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Abstract
Object: Obsessive–compulsive disorder (OCD) is a mental disease in which people 
experience uncontrollable and repetitive thoughts or behaviors. Clinical diagnosis of 
OCD is achieved by using neuropsychological assessment metrics, which are often 
subjectively affected by psychologists and patients. In this study, we propose a clas-
sification model for OCD diagnosis using functional MR images.
Methods: Using functional connectivity (FC) matrices calculated from brain region 
of	 interest	 (ROI)	pairs,	a	novel	Riemann	Kernel	principal	component	analysis	 (PCA)	
model is employed for feature extraction, which preserves the topological informa-
tion	in	the	FC	matrices.	Hierarchical	features	are	then	fed	into	an	ensemble	classifier	
based	on	the	XGBoost	algorithm.	Finally,	decisive	features	extracted	during	classi-
fication are used to investigate the brain FC variations between patients with OCD 
and healthy controls.
Results: The	 proposed	 algorithm	 yielded	 a	 classification	 accuracy	 of	 91.8%.	
Additionally,	 the	 well-known	 cortico–striatal–thalamic–cortical	 (CSTC)	 circuit	 and	
cerebellum	were	found	as	highly	related	regions	with	OCD.	To	further	analyze	the	
cerebellar-related	function	in	OCD,	we	demarcated	cerebellum	into	three	subregions	
according to their anatomical and functional property. Using these three functional 
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1  | INTRODUC TION

Obsessive–compulsive disorder (OCD) is a mental disorder with 
an	approximate	 lifetime	prevalence	of	1%–3%	(Angst	et	al.,	2005).	
Patients	 suffering	 from	 obsessions	 have	 persistent	 intrusive	
thoughts, and patients suffering from compulsions have repetitive 
behaviors. Despite of these symptoms and their impairment to pa-
tients' social functioning, it is highly possible that OCD can rise to a 
wide spectrum of additional psychiatric disorders, including major 
depressive	disorder	(MDD),	tics,	and	panic	disorder	(PD;	Angst	et	al.,	
2005;	Ruscio,	Stein,	Chiu,	&	Kessler,	2010).

Clinically, the diagnosis of OCD is achieved by (a) neuropsy-
chological	metrics,	such	as	YBOCS	(Goodman,	Price,	Rasmussen,	
Mazure,	Delgado,	et	al.,	1989;	Goodman,	Price,	Rasmussen,	Mazure,	
Fleischmann, et al., 1989), Obsessive–Compulsive Inventory (OCI; 
Foa	et	al.,	2002),	and	CY-BOCS	for	children	(Scahill	et	al.,	1997),	
(b) physical tests, such as complete blood count and alcohol/drug 
tests,	 and	 (c)	 interview	by	psychologists.	However,	 such	diagno-
sis methods are easily affected by psychologists' subjection, and 
symptoms	of	comorbidities	also	interfere	with	the	diagnosis.	Thus,	
a more objective diagnosis model is desirable for accurate and ro-
bust measurements.

Decisive features, which could be used for OCD classifica-
tion, can be extracted from both structural MRI and functional 
MRI. Structural MRI often detects morphological abnormality or 
provides	radiomic	features.	Although	many	works	have	reported	
significant volumetric differences between patients and healthy 
controls	 (Gilbert	et	al.,	2008;	Hu	et	al.,	2017;	Peng	et	al.,	2012),	
they focus on local volumetric variability and neglect the integ-
rity of the brain. Functional MRI measures brain activity based 
on	blood-oxygen-level-dependent	 level	 (BOLD)	 signals.	 Previous	
works have shown that onset of OCD demonstrates functional ab-
normalities across different anatomical regions. In this study, we 
focus	on	functional	MRI	and	study	connectivity-based	classifica-
tion for OCD diagnosis.

In the literature, neurological dysfunction in OCD brains has 
been	studied	extensively.	Harrison	et	al.	 (2009)	used	 resting-state	
functional MRI and found abnormal activation in connections 

between	 striatum	 and	 orbitofrontal	 cortex.	 A	 meta-analysis	 by	
Guersel,	Avram,	Sorg,	Brandl,	 and	Koch	 (2018)	 revealed	disrupted	
fronto-stratal	 circuits	 and	 impaired	 large-scale	 fronto-parietal-lim-
bic brain networks in patients with OCD. Further, cortico–striatal–
thalamic–cortical	 (CSTC)	 circuit	 has	 been	 identified	 as	 a	 decisive	
imaging	marker	for	OCD	diagosis.	For	example,	Beucke	et	al.	(2013)	
showed that distant connectivity of the orbitofrontal cortex and the 
putamen positively correlates with the severity of OCD symptoms. 
Sakai et al. (2011) investigated the corticostriatal functional con-
nectivity in nonmedicated OCD patients and reported an increased 
connectivity associated with the ventral striatum in the orbitofrontal 
cortex, ventral medial prefrontal cortex, and dorsal lateral prefrontal 
cortex in OCD.

