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Abstract
Object: Obsessive–compulsive disorder (OCD) is a mental disease in which people 
experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of 
OCD is achieved by using neuropsychological assessment metrics, which are often 
subjectively affected by psychologists and patients. In this study, we propose a clas-
sification model for OCD diagnosis using functional MR images.
Methods: Using functional connectivity (FC) matrices calculated from brain region 
of interest (ROI) pairs, a novel Riemann Kernel principal component analysis (PCA) 
model is employed for feature extraction, which preserves the topological informa-
tion in the FC matrices. Hierarchical features are then fed into an ensemble classifier 
based on the XGBoost algorithm. Finally, decisive features extracted during classi-
fication are used to investigate the brain FC variations between patients with OCD 
and healthy controls.
Results: The proposed algorithm yielded a classification accuracy of 91.8%. 
Additionally, the well-known cortico–striatal–thalamic–cortical (CSTC) circuit and 
cerebellum were found as highly related regions with OCD. To further analyze the 
cerebellar-related function in OCD, we demarcated cerebellum into three subregions 
according to their anatomical and functional property. Using these three functional 
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1  | INTRODUC TION

Obsessive–compulsive disorder (OCD) is a mental disorder with 
an approximate lifetime prevalence of 1%–3% (Angst et al., 2005). 
Patients suffering from obsessions have persistent intrusive 
thoughts, and patients suffering from compulsions have repetitive 
behaviors. Despite of these symptoms and their impairment to pa-
tients' social functioning, it is highly possible that OCD can rise to a 
wide spectrum of additional psychiatric disorders, including major 
depressive disorder (MDD), tics, and panic disorder (PD; Angst et al., 
2005; Ruscio, Stein, Chiu, & Kessler, 2010).

Clinically, the diagnosis of OCD is achieved by (a) neuropsy-
chological metrics, such as YBOCS (Goodman, Price, Rasmussen, 
Mazure, Delgado, et al., 1989; Goodman, Price, Rasmussen, Mazure, 
Fleischmann, et al., 1989), Obsessive–Compulsive Inventory (OCI; 
Foa et al., 2002), and CY-BOCS for children (Scahill et al., 1997), 
(b) physical tests, such as complete blood count and alcohol/drug 
tests, and (c) interview by psychologists. However, such diagno-
sis methods are easily affected by psychologists' subjection, and 
symptoms of comorbidities also interfere with the diagnosis. Thus, 
a more objective diagnosis model is desirable for accurate and ro-
bust measurements.

Decisive features, which could be used for OCD classifica-
tion, can be extracted from both structural MRI and functional 
MRI. Structural MRI often detects morphological abnormality or 
provides radiomic features. Although many works have reported 
significant volumetric differences between patients and healthy 
controls (Gilbert et al., 2008; Hu et al., 2017; Peng et al., 2012), 
they focus on local volumetric variability and neglect the integ-
rity of the brain. Functional MRI measures brain activity based 
on blood-oxygen-level-dependent level (BOLD) signals. Previous 
works have shown that onset of OCD demonstrates functional ab-
normalities across different anatomical regions. In this study, we 
focus on functional MRI and study connectivity-based classifica-
tion for OCD diagnosis.

In the literature, neurological dysfunction in OCD brains has 
been studied extensively. Harrison et al. (2009) used resting-state 
functional MRI and found abnormal activation in connections 

between striatum and orbitofrontal cortex. A meta-analysis by 
Guersel, Avram, Sorg, Brandl, and Koch (2018) revealed disrupted 
fronto-stratal circuits and impaired large-scale fronto-parietal-lim-
bic brain networks in patients with OCD. Further, cortico–striatal–
thalamic–cortical (CSTC) circuit has been identified as a decisive 
imaging marker for OCD diagosis. For example, Beucke et al. (2013) 
showed that distant connectivity of the orbitofrontal cortex and the 
putamen positively correlates with the severity of OCD symptoms. 
Sakai et al. (2011) investigated the corticostriatal functional con-
nectivity in nonmedicated OCD patients and reported an increased 
connectivity associated with the ventral striatum in the orbitofrontal 
cortex, ventral medial prefrontal cortex, and dorsal lateral prefrontal 
cortex in OCD.

