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PHTNet: Characterization and Deep 
Mining of Involuntary Pathological 
Hand Tremor using Recurrent 
Neural Network Models
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The global aging phenomenon has increased the number of individuals with age-related neurological 
movement disorders including Parkinson’s Disease (PD) and Essential Tremor (ET). Pathological Hand 
Tremor (PHT), which is considered among the most common motor symptoms of such disorders, can 
severely affect patients’ independence and quality of life. To develop advanced rehabilitation and 
assistive technologies, accurate estimation/prediction of nonstationary PHT is critical, however, the 
required level of accuracy has not yet been achieved. The lack of sizable datasets and generalizable 
modeling techniques that can fully represent the spectrotemporal characteristics of PHT have been a 
critical bottleneck in attaining this goal. This paper addresses this unmet need through establishing a 
deep recurrent model to predict and eliminate the PHT component of hand motion. More specifically, 
we propose a machine learning-based, assumption-free, and real-time PHT elimination framework, 
the PHTNet, by incorporating deep bidirectional recurrent neural networks. The PHTNet is developed 
over a hand motion dataset of 81 ET and PD patients collected systematically in a movement disorders 
clinic over 3 years. The PHTNet is the first intelligent systems model developed on this scale for 
PHT elimination that maximizes the resolution of estimation and allows for prediction of future and 
upcoming sub-movements.

Age-related neurological movement disorders such as Parkinson’s Disease (PD) and Essential tremor (ET)1–4 
are expected to become more prevalent as the population of seniors over the age of sixty is expected to increase 
from 962 million in 2017 to 2.1 billion by 2050, and to 3.1 billion in 21005. Pathological Hand Tremor (PHT) is a 
common upper-limb motor symptom of several age-related neurological movement disorders and is described as 
involuntary and pseudo-rhythmic movements6 affecting coordination, targeting, and speed of intended motions7.

Unlike physiological tremor, which is identified with low amplitude vibrations occurring within the spectral 
range of 6 to 14 Hz8 and affects the performance of individuals in high precision tasks such as robotic surgery9, 
PHT represents higher amplitude motion occurring in the broader frequency range of 3–14 Hz10. The repeti-
tive and oscillating nature of PHT differentiates itself from other involuntary movement disorders such as cho-
rea, athetosis, ballism, tics, and myoclonus11. Upper-limb tremor significantly limits individuals in performing 
Activities of Daily Livings (ADLs)12. Thus, during the last decade, several techniques and technologies have been 
proposed in both rehabilitation and assistive domains13,14 to compensate for the involuntary movement while pro-
moting the voluntary component of motion. The accuracy of a tremor compensation technology (such as sophis-
ticated wearable exosuits) relies significantly on the efficacy and spectrotemporal resolution of the algorithm, as 
inaccurate or slow extraction techniques do not allow for proper compensation. PHT consists of the following 
types of tremor: Rest Tremor (RT) occurring when a limb is relaxed and supported against gravity (commonly 
observed in PD15); Action Tremor (AT) occurring during voluntary contraction of muscles and classified into 
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the subcategories of postural, kinetic, and isometric16. Postural and kinetic tremors are commonly observed in 
ET patients15. While postural tremor occurs when an individual voluntarily maintains a position against gravity, 
such as an outstretched arm, kinetic tremor occurs when a voluntary movement is performed. On the other 
hand, isometric action tremor exists during muscle contraction against a rigid stationary object such as grasping 
a solid object that blocks the motion of the limb and changes the length of muscles. It is worth mentioning that 
although PD tremor is typically characterized by unilateral rest tremor in the spectral range of 4–6 Hz and ET 
patients commonly show symmetric postural and kinetic tremor in the range of 4–8 Hz, there are many atypical 
cases (for example PD patients having action tremor and ET patients having rest tremor) that PD and ET share 
overlapping features17.

PHT therapies such as oral medication, therapeutic lesions, Gamma-knife radiosurgery, and Deep Brain 
Stimulation (DBS)18 focus on alleviating tremor severity and improving arm functionality19–21. Although effi-
cacy is reported for these PHT interventions, about 25% of patients are unresponsive or experience short-term 
suboptimal response12,22,23, and adverse side effects are also commonly observed. The severity and characteristics 
of PHT are assessed and monitored3,24–34 through recording and processing of hand motions in clinical settings 
while performing different tasks. This information has also been used to tailor dosing and regimen of therapy, 
such as botulinum toxin type A (BoNT-A) injections35. However, a major remaining challenge in assessing action 
tremor is the processing and separation of voluntary and involuntary components, which is not accurate using 
conventional approaches. Thus, some of the recently-developed techniques and therapies (e.g. BoNT-A ther-
apy)35–39 that finely tailor dosing and muscle selection for targeted therapy based on accurate signal monitoring, 
would not be feasible for patients with prominent action tremor.