Functional connectivity (FC) matrix, also known as connectome, 
was computed by the correlations between each brain region with 
all other regions. Conventional connectome classification algorithms 
treat a connectome as a vector of features and then feed it into 
“off-the-shelf”	 classifiers	 like	 support	 vector	 machine	 (SVM)	 and	
decision	 tree	 (Castellanos,	 Martino,	 Craddock,	 Mehta,	 &	 Milham,	
2013).	However,	such	methods	discard	the	topological	structure	of	
connectivity matrix and may lose useful anatomical information in 
the	connectomes.	To	remedy	this	drawback,	considering	the	graph-
ical	nature	of	connectivity,	graph	kernel-based	classifiers	have	been	
applied	 on	 inter-subject	 discrimination	 of	 two	 different	 types	 of	
auditory	stimuli	 (Vega-Pons,	Avesani,	Andric,	&	Hasson,	2014)	and	
classification	of	 schizophrenia	 (SZ)	and	healthy	control	 (HC;	Zhou,	
Mei,	Li,	&	Huang,	2017).	Other	graphical	theory-based	methods	in-
vestigating	multi-spectrum	networks	(Wee	et	al.,	2012),	ordinal	rela-
tionship of edges of FC matrices (Zhang et al., 2018), brain network 
embedding algorithms (Cao et al., 2017), and graph convolution neu-
ral	networks	(Ktena	et	al.,	2017)	are	also	proposed.

Using linear statistical analysis methods, such as Student's t 
tests, to compare the magnitude of functional connectivity between 
groups, significant group difference between patients with OCD 
and	 healthy	 controls	 could	 be	 discovered.	 CSTC	 circuit	 has	 been	
implicated in OCD pathophysiology by functional connectivity find-
ings	(Beucke	et	al.,	2013;	Markarian	et	al.,	2010;	Sakai	et	al.,	2011).	
However,	 such	 group	 comparison	 methods	 ignore	 the	 underlying	

cerebellum regions as seeds for brain connectivity computation, statistical results 
showed that patients with OCD have decreased posterior cerebellar connections.
Conclusions: This	study	provides	a	new	and	efficient	method	to	characterize	patients	
with	OCD	using	resting-state	functional	MRI.	We	also	provide	a	new	perspective	to	
analyze	disease-related	features.	Despite	of	CSTC	circuit,	our	model-driven	feature	
analysis	reported	cerebellum	as	an	OCD-related	region.	This	paper	may	provide	novel	
insight to the understanding of genetic etiology of OCD.

K E Y W O R D S

classification, global brain functional connectivity, obsessive–compulsive disorder
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hierarchical and spatial information of functional connectivity ma-
trices. Moreover, significantly different connections by themselves 
may not produce feasible diagnostic yields.

To	address	aforementioned	problems,	we	propose	a	novel	con-
nectome decomposition algorithm called Riemann manifold princi-
pal	component	analysis	 (PCA)	for	efficient	feature	extraction	from	
functional	connectivity	matrices.	We	hypothesize	 that	artificial	 in-
telligence algorithms can help diagnose OCD and can extract signif-
icant abnormalities in fMRI. We tested our classification algorithms 
on 128 subjects, 61 of which are patients with OCD, and we also 
reported	the	most	useful	connections	 in	this	classifier.	As	a	result,	
in	addition	to	the	CSTC	circuit,	cerebellum	was	also	reported	as	an	
important	region	during	the	classification.	The	cognitive	function	of	
cerebellum	was	 rarely	 investigated	 in	previous	 studies.	To	analyze	
the functional effect of cerebellum on OCD, we performed a post 
hoc	 seed-based	analysis	 and	 identified	posterior	 cerebellum	as	 an	
affected region.

In summary, the contribution of this paper is threefold: (a) a fea-
ture extraction algorithm based on the manifold property of func-
tional	connectivity	matrices;	(b)	a	model-driven	approach	to	detect	
discriminant	 imaging	 markers	 for	 OCD	 diagnosis;	 and	 (c)	 a	 seed-
based analysis on three functional subregions of cerebellum, investi-
gating the cerebellar functioning in patients with OCD.

2  | METHODS

The	schematic	representation	of	our	classification	method	is	shown	in	
Figure 1. Functional connectivity matrices are composed of functional 
correlations between each ROI pair of the brain. First, connectivity 
matrices	are	normalized	into	their	graph	Laplacians.	Then,	kernel	ma-
trices	are	computed	by	using	the	Riemannian	log-Euclidean	distance	
between	each	subject.	By	analyzing	the	eigenvectors	corresponding	
to a number of largest eigenvalues, we could derive the principal com-
ponents	of	our	data.	By	projecting	original	high	dimensional	features	
into these principal components, decomposed features could be ob-
tained.	Third,	decomposed	features	are	fed	into	a	classification	model	
based on a decision tree. Finally, in order to find decisive imaging 
markers for OCD diagnosis, we implement a feature reconstruction 
algorithm to retrieve important features from the classifier.