Functional connectivity (FC) matrix, also known as connectome, 
was computed by the correlations between each brain region with 
all other regions. Conventional connectome classification algorithms 
treat a connectome as a vector of features and then feed it into 
“off-the-shelf” classifiers like support vector machine (SVM) and 
decision tree (Castellanos, Martino, Craddock, Mehta, & Milham, 
2013). However, such methods discard the topological structure of 
connectivity matrix and may lose useful anatomical information in 
the connectomes. To remedy this drawback, considering the graph-
ical nature of connectivity, graph kernel-based classifiers have been 
applied on inter-subject discrimination of two different types of 
auditory stimuli (Vega-Pons, Avesani, Andric, & Hasson, 2014) and 
classification of schizophrenia (SZ) and healthy control (HC; Zhou, 
Mei, Li, & Huang, 2017). Other graphical theory-based methods in-
vestigating multi-spectrum networks (Wee et al., 2012), ordinal rela-
tionship of edges of FC matrices (Zhang et al., 2018), brain network 
embedding algorithms (Cao et al., 2017), and graph convolution neu-
ral networks (Ktena et al., 2017) are also proposed.

Using linear statistical analysis methods, such as Student's t 
tests, to compare the magnitude of functional connectivity between 
groups, significant group difference between patients with OCD 
and healthy controls could be discovered. CSTC circuit has been 
implicated in OCD pathophysiology by functional connectivity find-
ings (Beucke et al., 2013; Markarian et al., 2010; Sakai et al., 2011). 
However, such group comparison methods ignore the underlying 

cerebellum regions as seeds for brain connectivity computation, statistical results 
showed that patients with OCD have decreased posterior cerebellar connections.
Conclusions: This study provides a new and efficient method to characterize patients 
with OCD using resting-state functional MRI. We also provide a new perspective to 
analyze disease-related features. Despite of CSTC circuit, our model-driven feature 
analysis reported cerebellum as an OCD-related region. This paper may provide novel 
insight to the understanding of genetic etiology of OCD.
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hierarchical and spatial information of functional connectivity ma-
trices. Moreover, significantly different connections by themselves 
may not produce feasible diagnostic yields.

To address aforementioned problems, we propose a novel con-
nectome decomposition algorithm called Riemann manifold princi-
pal component analysis (PCA) for efficient feature extraction from 
functional connectivity matrices. We hypothesize that artificial in-
telligence algorithms can help diagnose OCD and can extract signif-
icant abnormalities in fMRI. We tested our classification algorithms 
on 128 subjects, 61 of which are patients with OCD, and we also 
reported the most useful connections in this classifier. As a result, 
in addition to the CSTC circuit, cerebellum was also reported as an 
important region during the classification. The cognitive function of 
cerebellum was rarely investigated in previous studies. To analyze 
the functional effect of cerebellum on OCD, we performed a post 
hoc seed-based analysis and identified posterior cerebellum as an 
affected region.

In summary, the contribution of this paper is threefold: (a) a fea-
ture extraction algorithm based on the manifold property of func-
tional connectivity matrices; (b) a model-driven approach to detect 
discriminant imaging markers for OCD diagnosis; and (c) a seed-
based analysis on three functional subregions of cerebellum, investi-
gating the cerebellar functioning in patients with OCD.

2  | METHODS

The schematic representation of our classification method is shown in 
Figure 1. Functional connectivity matrices are composed of functional 
correlations between each ROI pair of the brain. First, connectivity 
matrices are normalized into their graph Laplacians. Then, kernel ma-
trices are computed by using the Riemannian log-Euclidean distance 
between each subject. By analyzing the eigenvectors corresponding 
to a number of largest eigenvalues, we could derive the principal com-
ponents of our data. By projecting original high dimensional features 
into these principal components, decomposed features could be ob-
tained. Third, decomposed features are fed into a classification model 
based on a decision tree. Finally, in order to find decisive imaging 
markers for OCD diagnosis, we implement a feature reconstruction 
algorithm to retrieve important features from the classifier.

2.1 | Data acquisition and preprocessing

Neuroimaging data were obtained from Huiai Hospital of Shenzhen. 
The dataset includes 67 healthy controls and 61 patients, with age 
ranging from 18 to 59 years. Written consents were obtained from 
all participants. The demographic information and clinical character-
istics are shown in Table 1. Univariate ANOVA (analysis of variance) 
was carried out to make sure these two groups have no significant 
age difference. All patients enrolled passed the test defined by the 
Diagnostic and Statistical Manual of Mental Disorders, 4th edition 
(DSM-IV) criteria for OCD by using the Structured Clinical Interview 

(SCID) for DSM-IV-TR Axis I disorders (First, Spitzer, Gibbon, & 
Williams, 2002). The exclusion criteria are as follows: (a) if they were 
younger than 18 or older than 59 years; (b) if they had a history of 
brain trauma or neurological disease; and (c) if they had shown alco-
hol/substance abuse within 12 months prior to participation. Healthy 
controls were screened by using the SCID for the DSM-IV-TR Axis 
I disorders, Research Version, Non-Patient edition (SCID-I/NP; 
Spitzer, Robert, Gibbon, & Williams, 2002). Healthy controls with a 
family history of axis I or II psychiatric disorders were excluded.