Recently, robotic rehabilitation and assistive technologies40–44 have attracted a great deal of interest due to their 
promising performance in compensating the involuntary tremor in both rehabilitation and assistive settings. Such 
technologies40,42,45,46 are mainly developed to remove (damp out or compensate) the tremor and assist patients 
in performing their voluntary movements41,47–49. However, the performance and efficacy of such technologies is 
directly linked to the accuracy of tremor estimation, which is a nonstationary, nonlinear, and uncertain signal 
processing challenge. Thus, accurate PHT elimination (and possibly prediction) is important for both robotic 
rehabilitation and assistive technologies, and also for different clinical applications. This will allow proper delivery 
of the expected assistive actions at the right time of oscillation, and also guarantees the required level of safety. 
In particular, for these settings, it is essential to have zero or minimal phase lag in the estimation and extraction 
of tremor to effectively and simultaneously generate a counteracting force field. It is shown50 that a phase-lag as 
low as 20 ms in the signal filtering part noticeably degrades the system performance. As the frequency content of 
pathological tremor can be close to that of the voluntary component, having zero or minimal phase-lag is a major 
challenge. However, this would be feasible if a robust and generalizable model of tremor is designed that can 
encapsulate nonlinear temporal dependencies between sub-movements during task performance.

Despite the crucial need for PHT elimination techniques and the numerous research advancements on this 
topic51–55, including our previous work13,14, there is an unmet need for a reliable, adaptable, and generalizable pro-
cessing framework that can be directly translated to clinical settings for estimation, extraction, and prediction of 
action tremor with high spectrotemporal resolution. Among previously published studies, Band-limited Multiple 
Fourier Linear Combiner (BMFLC)51, Extended-BMFLC (EBMFLC)13, and Wavelet Adaptive Kalman Estimation 
(WAKE)14 frameworks demonstrate the most successful current state of the available approaches. The FLC-based 
methods, e.g., BMFLC and EBMFLC, are aimed at deriving linear mixing models for the spectral contents of the 
motion signal to distinguish and separate the two components. The BMFLC employs fixed predefined values to 
identify the spectral range of PHT and is aimed at attenuating those contents to derive the voluntary component. 
The EBMFLC, on the other hand, tries to adaptively identify and remove the spectral range of the PHT, which 
has shown superior performance compared to its counterpart. Recently, the WAKE framework showed signifi-
cant improvement in performance in comparison to all existing techniques for PHT elimination. WAKE exploits 
Wavelet transforms and Kalman filtering to obtain a spectrotemporal representation of motion signals to separate 
the voluntary and involuntary components. Existing methods including EBMFLC and WAKE, share a similar 
characteristic by assuming that the spectral contents of voluntary and involuntary components are distinct and 
one could be derived by removing the other from the measurement signal. However, this assumption is not always 
realistic and has resulted in limited performance of the designed techniques and also hindered their clinical trans-
lation. In fact, the frequency contents of the voluntary and tremor components are not completely distinct from 
each other, and the overlapping of spectral contents is quite natural. Thus, considering all high-frequency com-
ponents as tremulous motion results in inferior performance of the technique, which may fail to follow voluntary 
changes in the direction and frequency context of motion. Such behaviour can dramatically degrade the perfor-
mance of any assistive technology that is supposed to react to the changes in motor intent, in an agile manner. 
This can significantly affect the estimation of involuntary components (through misinterpretation as involuntary 
motion the high frequency content of voluntary motion caused by nonlinear and nonstationary changes). This can 
directly affect the regimen of advanced new therapies that are tailored based on such measures. We believe that 
the above-mentioned issue is an important contributing factor for the limited performance of previous methods.

Besides concerns regarding the computational power and capacity of existing frameworks for an ultimate pre-
dictive model, there is a need for characterizing tremor based on a sizable inclusive dataset, that covers possible 
pathological variations causing diverse types of tremor signals in terms of spectrotemporal behavior, dynamic 
nature, temporal dependencies, and sub-movements. Without such a data atlas, conservative and impractical 
assumptions would be considered to define a ground truth reference for designing and validating the techniques. 
We argue that due to the high degree of inter- and intra-subject variability of tremor characteristics, the solutions 
designed and validated based on a limited dataset may not be generalizable for translation to the clinic and ADL 
for PD and ET patients. Thus, building a representative and sizable dataset coupled with designing a predictive 
model with high spectrotemporal capacity are critical for developing a PHT removal and prediction framework 
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that is robust to inter- and intra-subject variability of tremor characteristics. This unmet need is addressed and 
discussed in this paper by utilizing a novel data-driven deep neural network modeling technique with a unique 
tremor extraction capacity augmented by predictive power and trained based on our unique dataset. The dataset 
includes kinematic motion recordings of 81 PD and ET patients (about hours of recordings) collected in a move-
ment disorders research laboratory based on a rigorous systematic protocol. This is the largest dataset known 
to date permitting the generation of a strong high-capacity model. Developing a PHT extraction framework by 
employing large datasets, which include recordings of an extensive number of patients over long periods of time, 
takes a significant range of possible variations in the characteristics of tremor into account, adds more generaliza-
tion to the framework, and makes the technique adaptable to inter and intra-patient variabilities, nonstationary 
and nonlinear behaviours of tremor signals. In other words, utilization of such larger dataset allows the network 
to more securely avoid the curse of overfitting to the training samples by observing a more diverse range of pos-
sibilities in the PHT behavior. The proposed model, referred to as PHTNet, is a real-time and assumption-free 
neural model developed based on bidirectional recurrent neural networks. PHTNet can process measurement 
signals in both online and offline fashion and provides one-sample-ahead (one sample ahead) predictions on the 
voluntary component of hand motion signals, which is the ultimate temporal resolution for this application. It 
should be noted that the time resolution of signal processing plays a very important role when the control loop 
gain and the frequency of activations in a control system are high (such as the robotic rehabilitation devices)56. 
Therefore, one sample ahead-of-time prediction can play a very important role for compensation of external dis-
turbances and achieving the control goals. On the other hand, a major difference between the proposed intelligent 
data-driven tremor extraction model and conventional filters is that since it is supported by the deep modeled 
connectivity in the dataset, it not only can remove phase latency but also has a one sample prediction. It is worth 
noting that phase lag (even in the order of 10 ms) can easily make a high-gain rehabilitation robot unstable which 
can sacrifice safety13,56–59. Therefore, the proposed PHTNet, which not only removes the lag but also enhances the 
time resolution, provides a significant phase benefit, which is imperative for the control algorithm of rehabilita-
tion and assistive technologies.