2.1 | Data acquisition and preprocessing

Neuroimaging	data	were	obtained	from	Huiai	Hospital	of	Shenzhen.	
The	dataset	includes	67	healthy	controls	and	61	patients,	with	age	
ranging from 18 to 59 years. Written consents were obtained from 
all	participants.	The	demographic	information	and	clinical	character-
istics	are	shown	in	Table	1.	Univariate	ANOVA	(analysis	of	variance)	
was carried out to make sure these two groups have no significant 
age	difference.	All	patients	enrolled	passed	the	test	defined	by	the	
Diagnostic and Statistical Manual of Mental Disorders, 4th edition 
(DSM-IV)	criteria	for	OCD	by	using	the	Structured	Clinical	Interview	

(SCID)	 for	 DSM-IV-TR	 Axis	 I	 disorders	 (First,	 Spitzer,	 Gibbon,	 &	
Williams,	2002).	The	exclusion	criteria	are	as	follows:	(a)	if	they	were	
younger than 18 or older than 59 years; (b) if they had a history of 
brain trauma or neurological disease; and (c) if they had shown alco-
hol/substance	abuse	within	12	months	prior	to	participation.	Healthy	
controls	were	screened	by	using	the	SCID	for	the	DSM-IV-TR	Axis	
I	 disorders,	 Research	 Version,	 Non-Patient	 edition	 (SCID-I/NP;	
Spitzer,	Robert,	Gibbon,	&	Williams,	2002).	Healthy	controls	with	a	
family history of axis I or II psychiatric disorders were excluded.

Structural	images	were	acquired	with	TR	=	8	ms,	TE	=	1.7	ms,	flip	
angle	=	20°,	and	resolution	=	1.0	×	1.0	×	1.0	mm3. Functional MR im-
ages	were	obtained	with	TR	=	2,000	ms,	TE	=	60	ms,	flip	angle	=	90°,	
resolution	=	3.75	×	3.75	×	4.0	mm3, and 33 sagittal slices with 230 
time	points.	T1	images	were	bias-corrected	and	skull-stripped.	Each	
subject's structural scan was registered to the standard template 
in	the	Montreal	Neurological	 Institute	(MNI)	space	and	parcellated	
into	116	regions	by	Automated	Anatomical	Labeling	(AAL;	Tzourio-
Mazoyer	 et	 al.,	 2002)	 template.	 Functional	 images	 were	 prepro-
cessed	by	DPARSF	4.3	(Data	Processing	Assistant	for	Resting-State	
fMRI,	advanced	edition;	Yan	&	Zang,	2010),	and	preprocessing	steps	
include	slice	time	correction,	motion	correction,	intensity	normaliza-
tion, spatial and temporal filtering, and nuisance covariates regres-
sion. In particular, first 10 time points were removed before slice 
timing. Images were time corrected by interpolation and motion cor-
rected by a rigid body transformation on each volume. Considering 
the	influence	of	head	motion	on	fMRI	signals	(Power,	Barnes,	Snyder,	
Schlaggar,	 &	 Petersen,	 2012;	 Satterthwaite	 et	 al.,	 2013),	 images	
with excessive movement (more than 1 mm translation on x-axis,	y-
axis, and z-axis	and	2°	of	 rotation)	and	 its	neighbor	volumes	were	
scrubbed	 (Power	 et	 al.,	 2012).	 Functional	 scans	 were	 first	 rigidly	
transformed	 to	 their	 structural	 scans	 and	 then	 normalized	 to	 the	
MNI	space	using	the	warping	parameters	from	the	abovementioned	
warping	procedure.	After	normalization,	Gaussian	kernel	with	4	mm	
FWHM	(Full	Wave	at	Half	Maximum)	was	used	for	image	smoothing.	
To	reduce	noise	from	hardware	and	subject's	motion,	all	BOLD	time	
series	were	filtered	by	a	band-pass	frequency	filtering	ranging	from	
0.01	to	0.1	Hz.	Three	covariates	were	regressed	out:	head	motion	
parameters, white matter signal, and cerebrospinal fluid signal.

2.2 | Feature extraction

Principal	 component	 analysis	 is	 a	 popular	 feature	 decomposi-
tion and extraction algorithm. It maps a n-dimension	 feature	 into	
a k-dimension	 linear space (k	 ≤	 n) formed by principal compo-
nents	 (Wold,	Esbensen,	&	Geladi,	1987).	Considering	a	centralized	
feature matrix X	 =	 {x1, x2, …, xm} ϵ Rn×m to be decomposed in to 
X� =

{
x′1,x

′

2,… ,x′m
}
∈Rn

�×m, where m denotes the number of sub-
jects and n	denotes	the	number	of	original	features,	PCA	calculates	
the n′ largest eigenvalues {�1,… �n� } and corresponding eigenvectors 
U=

{
u1,… un′

}
∈Rn×n

� of the covariance matrix C= 1

n
XXT and trans-

lates X into X′ by X� =UTX.	 The	 term	 “centralized”	here	means	 the	
column-wise	mean	of	X	is	zero.
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In the cases when data are confined to a nonlinear space, kernel 
trick	can	be	used	to	model	such	a	nonlinear	manifold.	Kernel	trick	de-
fines a higher dimensional space via the inner product of the higher 
dimensional	 representations,	normally	using	a	Gaussian	kernel.	By	
lifting the original data X	=	{x1, x2, …, xn} into a hyperspace Φ (X)	=	{ϕ 
(x1), ϕ (x2), …, ϕ (xn)}, the probability of data being linear separat-
able	rises.	Thus,	we	could	perform	a	 linear	PCA	on	Φ (X)	=	 {ϕ (x1), 
ϕ (x2), …, ϕ (xn)} and decompose Φ (X).	Kernel	matrix	 is	defined	by	