Structural images were acquired with TR = 8 ms, TE = 1.7 ms, flip 
angle = 20°, and resolution = 1.0 × 1.0 × 1.0 mm3. Functional MR im-
ages were obtained with TR = 2,000 ms, TE = 60 ms, flip angle = 90°, 
resolution = 3.75 × 3.75 × 4.0 mm3, and 33 sagittal slices with 230 
time points. T1 images were bias-corrected and skull-stripped. Each 
subject's structural scan was registered to the standard template 
in the Montreal Neurological Institute (MNI) space and parcellated 
into 116 regions by Automated Anatomical Labeling (AAL; Tzourio-
Mazoyer et al., 2002) template. Functional images were prepro-
cessed by DPARSF 4.3 (Data Processing Assistant for Resting-State 
fMRI, advanced edition; Yan & Zang, 2010), and preprocessing steps 
include slice time correction, motion correction, intensity normaliza-
tion, spatial and temporal filtering, and nuisance covariates regres-
sion. In particular, first 10 time points were removed before slice 
timing. Images were time corrected by interpolation and motion cor-
rected by a rigid body transformation on each volume. Considering 
the influence of head motion on fMRI signals (Power, Barnes, Snyder, 
Schlaggar, & Petersen, 2012; Satterthwaite et al., 2013), images 
with excessive movement (more than 1 mm translation on x-axis, y-
axis, and z-axis and 2° of rotation) and its neighbor volumes were 
scrubbed (Power et al., 2012). Functional scans were first rigidly 
transformed to their structural scans and then normalized to the 
MNI space using the warping parameters from the abovementioned 
warping procedure. After normalization, Gaussian kernel with 4 mm 
FWHM (Full Wave at Half Maximum) was used for image smoothing. 
To reduce noise from hardware and subject's motion, all BOLD time 
series were filtered by a band-pass frequency filtering ranging from 
0.01 to 0.1 Hz. Three covariates were regressed out: head motion 
parameters, white matter signal, and cerebrospinal fluid signal.

2.2 | Feature extraction

Principal component analysis is a popular feature decomposi-
tion and extraction algorithm. It maps a n-dimension feature into 
a k-dimension linear space (k  ≤  n) formed by principal compo-
nents (Wold, Esbensen, & Geladi, 1987). Considering a centralized 
feature matrix X  =  {x1, x2, …, xm}  ϵ  Rn×m to be decomposed in to 
X� =

{
x′1,x

′

2,… ,x′m
}
∈Rn

�×m, where m denotes the number of sub-
jects and n denotes the number of original features, PCA calculates 
the n′ largest eigenvalues {�1,… �n� } and corresponding eigenvectors 
U=

{
u1,… un′

}
∈Rn×n

� of the covariance matrix C= 1

n
XXT and trans-

lates X into X′ by X� =UTX. The term “centralized” here means the 
column-wise mean of X is zero.
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In the cases when data are confined to a nonlinear space, kernel 
trick can be used to model such a nonlinear manifold. Kernel trick de-
fines a higher dimensional space via the inner product of the higher 
dimensional representations, normally using a Gaussian kernel. By 
lifting the original data X = {x1, x2, …, xn} into a hyperspace Φ (X) = {ϕ 
(x1), ϕ (x2), …, ϕ (xn)}, the probability of data being linear separat-
able rises. Thus, we could perform a linear PCA on Φ (X) =  {ϕ (x1), 
ϕ (x2), …, ϕ (xn)} and decompose Φ (X). Kernel matrix is defined by 

=Φ
(
X
)T

Φ
(
X
)
, and the covariance matrix is Cϕ = Φ (X) Φ (X)T. To 

compute the principal components of Cϕ,

by multiplying Φ (X)T on both sides, we get,

where α = Φ (X)Tu and u= 1

�
Φ
(
X
)
�. The normalized eigenvectors are 

denoted as �̃=
1

��XTu��XTu=
1√
𝜆
�. Thus, by performing eigen-decompo-

sition on kernel matrix , we obtain the principal components {
u1,u2,… ,un′

}
 of vectors in the hyperspace.