To address the need for a valid ground truth of the voluntary component of action tremor signals when train-
ing the PHTNet, through a novel design, we have employed a mixture of synthesized voluntary components 
and recorded rest and postural tremor signals from PD and ET patients to teach the network to distinguish 
between the two motor behaviours. It is worth noting that this study is not made based on any potential differ-
ences between the characteristics of tremor in PD and ET. The data from two population of patients is collected to 
get a large variety of tremor characteristics and to empower our algorithm for a large population of users. One of 
the differences between PHTNet and previous works in the literature is that we do not bound the characteristics 
of PHT into a few commonly used parameterized assumptions in the spectral domain, as this is a highly dynamic 
feature. Instead, we employ a data-driven approach, PHTNet, which learns how to internally evaluate the separa-
tion criteria and employ them for extraction and prediction of the voluntary component through several training 
samples, without explicitly introducing any characteristic of or assumptions on the tremor. Moreover, the devised 
training strategy of PHTNet teaches the network to model the nonlinear short-term and long-term temporal 
dependencies and minimize the error between the output sequence and the forthcoming samples of the ground 
truth signal to equip PHTNet with predictive behaviour, which, for the first time, presents an ultimate temporal 
resolution.

It is worth noting that the PHTNet is not proposed as a tremor treatment procedure, rather, it is developed 
to enhance the efficacy of current tremor management methodologies and also improve the quality of services 
delivered to the patients by robotic assistive devices. In other words, PHTNet can be put into practice to extract 
the voluntary and involuntary components of action tremor signals with a high spatiotemporal resolution to 
help the neurologists with objectively assessing the characteristics of tremor over the course of action and time, 
needed to specify the dosage and plan of prescribed medications. In addition, PHTNet can be directly employed 
by robotic assistive and rehabilitative technologies to enhance the quality of delivered assistive and rehabilitative 
services by maximizing the performance in reducing the tremor and stabilizing the motion, and by minimizing 
the risk of amplifying the tremor component by the device. Failure in precisely removing the tremor component 
in the input signals to the assistive devices can result in abrupt and unpredictable force profiles generated by the 
device, which can sacrifice safety. Details can be found in our previous papers in13,60.

Methods
This section describes the basics of the proposed PHTNet, as well as the systematic data collection strategy 
employed to design and train the network.

Dataset.  This dataset was collected from 81 PD and ET individuals who participated in a single-centre. The 
study protocol was approved by the Western University’s Health Sciences Research Ethics Board (REB#: 104584 
and 107433) at the London Movement Disorders Centre in London, Ontario, Canada. The study protocol is regis-
tered with the “www.clinicaltrials.gov” registry (Identifiers: NCT02551848 and NCT02668497). All experiments 
were conducted in accordance with the Declaration of Helsinki, as well as the Tri-Councel Policy Statement of 
Ethical Conduct for Research Involving Humans in Canada. The ethics committee provided full board approval 
for this study protocol and the consent procedure was approved as required in the documentation checklist, sub-
mitted with the full study protocol. Demographics data of the PD and ET group are tabulated in the supplemen-
tary material. All participants were recruited through the Movement Disorder Centre, at the University Hospital, 
London, Ontario, Canada. All participants provided written informed consent regarding their participation in 
the study. The participants recruited met the inclusion/exclusion criteria35,39. First participant’s first visit and last 
participant’s last visit occurred in March 2014 and January 2018, respectively.
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A convenience sampling of 119 PD and 131 ET upper-limb tremor assessments were utilized to develop 
PHTNet. The PD group included 47 patients, 8 females, and 39 males, with an average age of . ± .71 51 7 63, where 
26 of them were de novo patients. 14 and 35 patients were recorded bilaterally and unilaterally, respectively. 45 
patients were assessed in two sessions with a time interval of 6 weeks and only 2 patients participated once. The 
ET group included 34 patients, 13 females, and 21 males, with an average age of 69 8 6 12. ± . . This group included 
22 de novo patients and the whole ET group was assessed bilaterally; 3 patients participated only once and the rest 
were assessed twice, with a time interval of 6 weeks.