=Φ
(
X
)T

Φ
(
X
)
, and the covariance matrix is Cϕ	=	Φ (X) Φ (X)T.	To	

compute the principal components of Cϕ,

by multiplying Φ (X)T on both sides, we get,

where α	=	Φ (X)Tu and u= 1

�
Φ
(
X
)
�.	The	normalized	eigenvectors	are	

denoted as �̃=
1

��XTu��XTu=
1√
𝜆
�.	Thus,	by	performing	eigen-decompo-

sition on kernel matrix , we obtain the principal components {
u1,u2,… ,un′

}
 of vectors in the hyperspace.

A	 widely	 used	 kernel	 function	 is	 Gaussian	 RBF	 kernel	

K=

{
kij|kij=e

−
||xi−xj||2

2�2

}
.	 It	uses	the	Euclidean	distance	|||

|||xi−xj
|||
|||
2

 to 

measure	the	distance	of	data	points	between	each	other.	However,	
the	set	of	matrices	does	not	 lie	on	a	Euclidean	space.	Considering	
that the graph Laplacian of connectivity matrices is symmetric 
(semi-)positive	definite	 (SPD)	and	 the	set	of	SPD	matrices	 forms	a	
Riemannian	manifold	(Pennec,	Fillard,	&	Ayache,	2006),	the	distance	
function could thus be replaced by geodesic distance on Riemann 
manifold	to	capture	and	preserve	the	topological	property.	Here,	we	
used	log-Euclidean	geodesic	distance	as	the	distance	between	con-
nectivity	matrices	to	apply	a	Riemann	kernel	PCA.

(1)Φ
(
X
)
Φ
(
X
)T
u=�u

(2)�=��

F I G U R E  1  Flowcharts	of	the	proposed	disease	diagnosis	algorithm	by	using	Riemann	Kernel	PCA	for	feature	extraction.	Part	(a)	is	the	
main	flowchart.	Connectivity	matrices	were	first	normalized	as	their	graph	Laplacians.	Using	proposed	Riemann	Kernel,	we	could	generate	
the	kernel	matrix	which	describing	the	geodesic	distances	among	all	subjects.	By	selecting	the	eigenvalues	of	kernel	matrix,	PCA	was	
performed	on	FC	matrices.	The	extracted	features	were	sent	to	XGBoost	for	disease	diagnosis.	Part	(b)	presents	a	schematic	representation	
of	Riemann	kernel	PCA.	Using	kernel	trick,	nonlinearly	distributed	data	points	could	be	projected	onto	its	principal	components.	Part	(c)	
illustrates	that	we	could	retrieve	decisive	features	from	XGBoost	classifier	by	using	pre-image	based	kernel	PCA	reconstruction	algorithm

TA B L E  1   Demographic and clinical characteristics information 
of	patients	(OCD)	and	healthy	controls	(HC)

 OCD HC

Demographic measures

Number	of	male	(Female)	
subjects

61 (45) 67 (44)

Age	(Mean	±	SD) 26.1	±	8.1 21.3	±	5.0

Clinical measures

YBOCS	total	(SD) 25.5	±	7.0 2.4	±	2.9

YBOCS	obsessions	(SD) 15.4	±	3.1 0.9	±	1.3

YBCOS	compulsions(SD) 10.9	±	4.8 1.4	±	2.1

Note: The	average	and	standard	deviation	of	continuous	variable	are	
provided, of which standard deviation is shown italic. Compulsion 
and	obsession	were	measured,	respectively,	by	YBOCS	(Yale–Brown	
Obsessive-Compulsive	Scale).	According	to	t tests, there are no 
significant age difference (p	=	.06)	among	three	groups.



     |  5 of 12XING et al.

Although	 not	 being	 invariant	 to	 affine	 transformations,	 Log-
Euclidean	method	has	a	simple	formulation.	For	matrix	S1 and S2 in 
SPD	matrix	set	S++,	the	log-Euclidean	distance	of	them	is:

where ‖⋅‖F denotes the Frobenius norm of a matrix. With the aim of 
working on Riemann manifold, we computed every connectivity ma-
trix's graph Laplacian. Let As ϵ Rk×k denote the connectivity matrix of 
subject s-th	where	k is the number of brain ROIs, the graph Laplacian 
of this connectivity matrix is:

where ai,j > 0, Ds	=	diag	(∑j ai,j) is the degree matrix of As. Ls is semiposi-
tive	definite	and	can	be	mapped	into	a	SPD	matrix	by	L̂𝛾 =L+𝛾I, where 
γ	>	0.	Thus,	the	Riemann	kernel	function	of	matrices	can	be	generated	
as

with	this	kernel	function,	we	implemented	kernel	PCA	on	our	raw	data	
to extract hierarchical features.