A widely used kernel function is Gaussian RBF kernel 

K=

{
kij|kij=e

−
||xi−xj||2

2�2

}
. It uses the Euclidean distance |||

|||xi−xj
|||
|||
2

 to 

measure the distance of data points between each other. However, 
the set of matrices does not lie on a Euclidean space. Considering 
that the graph Laplacian of connectivity matrices is symmetric 
(semi-)positive definite (SPD) and the set of SPD matrices forms a 
Riemannian manifold (Pennec, Fillard, & Ayache, 2006), the distance 
function could thus be replaced by geodesic distance on Riemann 
manifold to capture and preserve the topological property. Here, we 
used log-Euclidean geodesic distance as the distance between con-
nectivity matrices to apply a Riemann kernel PCA.

(1)Φ
(
X
)
Φ
(
X
)T
u=�u

(2)�=��

F I G U R E  1  Flowcharts of the proposed disease diagnosis algorithm by using Riemann Kernel PCA for feature extraction. Part (a) is the 
main flowchart. Connectivity matrices were first normalized as their graph Laplacians. Using proposed Riemann Kernel, we could generate 
the kernel matrix which describing the geodesic distances among all subjects. By selecting the eigenvalues of kernel matrix, PCA was 
performed on FC matrices. The extracted features were sent to XGBoost for disease diagnosis. Part (b) presents a schematic representation 
of Riemann kernel PCA. Using kernel trick, nonlinearly distributed data points could be projected onto its principal components. Part (c) 
illustrates that we could retrieve decisive features from XGBoost classifier by using pre-image based kernel PCA reconstruction algorithm

TA B L E  1   Demographic and clinical characteristics information 
of patients (OCD) and healthy controls (HC)

  OCD HC

Demographic measures

Number of male (Female) 
subjects

61 (45) 67 (44)

Age (Mean ± SD) 26.1 ± 8.1 21.3 ± 5.0

Clinical measures

YBOCS total (SD) 25.5 ± 7.0 2.4 ± 2.9

YBOCS obsessions (SD) 15.4 ± 3.1 0.9 ± 1.3

YBCOS compulsions(SD) 10.9 ± 4.8 1.4 ± 2.1

Note: The average and standard deviation of continuous variable are 
provided, of which standard deviation is shown italic. Compulsion 
and obsession were measured, respectively, by YBOCS (Yale–Brown 
Obsessive-Compulsive Scale). According to t tests, there are no 
significant age difference (p = .06) among three groups.



     |  5 of 12XING et al.

Although not being invariant to affine transformations, Log-
Euclidean method has a simple formulation. For matrix S1 and S2 in 
SPD matrix set S++, the log-Euclidean distance of them is:

where ‖⋅‖F denotes the Frobenius norm of a matrix. With the aim of 
working on Riemann manifold, we computed every connectivity ma-
trix's graph Laplacian. Let As ϵ Rk×k denote the connectivity matrix of 
subject s-th where k is the number of brain ROIs, the graph Laplacian 
of this connectivity matrix is:

where ai,j > 0, Ds = diag (∑j ai,j) is the degree matrix of As. Ls is semiposi-
tive definite and can be mapped into a SPD matrix by L̂𝛾 =L+𝛾I, where 
γ > 0. Thus, the Riemann kernel function of matrices can be generated 
as

with this kernel function, we implemented kernel PCA on our raw data 
to extract hierarchical features.

2.3 | Discriminant feature retrieving

In this paper, we used the XGBoost classifier to identify the sta-
tus of patients. XGBoost classifier is based on the boosting tree 
algorithm. After the boosted tree is constructed, we can retrieve 
the feature importance scores for each input feature. First, the 
importance score is calculated on a single decision tree by the 
improvement of the split on each feature. Gini index (or Gini im-
purity, measures the probability of mislabeling objects in the 
dataset) is used to select the split points. Then, the importance 
score of every features is averaged across all decision trees within 
the model (Hastie, Tibshirani, Friedman, & Franklin, 2005). For an 
input feature vector f ϵ RN, boosted tree could provide an impor-
tance vector w ϵ RN, each element of which is the importance of 
corresponding feature.

