). (E) RT-PCR detected MYL6 expression 

in lung tissue from HFD mice at different time points (n = 4 mice/time point).
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