2.3 | Discriminant feature retrieving

In	this	paper,	we	used	the	XGBoost	classifier	to	 identify	the	sta-
tus	of	patients.	XGBoost	classifier	 is	based	on	 the	boosting	 tree	
algorithm.	After	the	boosted	tree	is	constructed,	we	can	retrieve	
the feature importance scores for each input feature. First, the 
importance score is calculated on a single decision tree by the 
improvement	of	the	split	on	each	feature.	Gini	 index	(or	Gini	 im-
purity, measures the probability of mislabeling objects in the 
dataset)	 is	 used	 to	 select	 the	 split	 points.	 Then,	 the	 importance	
score of every features is averaged across all decision trees within 
the	model	(Hastie,	Tibshirani,	Friedman,	&	Franklin,	2005).	For	an	
input feature vector f ϵ RN, boosted tree could provide an impor-
tance vector w ϵ RN, each element of which is the importance of 
corresponding feature.

However,	 because	 of	 kernel	 trick	 used	 for	 feature	 extraction,	
the features' input into classifiers is on a hyperspace where the 
projection Φ from original matrices to corresponding vectors on 
the	space	is	unknown.	To	obtain	the	feature	importance	on	original	
feature space, which is the connections between brain regions, we 
applied	a	kernel	PCA	reconstruction	algorithm	based	on	pre-images	
(Schölkopf,	Mika,	Smola,	Rätsch,	&	Müller,	1998).

Given	a	matrix	of	 features'	 importance	w ϵ Rk×k for features in 
original space, whose entries represent the importance of corre-
sponding connection, we define P the projection of it onto principal 
components	and	rewrite	it	according	to	Equation	2:

where β is the feature importance vector in hierarchical feature space 
and n′	is	the	dimension	after	decomposition.	Kernel	PCA	has	a	prop-
erty that if n′	is	the	rank	of	, Pn�Φ (w)=Φ (w); and for smaller n′,	the	
overall squared error 

∑n

i=1

���Pn�Φ
�
Si
�
−Φ

�
Si
����

2

 is minimal (Schölkopf, 
Smola,	&	Müller,	1997).	To	approximate	w, we are looking for a ŵ such 
that:

is	minimized.	Expanding	 (7)	and	considering	that	 for	Riemann	kernel	
PCA,	 (w,w)=const., the objective function takes the form:

To	minimize	(8),	we	find	ŵ such that ∇l
(
ŵ
)
=0.	According	to	ker-

nel function (5), we can learn ŵ iteratively using equation below:

L̂𝜔,𝛾 is the Laplacian matrix of ŵ. �k
i
=
∑n�

k=1
�k�

k
i
. Since 

Laplacian matrix has the same nondiagonal entries with original 
matrix, L̂𝜔,𝛾 can represent the importance of features in original fea-
ture space.

2.4 | Seed-based analysis on cerebellum

Despite	 of	 the	well-known	CSTC	 circuits,	we	 also	 found	 that	 cer-
ebellum	is	highly	related	to	OCD.	Although	in	most	studies	cerebel-
lum was known to be a region controlling body balance and motion, 
not taking part in any cognitive decisions, the findings of this paper 
suggest abnormality in functional connection related to the cerebel-
lum.	This	is	also	supported	by	other	recent	studies.	In	2001,	Buckner	
(Buckner,	 Krienen,	 Castellanos,	 Diaz,	 &	 Yeo,	 2011)	 analyzed	 the	
functional images from more than 1,000 subjects, aiming to find 
the connections between cerebellum and cerebrum and found that 
the cerebellum possesses at least two large, homotopic maps of the 
full	cerebrum.	Hou	et	al.	(2012)	measured	neural	activity	and	found	
declined	ALFF	(amplitude	of	 low	frequency	fluctuation)	 in	bilateral	
cerebellum of patients with OCD.
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To	 fully	 assess	 the	 cerebellum-related	 functional	 networks	 of	
OCD,	we	applied	seed-based	correlation	analyses	on	our	resting-state	
functional MRI dataset. Different from previous studies which con-
sidered cerebellum as a whole, we demarcated cerebellum into three 
anatomical sections, that is, anterior lobule, posterior lobule, and 
flocculonodular	 lobule	 (O'Reilly,	 Beckmann,	 Tomassini,	 Ramnani,	 &	
Johansen-Berg,	2009;	Voogd	&	Glickstein,	1998).	The	anatomical	lo-
cation of these three subregions is shown in Figure 2. Flocculonodular 
lobe, also denominated as vestibulocerebellum, is functionally con-
nected with semicircular canals and vestibular nuclei, regulating bal-
ance and eye movements. Flocculonodular lobe and other sections 
are	separated	by	posterolateral	 fissure.	Anterior	 lobe	of	cerebellum	
is also known as spinocerebellum, constituted by central lobe, cul-
men, uvula, and pyramid of vermis. Spinocerebellum receives input 
and sends signal back to spinal cord, thus controls body and limb 
movements. Lateral parts of the cerebellum are cerebrocerebellum, 

locating	between	posterolateral	fissure	and	primary	fissure.	Posterior	
lobe of cerebellum receives input signal from the cerebral cortex via 
the pontine nuclei, controlling voluntary movement.