However, because of kernel trick used for feature extraction, 
the features' input into classifiers is on a hyperspace where the 
projection Φ from original matrices to corresponding vectors on 
the space is unknown. To obtain the feature importance on original 
feature space, which is the connections between brain regions, we 
applied a kernel PCA reconstruction algorithm based on pre-images 
(Schölkopf, Mika, Smola, Rätsch, & Müller, 1998).

Given a matrix of features' importance w ϵ Rk×k for features in 
original space, whose entries represent the importance of corre-
sponding connection, we define P the projection of it onto principal 
components and rewrite it according to Equation 2:

where β is the feature importance vector in hierarchical feature space 
and n′ is the dimension after decomposition. Kernel PCA has a prop-
erty that if n′ is the rank of , Pn�Φ (w)=Φ (w); and for smaller n′, the 
overall squared error 

∑n

i=1

���Pn�Φ
�
Si
�
−Φ

�
Si
����

2

 is minimal (Schölkopf, 
Smola, & Müller, 1997). To approximate w, we are looking for a ŵ such 
that:

is minimized. Expanding (7) and considering that for Riemann kernel 
PCA,  (w,w)=const., the objective function takes the form:

To minimize (8), we find ŵ such that ∇l
(
ŵ
)
=0. According to ker-

nel function (5), we can learn ŵ iteratively using equation below:

L̂𝜔,𝛾 is the Laplacian matrix of ŵ. �k
i
=
∑n�

k=1
�k�

k
i
. Since 

Laplacian matrix has the same nondiagonal entries with original 
matrix, L̂𝜔,𝛾 can represent the importance of features in original fea-
ture space.

2.4 | Seed-based analysis on cerebellum

Despite of the well-known CSTC circuits, we also found that cer-
ebellum is highly related to OCD. Although in most studies cerebel-
lum was known to be a region controlling body balance and motion, 
not taking part in any cognitive decisions, the findings of this paper 
suggest abnormality in functional connection related to the cerebel-
lum. This is also supported by other recent studies. In 2001, Buckner 
(Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011) analyzed the 
functional images from more than 1,000 subjects, aiming to find 
the connections between cerebellum and cerebrum and found that 
the cerebellum possesses at least two large, homotopic maps of the 
full cerebrum. Hou et al. (2012) measured neural activity and found 
declined ALFF (amplitude of low frequency fluctuation) in bilateral 
cerebellum of patients with OCD.

(3)dlog E
(
S1,S2

)
=
‖‖‖log

(
S1
)
− log

(
S2
)‖‖‖F

(4)Ls=Ds−As

(5)


(
L̂𝛾 ,1, L̂𝛾 ,2

)
=e

(
−

d2
log E(L̂𝛾 ,1 , L̂𝛾 ,2)

2𝜎2

)

(6)

Pn�Φ (w)=

n��
k=1

𝛽k𝛼̃k

𝛽= �̃
TΦ (w)=

�
1√
𝜆
XTu

�T

Φ (w)=
1√
𝜆
u
T

⎛⎜⎜⎜⎜⎝


�
w, S1

�

⋮


�
w, Sn

�

⎞⎟⎟⎟⎟⎠

(7)l
(
ŵ
)
=
‖‖‖Pn�Φ (w)−Φ

(
ŵ
)‖‖‖

2

(8)l
(
ŵ
)
=−

2

𝜆

n�∑
k=1

𝛽k

n∑
k=1

𝛼k
i

(
ŵ, Si

)
+C

(9)L̂new
�,𝛾

=

∑n

i=1
𝛿k
i
exp

�
−

d2
log E

�
L̂old
�,𝛾

, L̂S1 ,𝛾

�

2𝜎2

�
Si

∑n

i=1
𝛿k
i
exp

�
−

d2
log E

�
L̂old
�

, L̂S1

�

2𝜎2

�
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To fully assess the cerebellum-related functional networks of 
OCD, we applied seed-based correlation analyses on our resting-state 
functional MRI dataset. Different from previous studies which con-
sidered cerebellum as a whole, we demarcated cerebellum into three 
anatomical sections, that is, anterior lobule, posterior lobule, and 
flocculonodular lobule (O'Reilly, Beckmann, Tomassini, Ramnani, & 
Johansen-Berg, 2009; Voogd & Glickstein, 1998). The anatomical lo-
cation of these three subregions is shown in Figure 2. Flocculonodular 
lobe, also denominated as vestibulocerebellum, is functionally con-
nected with semicircular canals and vestibular nuclei, regulating bal-
ance and eye movements. Flocculonodular lobe and other sections 
are separated by posterolateral fissure. Anterior lobe of cerebellum 
is also known as spinocerebellum, constituted by central lobe, cul-
men, uvula, and pyramid of vermis. Spinocerebellum receives input 
and sends signal back to spinal cord, thus controls body and limb 
movements. Lateral parts of the cerebellum are cerebrocerebellum, 

locating between posterolateral fissure and primary fissure. Posterior 
lobe of cerebellum receives input signal from the cerebral cortex via 
the pontine nuclei, controlling voluntary movement.