Kinematic analysis of upper-limb tremor was conducted by having participants perform a series of seven 
scripted tasks each held for 20 seconds over three trials, as previously described35,39 and illustrated in Fig. 1a: 
two rest positions with the forearm supported on the lap (“Rest-1”) or supported on a board (“Rest-2”), two 
postural positions with the arms pronated outstretched with palms facing downwards (“Posture-1”) or with arms 
outstretched and palms facing each other (“Posture-2”), two weight-bearing tasks with participants holding an 
empty cup (“Load-1”) and holding a cup with a 1-lb weight (“Load-2”), and one kinetic/action task where par-
ticipants conducted a repetitive finger-to-nose action. Thus, 6 of the 7 tasks captured PHT in a static position 
(denoted as “static tremor”) and the finger-to-nose dynamic task provided “action tremor” data. An inline 3D 
accelerometer sensor (#317A Noraxon U.S.A Inc.) was placed on the back of the hand, as illustrated in Fig. 1b, to 
capture hand tremor in real-time using TeleMyoTM 2400T G2 at 1500 Hz and transmitted to a computer run-
ning MyoResearch XP Version 1.08.0951,62. In total, 87.5 hours of data were used in this work collected from 81 
patients (3 channels for each patient, 7 minutes per assessment, and 250 tremor assessments in total).

Data preparation.  To prepare the dataset for development of the PHTNet, all the recorded signals were 
downsampled to 100 Hz. Based on the Nyquist sampling theorem61, for full reconstruction of a sampled signal, 
one needs to set the sampling frequency at least to double that of the maximum meaningful frequency of the 
signal. It is worth noting that although downsampling may generally impose distortions on the signals, in the 
case of tremor removal with the frequency of interest generally being less than 15 Hz, downsampling to 100 Hz 
would impose minimum to no distortion to the spectral range of interest in the hand motion signals, while at the 
same time it avoids imposing excessive computational costs on the system. Thereafter, the dataset was divided into 
three sets for training, validation, and testing of the network. Table 1 explains the categorization of the data used 
for training and evaluation of PHTNet. It is worth mentioning that to impose harsh evaluation conditions on the 
PHTNet and strictly avoid leakage of information, directly or indirectly, from training set to the validation and 
test sets, the training, validation, and test sets are formed based on subjects. In other words, the recordings of 49, 
16, and 16 subjects are respectively employed to form each of the development sets. Furthermore, due to the avail-
ability of a large dataset for development of PHTNet, three sets for training, validation, and testing are formed.

Based on the aforementioned motivations in employing pseudo-synthesized data, we addressed the need for 
a valid ground truth in action tremor signals by synthesizing the voluntary component and mixing it with static 
tremor signals. The voluntary component was a sinusoidal signal with random amplitude, frequency, and phase, 
which was modeled as

Figure 1.  (a) Illustration of the 7 scripted tasks performed by PD and ET patients for each tremor assessment. 
Please note that, these are representative pictures (not including any patients). 1) Rest-1; 2) Rest-2; 3) Posture-1; 
4) Posture-2; 5) Action tremor (repetitive finger to nose motion); 6) Load-1 (empty cup); 7) Load-2 (1-lb weight 
in the cup). (b) Placement of the 3-axis accelerometer sensor on the dorsum of a hand.
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π φ= +m t a ft( ) sin(2 ), (1)v
(GT)

where amplitude, frequency and phase follow uniform distributions, i.e., a U(0, 0 25)∼ . , ∼f U(0, 3) Hz, and 
U(0, )φ π∼ , respectively. Since we assume an additive model for the voluntary and involuntary components to 

build the motion signal, the synthesized voluntary component was mixed with the experimentally-collected static 
tremor signals from PD and ET participants, which were scaled to the range of [0, 0.5], and PHTNet was fed with 
a pseudo-synthesized action tremor signal in the range of [0, 1]. Moreover, in this model (Eq. (1)), we assume that 
the frequency contents of the voluntary motion are spread over the range of [0, 3] Hz, which is a reasonable 
assumption as we do not expect very fast hand motions from the ET and PD participants, due to the rigidity and 
stiffness of the muscles. It is worth noting that this assumption is with regard to the voluntary component and 
does not impose any assumption on the involuntary component. Moreover, the spectral range for the 
pseudo-synthesized voluntary hand motion, compared to conventional methods, is a more relaxed assumption as 
typically this range is taken to be up to 1 Hz. Although the spectral range of [0, 3] Hz takes a wide variety of 
motions into account, it does not imply that no tremulous activity occurs in this range and this could be marked 
as one of the main advantages of this work over conventional methods.

Internal architecture of the PHTNet.  Machine learning is defined as a study of statistical and mathe-
matical models, which enable a computer to capture the behaviour of a certain phenomenon without explicit 
instructions. Conventional machine learning methods are based on hand-crafted and user-engineered tech-
niques developed to transform and represent raw data in a format which is perceivable by mostly-linear, or 
linear-in-parameter mathematical models. Performance of traditional machine learning methods, however, is 
normally restricted due to their limited modeling/learning capability. In addition, conventional machine learn-
ing methods require domain expertise and careful system design in order to have an acceptable performance. 
Therefore, representation learning methods62 are introduced and developed such that the intrinsic patterns of 
input data are automatically inferred and extracted.