Seed-based	 correlation	 analysis	 in	 functional	 MRI	 is	 another	
widely used method to assess functional connectivity in the brain. 
Correlation is calculated between the averaged time series of the 
voxels	 from	 the	ROI	 (or	 the	 “seed”)	 and	 time	 series	 from	all	 other	
voxels.	The	result	of	seed-based	analysis	 is	a	3D-connectivity	map	
indicating the correlation intensity of all other voxels with the seed. 
Pearson	 correlations	 computed	 by	 DPARSF	 are	 then	 normalized	
using	a	 fisher-Z	 transform.	We	applied	a	 t	 test	 that	co-varies	with	
age and gender, on each subject's correlation map, aiming to find 
connections varying significantly between two groups.

3  | E XPERIMENTS

3.1 | Classification result

We evaluated the classification performance by sensitivity, specific-
ity, and accuracy. Sensitivity measures the proportion of real patients 
that are correctly identified as patients. Specificity measures the pro-
portion of healthy controls that are correctly identified as healthy 
controls.	Accuracy	is	the	proportion	of	correctly	predicted	subjects.	
Decomposition	methods	using	 linear	PCA	and	 traditional	Euclidean	
kernel	PCA	are	also	performed	for	comparison,	as	shown	in	Table	2.	
Besides,	we	also	visualized	the	data	distribution	by	reducing	the	di-
mension of the FC matrices into two. Results are shown in Figure 3.

3.2 | Parameter selection

The	Riemann	kernel	function	of	matrices	can	be	generated	as
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F I G U R E  2   Cerebellar functional 
subregions and their functions. 
Vestibulocerebellum	mainly	receives	
fiber from vestibular nerves and nuclei, 
regulating body balance and eye 
movement. Spinocerebellum controls 
the movements of trunk muscles. 
Cerebrocerebellum is considered to 
have cognitive functions, regulating and 
coordinating skilled voluntary movement

TA B L E  2   Classification results and comparison

 Sensitivity (%) Specificity (%) Accuracy (%)

Pearson's	correlation

SVR 63.9 95.5 80.6

XGBoost 86.8 89.7 88.4

Linear	PCA

SVR 72.0 80.3 76.0

XGBoost 75.4 80.1 78.3

Gaussian	kernel	PCA

SVR 73.7 75.0 74.4

XGBoost 77.0 73.5 75.2

Riemann	kernel	PCA

SVR 86.6 85.1 86.6

XGBoost 92.6 90.7 91.8

Note: These	results	are	10-fold	validated.	Linear	PCA	and	Riemann	
kernel	PCA	models	were	fitted	with	training	data	and	then	applied	on	
validation	data	during	10-fold	validation.	Bold	values	are	the	highest	
values in each column.
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Two	parameters	affect	the	performance	of	kernel	PCA.	σ is the 
scale parameter of kernel function, which represents the standard 
deviation of the entries of all matrices. Larger σ reflects a wider dis-
tribution of functional matrices. γ	is	a	regularization	parameter	which	
regularizes	Laplacians	to	become	positive	definite	because	the	set	of	
symmetric positive definite matrices is a Riemannian manifold. We 
compared	the	performance	of	Riemann	kernel	PCA	under	different	
parameters.	As	is	shown	in	Figure	4,	the	feature	extraction	perfor-
mance	of	Riemann	kernel	PCA	 is	not	sensitive	to	γ, while the best 
feature extraction performance is reached when σ is near the stan-
dard deviation of the entries from all matrices.

3.3 | Decisive features

Important features were found in inner cerebellar connections, espe-
cially posterior parts, and cerebellar connections with basal ganglia, 
shown in Figure 5. Dysfunctions in the connection between right rec-
tus and left parahippocampal gyrus and in the connection between left 
rectus	and	right	parahippocampal	gyrus	are	also	reported.	Abnormal	

increases in connections are found mostly in thalamus–cortex connec-
tions, like postcentral cortex, indicating an activity disruption in thala-
mus, which possible may contribute to OCD's comorbidity with anxiety 
and	depression	(Greicius	et	al.,	2007;	Sturm	et	al.,	2003).

3.4 | Seed-based analysis on cerebellum

Significant decline (p	 <	 .05)	 in	 cerebellum-related	 connectivity	 was	
demonstrated in many brain regions of patients with OCD. For ves-
tibulocerebellum (Figure 6), patients with OCD were associated with 
decreased connectivity in bilateral thalamus, posterior parts of cer-
ebellum, and inferior occipital cortex. For spinocerebellum (Figure 7), 
the OCD group demonstrated a decreased connectivity in right hip-
pocampus and rectus. For posterior lobule (Figure 8), a notable as-
sociation of OCD group with a decreased basal ganglia connection 
including bilateral pallidum, thalamus, and putamen connections, as 
well as an increased connection in medial frontal cortex, was reported.