Seed-based correlation analysis in functional MRI is another 
widely used method to assess functional connectivity in the brain. 
Correlation is calculated between the averaged time series of the 
voxels from the ROI (or the “seed”) and time series from all other 
voxels. The result of seed-based analysis is a 3D-connectivity map 
indicating the correlation intensity of all other voxels with the seed. 
Pearson correlations computed by DPARSF are then normalized 
using a fisher-Z transform. We applied a t test that co-varies with 
age and gender, on each subject's correlation map, aiming to find 
connections varying significantly between two groups.

3  | E XPERIMENTS

3.1 | Classification result

We evaluated the classification performance by sensitivity, specific-
ity, and accuracy. Sensitivity measures the proportion of real patients 
that are correctly identified as patients. Specificity measures the pro-
portion of healthy controls that are correctly identified as healthy 
controls. Accuracy is the proportion of correctly predicted subjects. 
Decomposition methods using linear PCA and traditional Euclidean 
kernel PCA are also performed for comparison, as shown in Table 2. 
Besides, we also visualized the data distribution by reducing the di-
mension of the FC matrices into two. Results are shown in Figure 3.

3.2 | Parameter selection

The Riemann kernel function of matrices can be generated as



(
L̂𝛾 ,1,L̂𝛾 ,2

)
=e

(
−

d2
log E(L̂𝛾 ,1 , L̂𝛾 ,2)

2𝜎2

)

F I G U R E  2   Cerebellar functional 
subregions and their functions. 
Vestibulocerebellum mainly receives 
fiber from vestibular nerves and nuclei, 
regulating body balance and eye 
movement. Spinocerebellum controls 
the movements of trunk muscles. 
Cerebrocerebellum is considered to 
have cognitive functions, regulating and 
coordinating skilled voluntary movement

TA B L E  2   Classification results and comparison

  Sensitivity (%) Specificity (%) Accuracy (%)

Pearson's correlation

SVR 63.9 95.5 80.6

XGBoost 86.8 89.7 88.4

Linear PCA

SVR 72.0 80.3 76.0

XGBoost 75.4 80.1 78.3

Gaussian kernel PCA

SVR 73.7 75.0 74.4

XGBoost 77.0 73.5 75.2

Riemann kernel PCA

SVR 86.6 85.1 86.6

XGBoost 92.6 90.7 91.8

Note: These results are 10-fold validated. Linear PCA and Riemann 
kernel PCA models were fitted with training data and then applied on 
validation data during 10-fold validation. Bold values are the highest 
values in each column.
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Two parameters affect the performance of kernel PCA. σ is the 
scale parameter of kernel function, which represents the standard 
deviation of the entries of all matrices. Larger σ reflects a wider dis-
tribution of functional matrices. γ is a regularization parameter which 
regularizes Laplacians to become positive definite because the set of 
symmetric positive definite matrices is a Riemannian manifold. We 
compared the performance of Riemann kernel PCA under different 
parameters. As is shown in Figure 4, the feature extraction perfor-
mance of Riemann kernel PCA is not sensitive to γ, while the best 
feature extraction performance is reached when σ is near the stan-
dard deviation of the entries from all matrices.

3.3 | Decisive features

Important features were found in inner cerebellar connections, espe-
cially posterior parts, and cerebellar connections with basal ganglia, 
shown in Figure 5. Dysfunctions in the connection between right rec-
tus and left parahippocampal gyrus and in the connection between left 
rectus and right parahippocampal gyrus are also reported. Abnormal 

increases in connections are found mostly in thalamus–cortex connec-
tions, like postcentral cortex, indicating an activity disruption in thala-
mus, which possible may contribute to OCD's comorbidity with anxiety 
and depression (Greicius et al., 2007; Sturm et al., 2003).