Recurrent Neural Network (RNN) models are a subcategory of representation learning methods63 which are 
specialized in analyzing sequential data and detecting long-term and short-term temporal dependencies in sig-
nals based on nonlinear embedded memory. An RNN model consists of a sequence of hidden cells employed 
to process a stream of data. In RNN models, at each time instance, a combination of input sequence, i.e., hand 
motion signal, and hidden state vector of the previous time instance are analyzed together to update the state 
vector and pass it to the next time instance. This process continues until the whole sequence of hand motion 
measurements is analyzed and a meaningful representation is formed. RNNs have various designs to fit differ-
ent applications, e.g., sequence to sequence RNNs are employed for machine translation tasks, and sequence to 
single-output RNNs are employed for classification tasks. Since in this work, we translate a tremor-contaminated 
sequence to a voluntary component sequence, we employ the sequence-to-sequence architecture. A typical RNN 
representation is depicted in Fig. 2a and the formulations governing the RNN are given by

h b Wh Umt t t t( ) f( ( 1) ( : )), (2)1= + − +

= +ŷ c Vht tand ( ) softmax( ( )), (3)

where m t t m t m t( : ) [ ( ), , ( )]T1 1= …  is the hand motion signal from time ( <t t1 ) to time t as the input sequence of 
the network; h t( ) is the hidden feature vector; b is the bias vector for the input nodes; W is the weight matrix for 
hidden-to-hidden connections; U denotes the input-to-hidden weights of the RNN; c is the bias vector for the 
output nodes; V denotes the weight matrix for hidden-to-output connections; and f(⋅) denotes a nonlinear func-
tion; here the Rectified Linear Unit (ReLu)64 is employed. We note that the weights and biases in Eqs. (2–3) are 
derived/optimized during the training phase. The schematic of a GRU cell is shown in Fig. 2b.

Using an RNN it can be expected that the output of the network for the very initial input samples is inaccurate 
and as the information propagates across the network and more samples of the input sequence are analyzed, the 
output becomes more accurate. Consequently, the output sequence becomes more reliable (in terms of its simi-
larity to the ground truth signal) after a transient phase of initial inputs. As in this work, our goal is to develop an 
online and offline tremor extraction framework, we structure the processing pipeline in a bidirectional format 
which employs two parallel sets of recurrent cells for the two processing schemes. As shown in Fig. 2c, forward 
cells are employed for online (predictive) processing of the input sequence where we need maximum accuracy of 
estimation for the last samples of the output sequence. Backward cells, on the other hand, are employed for offline 
processing of measurement signals, following the same logic for the forward cells. It is worth mentioning that in 
the utilized architecture, the base of which has been named in the literature as Bidirectional RNN (BRNN)65, the 
forward and backward hidden cells are usually followed by a mixing matrix which merges the outputs of the two 

81 Patients (250 Tremor Assessments)

20% Test Data (16 subjects) 20% Validation Data (16 subjects) 60% Training Data (49 subjects)

• Static tremor was used for 
quantitative evaluation

• Static tremor was used for validation 
of the model

• Static tremor was used for 
training the network

• The action tremor of the three sets was employed to qualitatively monitor the performance of the network.

Table 1.  Categorization of the data for training, validation and testing purposes.

https://doi.org/10.1038/s41598-020-58912-9


6Scientific Reports |         (2020) 10:2195  | https://doi.org/10.1038/s41598-020-58912-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

paths. However, in this work, through an architectural modification of the model, the BRNN kernel is applied 
without the mixing matrix. This is done since the ultimate goal is to have two separate processing pipelines for 
both online and offline applications. Finally, Fig. 2d shows the devised training strategy to teach the network how 
to estimate/predict the voluntary motion.

A common problem with the classical versions of the RNN model described in Eqs. (2 and 3) is its weakness 
in capturing long-term patterns of the input sequence. This shortcoming is pronounced when long sequences of 
data need to be processed or when the input sequence encapsulates nonstationary patterns, which is the case for 
PHT extraction. Moreover, training of these networks is very critical since the problems of vanishing or exploding 
gradients are prevalent. To address these issues, two gates namely “reset gate” and “update gate” were adopted 
from the literature and integrated into the conventional hidden cells, and Gated Recurrent Unit (GRU) cells66 
were developed. The reset gate determines the degree of dismissing old information and considering the data 
from input in the current time. The update gate, on the other hand, defines the degree of updating a hidden state 
based on the newly arrived data67. Therefore, we can update Eq. (2) as follows

σ= + −r U m W ht t t( ( : ) ( 1)), (4)r r1

U m W hz t t t( ( : ) ( 1)), (5)z z1σ= + −

��h Um W r ht t t t( ) ReLU( ( : ) ( ( 1))), (6)1= + −

Figure 2.  (a) A schematic of a one-layer RNN within the PHTNet with the unfolded version demonstrated on 
the right-hand side, which clearly shows the processing pipeline for different time instances. For the schematic 
on the left-hand side, it should be noted that the branch denoted by the weight W also applies one sample delay 
in time. (b) A gated recurrent unit (GRU) which is employed in PHTNet as the recurrent cell and is equipped 
with reset gate (r) and update gate (z). (c) The architecture of PHTNet, which is a 4-layer deep bidirectional 
recurrent neural network. ←h  defines the backward cells for offline tremor elimination, and h

→ defines the 
forward cell of the network for online tremor estimation/prediction. As shown in the diagram, the forward path 
is completely distinct from the backward path and their outputs are not merged into a single output sequence. 
The red gradient in the output blocks represents the degree of error in the extracted voluntary component. The 
high intensity of the red color symbolizes a high degree of error and the opposite mimics lower error rates.  
(d) The overall workflow of the proposed framework. Note that the voluntary component is recalculated for the 
next time instance and then is compared with the output of the network. This strategy is taken to enable the 
network with predictive features.
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h h ht z t z tand ( ) (1 ) ( 1) ( ), (7)= − − + 

where the reset gate is denoted by r and the update gate is denoted by z . Consequently, their corresponding 
weights are denoted by Ur, Wr and Uz, Wz, respectively. The term σ denotes a logistic sigmoid function. As PHT 
can be a highly dynamic and nonstationary phenomenon, GRU cells are utilized in this work to better capture the 
long-term behavioural variations of the hand motion signal.