Moreover,	a	linear	regression	model	uses	YBOCS	score	as	predic-
tors, covarying with age and gender, were also applied to investigate 

F I G U R E  3  Data	structure	visualization	by	linear	PCA,	Riemann	kernel	PCA,	and	t-SNE	(t-distributed	Stochastic	Neighbor	Embedding).	As	
is shown, our decomposition algorithm could generate a better representation for FC matrices

F I G U R E  4  The	effect	of	parameter	changing	on	classification	performance.	By	changing	two	parameters	in	Equation	5,	different	features	
were	extracted	and	sent	into	XGBoost	classifiers.	By	measuring	the	classification	performance,	we	could	evaluate	the	feature	extraction	
performance	under	different	parameter	settings.	As	is	shown,	the	feature	extraction	performance	is	not	sensitive	to	regularization	
parameter γ.	The	distribution	parameter	σ reflects the variance in the set of functional matrices, and smaller or larger choice could 
compromise the feature extraction performance
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the relationships between the symptom severity and connection 
magnitudes. Results in Figure 9 show that symptom severity is 
mainly negatively correlated with the connection of the posterior 
parts of cerebellum.

4  | DISCUSSION

The	goal	of	this	study	was	to	classify	patients	with	OCD	from	healthy	
subjects	using	whole-brain	functional	connectivity	matrices.	A	clas-
sifier	 using	 Riemann	 kernel	 PCA	 was	 proposed,	 which	 preserves	
the topological information of functional connectivity matrices and 
outperforms	traditional	classifiers	such	as	linear	PCA	or	other	linear	
decomposition algorithm.

Decisive features are extracted to differentiate OCD from healthy 
subjects.	 The	 results	 revealed	 stronger	 connections	 between	 basal	

ganglia	and	cortex	and	weaker	cerebellum-related	connections	in	pa-
tients	with	OCD.	This	finding	is	consistent	with	the	well-known	CSTC	
model	(Ahmari	&	Hen,	2013;	Alexander,	DeLong,	&	Strick,	1986;	Vaghi	
et al., 2017). On the other hand, the cerebellum has gained signifi-
cant attention in the last two decades for its influence on cognitive 
processes, and the functional abnormalities of cerebellum are associ-
ated	with	a	variety	of	psychiatric	disorders	(Phillips,	Hewedi,	Eissa,	&	
Moustafa, 2015; Sullivan, 2010). Some researchers have carried on ex-
plorations	on	its	role	in	OCD.	Kasikci,	Metin,	and	Tas	(2015)	reviewed	
studies on cerebellar structural and functional differences in OCD and 
argued that cerebellum should be involved in obsessive–compulsive 
disorder-related	brain	network	model	 for	a	better	understanding	of	
the	nature	of	this	disorder.	Tian	et	al.	 (2016)	 investigated	functional	
connectivity	strength	and	hubs	of	whole-brain	networks	and	found	
affected functional connectivity strength in the cerebellum was sig-
nificantly associated with global OCD symptom severity, providing 

F I G U R E  5  Group	difference	of	functional	connectivity	for	discriminant	connections	observed	between	OCD	patients	and	Healthy	
Controls.	This	image	is	shown	with	a	threshold	of	group	connectivity	absolute	difference	>0.2.	Blue	indicates	a	group-wise	weaker	
connection of patients with OCD over healthy controls, and red indicates a stronger connection of patients with OCD over healthy controls. 
The	thickness	of	every	connection	indicates	the	relative	magnitude	of	this	connection	among	all	connections	shown

F I G U R E  6   Significant difference (p	<	.05)	reported	from	seed-based	analysis	with	seed	in	flocculonodular	lobe.	Images	are	shown	in	a	
threshold of an absolute value 0.1 for the mean difference between two groups. For vestibulocerebellum, abnormal decline in connections 
was found in thalamus and other cerebellum regions
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the	evidence	about	OCD-related	brain	network	hub	changes,	not	only	
in	the	CSTC	circuits	but	more	distributed	in	whole-brain	networks.	In	
2017,	Bruchhage	et	al.	(2017)	investigated	cerebellum	and	brainstem	
shape	across	two	pediatric	ASD	and	OCD	cohorts	in	order	to	identify	
regional differences and their correlation with compulsive behavior 
and symptom severity and found while the anterior brainstem cor-
related with compulsive behaviors in both groups, larger reshaping of 
the cerebellum was only shown in the OCD group.