3.4 | Seed-based analysis on cerebellum

Significant decline (p  <  .05) in cerebellum-related connectivity was 
demonstrated in many brain regions of patients with OCD. For ves-
tibulocerebellum (Figure 6), patients with OCD were associated with 
decreased connectivity in bilateral thalamus, posterior parts of cer-
ebellum, and inferior occipital cortex. For spinocerebellum (Figure 7), 
the OCD group demonstrated a decreased connectivity in right hip-
pocampus and rectus. For posterior lobule (Figure 8), a notable as-
sociation of OCD group with a decreased basal ganglia connection 
including bilateral pallidum, thalamus, and putamen connections, as 
well as an increased connection in medial frontal cortex, was reported.

Moreover, a linear regression model uses YBOCS score as predic-
tors, covarying with age and gender, were also applied to investigate 

F I G U R E  3  Data structure visualization by linear PCA, Riemann kernel PCA, and t-SNE (t-distributed Stochastic Neighbor Embedding). As 
is shown, our decomposition algorithm could generate a better representation for FC matrices

F I G U R E  4  The effect of parameter changing on classification performance. By changing two parameters in Equation 5, different features 
were extracted and sent into XGBoost classifiers. By measuring the classification performance, we could evaluate the feature extraction 
performance under different parameter settings. As is shown, the feature extraction performance is not sensitive to regularization 
parameter γ. The distribution parameter σ reflects the variance in the set of functional matrices, and smaller or larger choice could 
compromise the feature extraction performance
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the relationships between the symptom severity and connection 
magnitudes. Results in Figure 9 show that symptom severity is 
mainly negatively correlated with the connection of the posterior 
parts of cerebellum.

4  | DISCUSSION

The goal of this study was to classify patients with OCD from healthy 
subjects using whole-brain functional connectivity matrices. A clas-
sifier using Riemann kernel PCA was proposed, which preserves 
the topological information of functional connectivity matrices and 
outperforms traditional classifiers such as linear PCA or other linear 
decomposition algorithm.

Decisive features are extracted to differentiate OCD from healthy 
subjects. The results revealed stronger connections between basal 

ganglia and cortex and weaker cerebellum-related connections in pa-
tients with OCD. This finding is consistent with the well-known CSTC 
model (Ahmari & Hen, 2013; Alexander, DeLong, & Strick, 1986; Vaghi 
et al., 2017). On the other hand, the cerebellum has gained signifi-
cant attention in the last two decades for its influence on cognitive 
processes, and the functional abnormalities of cerebellum are associ-
ated with a variety of psychiatric disorders (Phillips, Hewedi, Eissa, & 
Moustafa, 2015; Sullivan, 2010). Some researchers have carried on ex-
plorations on its role in OCD. Kasikci, Metin, and Tas (2015) reviewed 
studies on cerebellar structural and functional differences in OCD and 
argued that cerebellum should be involved in obsessive–compulsive 
disorder-related brain network model for a better understanding of 
the nature of this disorder. Tian et al. (2016) investigated functional 
connectivity strength and hubs of whole-brain networks and found 
affected functional connectivity strength in the cerebellum was sig-
nificantly associated with global OCD symptom severity, providing 

F I G U R E  5  Group difference of functional connectivity for discriminant connections observed between OCD patients and Healthy 
Controls. This image is shown with a threshold of group connectivity absolute difference >0.2. Blue indicates a group-wise weaker 
connection of patients with OCD over healthy controls, and red indicates a stronger connection of patients with OCD over healthy controls. 
The thickness of every connection indicates the relative magnitude of this connection among all connections shown

F I G U R E  6   Significant difference (p < .05) reported from seed-based analysis with seed in flocculonodular lobe. Images are shown in a 
threshold of an absolute value 0.1 for the mean difference between two groups. For vestibulocerebellum, abnormal decline in connections 
was found in thalamus and other cerebellum regions
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the evidence about OCD-related brain network hub changes, not only 
in the CSTC circuits but more distributed in whole-brain networks. In 
2017, Bruchhage et al. (2017) investigated cerebellum and brainstem 
shape across two pediatric ASD and OCD cohorts in order to identify 
regional differences and their correlation with compulsive behavior 
and symptom severity and found while the anterior brainstem cor-
related with compulsive behaviors in both groups, larger reshaping of 
the cerebellum was only shown in the OCD group.