To conclude this part, we have employed a modified deep BRNN to process the hand motion signals and to 
estimate and predict the voluntary motion of patients. It should be added that deep learning methods, which are 
a subcategory of representation learning techniques, are composed of several levels of simple but nonlinear units. 
Each level transforms and abstracts the raw input to a point where complex functions are learned62. The proposed 
PHTNet is a deep architecture constructed by stacking four BRNN layers such that the output of one layer is 
provided as the input to the next layer.

Proposed geometry of the PHTNet.  Rigorous performance validation of PHTNet is satisfied by 
grid-searching over potential hyperparameters of the network, i.e., the length of input sequence, the number 
of RNN features, the number of hidden layers in the deep architecture, and the learning rate for the optimiza-
tion algorithm. To identify the number of hidden layers in the RNN architecture, a comprehensive grid-search 
approach is taken to compare the MSE value over validation and test sets across different number of hidden layers. 
In this regard, the error of network over validation and test sets is obtained and plotted as a function of the num-
ber of hidden layers. As shown in Fig. 3, the best performance of the PHTNet is achieved when 4 hidden layers 
are stacked to each other. In PHTNet, 4 GRU cells are used to process the input sequence. To select the length of 
the input signal to be fed to the PHTNet with the aim of maximizing the overall performance of the network, we 
have conducted a comprehensive grid-search approach to evaluate and compare effects of using different lengths 
of the input signals. To this aim, we have investigated performance of the PHTNet in terms of normalized Mean 
Squared Error (MSE) over 24,300 validation samples in 5 cases, where the input signal length is set to 1, 2, 3, 4, 
and 5 seconds for each case. The results of this experiment are shown in Fig. 4. As it can be observed, performance 
of the PHTNet improves as the length of the input signal increases to a certain point and then either degrades or 
remains, more or less, unchanged. It is worth mentioning that while performance of the PHTNet remains almost 
the same as we increase the length of the input signal beyond 4 seconds, computational cost of running the algo-
rithm will increase. The PHTNet, therefore, yields the best performance when input sequences of 4 seconds are 
fed into the network considering jointly accuracy and computational cost in perspective. Moreover, and based 
on our rigorous validation procedure, it turned out that using 400 features for h(t) in Eq. (7) best abstracts and 
represents the motion signal in terms of providing maximum estimation accuracy of the tremor component. The 
network is trained based on minimizing the Mean Squared Error (MSE) value, and the ADAM Optimizer68 with 
a learning rate of 0.0001 employed for this purpose (the learning rate defines the degree of update for the param-
eters of a neural network in the training session).

Figure 3.  Comparison of normalized MSE (y-axis) over validation and test sets for different number of 
hidden layers (x-axis). Performance of the PHTNet in each test case is shown in boxplots, where the orange 
line indicates the median, the box indicates the range between 25% to 75% quartiles, and the lines indicate the 
standard deviation range. “Prediction Error” indicates the error for only the last sample of estimated voluntary 
signal. “Forward” and “Backward” indicate which path of the PHTNet is used.
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As stated previously, providing predictions on the estimated voluntary component of hand motion signals is an 
important feature for robotic rehabilitation technologies and an unmet need in the literature. A contributing factor 
for the absence of this feature is the highly dynamic behavior of PHT in and across affected individuals. Predictive 
operation of a PHT elimination framework grants the robotic systems enough time to adjust their parameters for 
the subsequent tremulous events. To address this, we have modified the way we feed the training examples to the 
network. In fact, instead of normally feeding PHTNet with m t t( : )1  and calculating the MSE value between ŷ t t( : )1  
and m t t( : )v

(GT)
1 , we measure the estimation error between y t t( : )1ˆ  and m t t( 1: 1)v

(GT)
1 + +  to train PHTNet. In 

other words, and as depicted in Fig. 2d, our devised strategy is to minimize the error between the network’s output 
and a shifted version of the ground truth signal, which teaches the network how to estimate the voluntary compo-
nent of hand motion and also to predict the upcoming future samples of the voluntary component. It is worth 
emphasizing that to enable the PHTNet with predictive behaviour, no translational parameter or hyper-parameter 
is considered and this feature is taught to the network by our devised training strategy. In other word, this behav-
iour becomes an intrinsic characteristic of the PHTNet. For this, when the network is trained to minimize the error 
between the input sequence and the advanced-in-time output sequence, it is actually learning how to predict the 
voluntary action in time. To clearly itemize the step-by-step training procedure of the PHTNet, its algorithmic 
workflow is summarized in Algorithm 3. Please note that the PHTNet could be employed as a plug-and-play model 
in practical applications and the itemized steps in Algorithm 3 only describe the development phase of the PHTNet.