We	also	conducted	seed-based	analyses	on	three	functional	parts	
of the cerebellum, a brain structure not concerned in the traditional 
CSTC	model.	The	results	indicated	reduced	connectivity	in	cerebel-
lum of patients with OCD, particularly in thalamus and hippocampus, 
than	healthy	subjects.	Furthermore,	when	using	the	YBOCS	scores	
as predictors, the results showed a significant negative correlation 
between OCD symptom severity and the FC strength value in the 
posterior	 parts	 of	 the	 cerebellum.	 The	 posterior	 cerebellum	 has	

F I G U R E  7   Significant difference (p	<	.05)	reported	from	seed-based	analysis	with	seed	in	anterior	lobe.	Images	are	shown	in	a	threshold	
of	an	absolute	value	0.1	for	the	mean	difference	between	two	groups.	A	noticeable	decline	is	found	in	rectus	and	right	insula

F I G U R E  8   Significant difference (p	<	.05)	reported	from	seed-based	analysis	with	seed	in	posterior	lobe.	Images	are	shown	in	a	threshold	
of an absolute value 0.1 for the mean difference between two groups. Frontal cortex and occipital cortex were reported with an abnormal 
decline	in	seed-based	analysis.	Furthermore,	there	was	also	a	correlation	decline	in	basal	ganglia
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been found to play a significant role in neurocognition from investi-
gations of anatomy, fMRI tasks, and clinical diseases. Stoodley and 
Schmahmann (2010) found that the primary motor cortex is predom-
inantly connected to the anterior part of the cerebellum, whereas the 
associative cortices are predominantly connected to the posterior 
part	of	the	cerebellum.	Evidence	from	task	fMRI	also	showed	that	
different areas of poster cerebellum have been activated and asso-
ciated	 with	 language-related	 activity,	 working	 memory	 and	 read-
ing tasks, affective processing, executive functioning, and spatial 
processing	(Kim,	Ugurbil,	&	Strick,	1994;	Stoodley	&	Schmahmann,	
2010;	Stoodley,	Valera,	&	Schmahmann,	2012).	A	clinical	 study	by	
Merchant, Sharma, Xiong, Wu, and Conklin (2011) in 2014 found a 
significant correlation between the radiation dose to the infraten-
torium and posterior cerebellum and neurocognitive impairment at 
several	cognitive	domains	in	seventy-eight	children	with	low-grade	
glioma.	 To	 date,	 this	 is	 the	 only	 available	 study	with	 separate	 do-
simetric	data	for	the	posterior	cerebellum.	Another	study	on	brain	
injury	by	Schmahmann	and	Pandyat	(Schmahmann,	1997)	described	
the	 clinical	 cerebellar	 cognitive	 affective	 syndrome	 (CCAS)	 after	
studying 20 adults with cerebellar lesions due to either neoplasms, 
or	vascular	or	traumatic	damage.	They	all	showed	deficits	in	multi-
ple cognitive domains including maintaining semantic and episodic 
memory and consciousness. Lesions of the posterior lobe of the cer-
ebellum	were	produced	in	executive	and	visual-spatial	functions.	In	
this study, the abnormal FC of the postpart cerebellum mainly focus 
on frontal, occipital, temporal cortex and two subcortical structures, 

the	basal	ganglia	and	the	right	hippocampus.	Among	them,	the	fron-
tal cortex, the right OFC, and the basal ganglia have already been 
brought	 into	 the	CSTC	model.	Considering	 that	multiple	 cognitive	
damage related to OCD and the increasing mentioned voice of pos-
terior cerebellum in cognition, more studies of posterior cerebellum 
need to be conducted in OCD pathomechanism.

There	were	 some	 limitations	 to	our	 study.	First,	patients	with	
OCD were mostly treated with antidepressants and had long aver-
age illness duration, so the potential interfere of medications on the 
neuronal and behavioral responses cannot completely be removed 
in	 our	 results.	 Second,	 limited	 by	 the	 sample	 size,	 it	 is	 not	 feasi-
ble	 to	 conduct	 analysis	based	on	OCD	subtypes.	Third,	 the	pres-
ent study is a pilot one when it comes to the finding of abnormal 
functional connectivity of cerebellum in OCD, considering a more 
accurate partition method of cerebellum. Finally, from a method-
ological perspective, the input data we used in the computational 
framework	were	the	low-order	FC	value.	Further	studies	using	dif-
ferent	subtypes,	drug-naïve	cohorts	and	new	methods	integrating	
time-varying,	multi-frequency,	and	even	multimodal	information	for	
even	higher-order	functional	connectivity	are	required.

In conclusion, this study provides a new and efficient method to 
characterize	patients	with	OCD	using	resting-state	functional	MRI.	
Using	the	property	that	SPD	matrices	could	form	a	Riemann	mani-
fold,	the	proposed	Riemann	kernel	PCA	could	extract	features	from	
functional connectivity matrices in an unsupervised manner. We 
also	provide	a	new	perspective	to	analyze	disease-related	features.	

F I G U R E  9   Relationship between behavioral scores and functional connectivity. Linearly fitting curves demonstrate a significant (p < .05) 
linear	relationship	between	functional	connectivity	and	symptom	severity.	Age	and	gender	were	removed	as	covariates.	YBOCS	score	has	a	
negative linear correlation with posterior cerebellar connections
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In	our	method,	 the	 importance	of	 features	 is	model-driven,	which	
means the importance scores are given by how useful these features 
are	in	the	classifiers.	Despite	of	CSTC	circuit,	our	model-driven	fea-
ture	 analysis	 reported	 cerebellum	 as	 an	OCD-related	 region.	 This	
paper may provide novel insight to the understanding of genetic eti-
ology of OCD.
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