We also conducted seed-based analyses on three functional parts 
of the cerebellum, a brain structure not concerned in the traditional 
CSTC model. The results indicated reduced connectivity in cerebel-
lum of patients with OCD, particularly in thalamus and hippocampus, 
than healthy subjects. Furthermore, when using the YBOCS scores 
as predictors, the results showed a significant negative correlation 
between OCD symptom severity and the FC strength value in the 
posterior parts of the cerebellum. The posterior cerebellum has 

F I G U R E  7   Significant difference (p < .05) reported from seed-based analysis with seed in anterior lobe. Images are shown in a threshold 
of an absolute value 0.1 for the mean difference between two groups. A noticeable decline is found in rectus and right insula

F I G U R E  8   Significant difference (p < .05) reported from seed-based analysis with seed in posterior lobe. Images are shown in a threshold 
of an absolute value 0.1 for the mean difference between two groups. Frontal cortex and occipital cortex were reported with an abnormal 
decline in seed-based analysis. Furthermore, there was also a correlation decline in basal ganglia
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been found to play a significant role in neurocognition from investi-
gations of anatomy, fMRI tasks, and clinical diseases. Stoodley and 
Schmahmann (2010) found that the primary motor cortex is predom-
inantly connected to the anterior part of the cerebellum, whereas the 
associative cortices are predominantly connected to the posterior 
part of the cerebellum. Evidence from task fMRI also showed that 
different areas of poster cerebellum have been activated and asso-
ciated with language-related activity, working memory and read-
ing tasks, affective processing, executive functioning, and spatial 
processing (Kim, Ugurbil, & Strick, 1994; Stoodley & Schmahmann, 
2010; Stoodley, Valera, & Schmahmann, 2012). A clinical study by 
Merchant, Sharma, Xiong, Wu, and Conklin (2011) in 2014 found a 
significant correlation between the radiation dose to the infraten-
torium and posterior cerebellum and neurocognitive impairment at 
several cognitive domains in seventy-eight children with low-grade 
glioma. To date, this is the only available study with separate do-
simetric data for the posterior cerebellum. Another study on brain 
injury by Schmahmann and Pandyat (Schmahmann, 1997) described 
the clinical cerebellar cognitive affective syndrome (CCAS) after 
studying 20 adults with cerebellar lesions due to either neoplasms, 
or vascular or traumatic damage. They all showed deficits in multi-
ple cognitive domains including maintaining semantic and episodic 
memory and consciousness. Lesions of the posterior lobe of the cer-
ebellum were produced in executive and visual-spatial functions. In 
this study, the abnormal FC of the postpart cerebellum mainly focus 
on frontal, occipital, temporal cortex and two subcortical structures, 

the basal ganglia and the right hippocampus. Among them, the fron-
tal cortex, the right OFC, and the basal ganglia have already been 
brought into the CSTC model. Considering that multiple cognitive 
damage related to OCD and the increasing mentioned voice of pos-
terior cerebellum in cognition, more studies of posterior cerebellum 
need to be conducted in OCD pathomechanism.

There were some limitations to our study. First, patients with 
OCD were mostly treated with antidepressants and had long aver-
age illness duration, so the potential interfere of medications on the 
neuronal and behavioral responses cannot completely be removed 
in our results. Second, limited by the sample size, it is not feasi-
ble to conduct analysis based on OCD subtypes. Third, the pres-
ent study is a pilot one when it comes to the finding of abnormal 
functional connectivity of cerebellum in OCD, considering a more 
accurate partition method of cerebellum. Finally, from a method-
ological perspective, the input data we used in the computational 
framework were the low-order FC value. Further studies using dif-
ferent subtypes, drug-naïve cohorts and new methods integrating 
time-varying, multi-frequency, and even multimodal information for 
even higher-order functional connectivity are required.

In conclusion, this study provides a new and efficient method to 
characterize patients with OCD using resting-state functional MRI. 
Using the property that SPD matrices could form a Riemann mani-
fold, the proposed Riemann kernel PCA could extract features from 
functional connectivity matrices in an unsupervised manner. We 
also provide a new perspective to analyze disease-related features. 

F I G U R E  9   Relationship between behavioral scores and functional connectivity. Linearly fitting curves demonstrate a significant (p < .05) 
linear relationship between functional connectivity and symptom severity. Age and gender were removed as covariates. YBOCS score has a 
negative linear correlation with posterior cerebellar connections
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In our method, the importance of features is model-driven, which 
means the importance scores are given by how useful these features 
are in the classifiers. Despite of CSTC circuit, our model-driven fea-
ture analysis reported cerebellum as an OCD-related region. This 
paper may provide novel insight to the understanding of genetic eti-
ology of OCD.
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