Evaluation metrics.  In this work, we argue that the existing techniques for PHT elimination may suffer from 
the absence of a generalizable and inclusive method of extracting the ground truth for the voluntary component 
of action tremor to reliably measure the performance of the system. Hence, instead of employing conventional 
methods to extract the ground truth and calculate the performance, an inverse evaluation method is imple-
mented. To this end, pseudo-synthesized action tremor signals are generated by mixing real static tremor record-
ings with a synthesized atlas of voluntary components, which provides an opportunity to numerically assess the 

Algorithm 1.  The algorithmic overview of the development phase of the PHTNet.
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performance measurement of PHTNet in training, validation, and test phases, without specifying assumptions to 
extract the ground truth signal. Existing methods on PHT elimination show limited performance in estimating 
the voluntary component of motion signals due to their dependence on different assumptions on the character-
istics of the tremor, which normally shows a high degree of inter- and intra-subject variability. As our devised 
solution for PHT elimination is based on data-driven methods, and we can potentially generate any possible 
foreseeable signal for voluntary movements, we believe that employing pseudo-synthesized signals adequately 
addresses this challenge and eliminates the need for making unrealistic assumptions on tremor behaviour. To 
quantitatively measure the performance of PHTNet, the MSE criterion was used:

T
m t y tMSE 1 ( ( ) ( )) ,

(8)t

T

v v
1

(GT) 2ˆ∑= −
=

where m t( )v
(GT)  is the ground truth for the voluntary component, ŷ t( )v  is the estimated voluntary component, and 

T  is the length of the input sequence to the network. We have employed the MSE criteria in various evaluation 
scenarios to fully investigate the performance of PHTNet.

Moreover, we have employed a qualitative approach, to visually investigate the performance of PHTNet 
in PHT elimination and demonstrate its superior estimation accuracy compared to its counterparts. In visual 
inspection, we can verify if the output of PHTNet follows the low frequency trend of the measurement signal, i.e., 
the voluntary component, that we intuitively expect. The visual investigation is performed to check if the designed 
neural network is operating in the expected way. It should be noted that visual inspection is not a means of evalu-
ating the performance of PHTNet and only serves as the preliminary verification of the network.

Results
In this section, the performance of PHTNet is evaluated in several scenarios. Also, supporting results on the effec-
tiveness and capacity of the devised PHTNet for PHT extraction problem are also discussed.

Quantitative evaluation.  Here, the results of a quantitative evaluation over the pseudo-synthesized val-
idation and test sets are reported. As stated previously, the benefit of employing pseudo-synthesized validation 
and test sets is the possibility of numerical performance evaluation. Static tremor recordings of 16 subjects for 
validation and 16 subjects for testing are combined with voluntary components to synthesize data for quantitative 
evaluation. Please note that the tremor assessments of one patient only belong to the training set, or the validation 
set, or the test set to avoid leakage of data from training set to the other two sets. The network’s output for different 
pseudo-synthesized inputs is shown in Fig. 5. Please note that the PSD diagrams in Fig. 5 are derived by sliding 
a Fast Fourier Transform (FFT) window of size 50 samples and overlap size of 45 samples over the signals. A 
high overlap size is selected to produce a smooth representation of the spectral contents of the signals. It is worth 
mentioning that the aforementioned properties are only employed for visualization purposes and do not reflect 
any parameter or hyper-parameter for the PHTNet. It is worth mentioning that to further investigate the per-
formance of PHTNet and to discover the way it manipulates the spectral contents of the input signal, the Power 
Spectral Density (PSD) of the input and output pairs are also shown. The numerical results of the quantitative 

Figure 4.  Comparison of Normalized Mean Squared Error (y-axis) over validation and test sets for different 
lengths of input sequence in seconds (x-axis). Performance of the PHTNet in each test case is shown in 
boxplots, where the orange line indicates the median, the box indicates the range between 25% to 75% quartiles, 
and the lines indicate the standard deviation range. “Prediction Error” indicates the error for only the last 
sample of estimated voluntary signal. “Forward” and “Backward” indicate which path of the PHTNet is used.
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tests are presented in Table 2. As the main goal of this work is to develop a PHT estimation framework for online 
and offline applications, we believe that it is necessary to monitor the estimation error for the forward and back-
ward cells, separately. In addition, as the last samples of the output sequence in the forward direction are mainly 
employed for online applications, and the initial samples of the output in the backward direction are employed 
in offline applications, we have also measured the estimation error for the last sample in the forward cells and the 
estimation error associated with the first sample in the backward cells.

Although the examples presented in Fig. 5 demonstrate how the spectral contents of the involuntary compo-
nent are manipulated, a more rigorous analysis is required to take the whole validation and test sets into account 

Figure 5.  Visualization of the network’s output when the pseudo-synthesized evaluation signals from validation 
and test sets are fed to the network. Please note that due to the pseudo-synthesized nature of these signals, the 
known synthetic ground truth is mixed with pathological data to augment the input space and enforce the 
model to learn how to extract the pathological tremorous motion. The PSD of input and output signals are also 
included to demonstrate the transformation and manipulation of the spectral contents. The PSD plots are 
obtained by sliding a Fast Fourier Transform (FFT) window of size 50 samples and overlap size of 45 samples 
over the signals. The color bars also determine the density of each frequency at each time and its dimension is 
Amplitude

Hz

2
. (a,b) Two instances of the synthesized evaluation signals from the patients in the validation set. (c,d) 

Two instances of the evaluation signals generated from the static tremor recordings of patients in the test set. 
Please also note that the presented PSD diagrams are only obtained for visualization purposes and their 
properties do not influence any parameter or hyper-parameter of the PHTNet.

Validation set Test set

MSE of estimation for a complete segment 0 00111. 0 00104.

MSE of estimation for the last sample of segment 
over 24300 trials (forward cells) 0 00056. .0 00049

MSE of estimation for the first sample of segment 
over 24300 trials (backward cells) .0 00052 .0 00048

Table 2.  Results of a quantitative evaluation of the network in different testing scenarios.
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and statistically investigate the effectiveness of the PHTNet framework for PHT elimination. To statistically inves-
tigate performance of the PHTNet in comparison to the state-of-the-art methods on PHT removal, and due to the 
fact that we need to have pseudo-synthesized action tremor data to accurately measure the error in estimation, 
PHTNet along with three well-regarded techniques on PHT removal, i.e., BMFLC, EBMFLC, and WAKE, were 
examined over the validation and test sets of pseudo-synthesized action tremor. To statistically compare the four 
methods, the “Analysis of Variance (ANOVA)” test, and pairwise “Z-test” between each two groups are employed, 
where the results are shown in Fig. 6 and Table 3. As it is understood, PHTNet shows significantly better perfor-
mance compared to state-of-the-art methods in the literature. It is worth noting that in the boxplots in Fig. 6a, 
the red line indicates the mean value, the box indicates the range between 25% to 75% quartiles, the black lines 
indicate the standard deviation range, and red crosses indicate the outliers. Furthermore, Fig. 6b,c show multiple 

Figure 6.  (a) Comparison of the performance between BMFLC, EBMFLC, WAKE, and PHTNet on the 
validation and test sets. The red line in the boxplots indicates the median performance and the box indicates 
25%% and 75% quartiles. The dashed lines show standard deviation and the red crosses show outliers. (b,c) 
Multiple comparison of the mean performance of the four methods over the validation and test sets. The dashed 
lines indicate the upper and lower 95% confidence bounds for the estimation error of each method and the 
y-axis represents the labels of compared PHT removal techniques.

Dataset BMFLC-PHTNet EBMFLC-PHTNet WAKE-PHTNet

Validation
p-value E5 96 08. − E5 96 08. − E5 96 08. −

Improvement + .88 42% + .87 78% 90 18%+ .

Test
p-value E5 96 08. − E5 96 08. − . −E5 96 08

Improvement + .89 58% 89 01%+ . + .91 07%

Table 3.  Comparison of the performance between PHTNet and three well-regarded PHT processing 
frameworks. The −p values are derived based on 95% confidence intervals. The numbers in the “Improvement” 
rows represent the improvement in the mean Normalized MSE obtained when moving from other techniques to 
the PHTNet.
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comparison of the mean performance of the four methods over the validation and test sets. The dashed lines indi-
cate the upper and lower 95% confidence bounds for the error of each method. The disjoint confidence intervals 
of PHTNet with other methods indicates that the mean performance of the PHTNet is significantly different 
from other methods. It is worth clarifying that the plots in Fig. 6b,c show the mean Normalized MSE (shown as a 
circle) and the 95% confidence intervals (shown as dashed lines) for each of the four techniques that are evaluated 
over the validation and test sets. The y-axis of the plots represents the label of each technique and the disjoint area 
between the dashed lines of each two methods verifies that each two methods have significantly different mean 
performance from each other.

Furthermore, to statistically investigate the efficacy of PHTNet in manipulating the spectral contents of hand 
motion signals, the FFT of the input and output signals in the validation and test sets are derived and statistically 
compared. Due to the large number of samples in each of the validation and test sets (24,300 signal pairs for each 
set), we employed “Z-test” for statistical comparison of the input and output groups. We performed D’Agostino 
and Pearson’s test69 to check if the data samples for each frequency and for each of the input and output groups 
follow a normal distribution. After verifying the normality of data samples, we employed the “Z-test” to extract 
the confidence intervals by setting Z 1 96= . , which corresponds to 95% confidence bounds. In fact, the confi-
dence interval states that the probability that the mean of data samples occurs in the range of (−1.69 * 
σ/ σ. ∗n n, 1 96 / ) is equal to 0.95, where σ and n represent the standard deviation and the sample size, respec-
tively. As shown in Fig. 7a,b, the mean and confidence intervals for the input and output pairs in the validation 
and test sets are completely distinct and the extracted −p value between the input and output pairs, which is 

.0 01  at each frequency, verifies that applying the proposed PHTNet was resulted in a significant change in the 
spectral information of the signal by removing the tremor, such as the illustrative examples shown in Fig. 5. In 
addition, Fig. 7c,d show the mean FFT along with its standard deviation intervals (mean ± standard deviation) 
for the input-output pairs. Please note that all of the presented figures do not include the spectral content 

Figure 7.  (a,b) Visualization of the 95% confidence boundaries for the spectral contents of input-output pairs 
in validation and test sets, respectively. The solid lines indicate the mean of spectral contents and the highlighted 
area indicate confidence boundaries. Also note that the y-axis on the right represents the p value−  between the 
spectral contents of the input and output signals. (c,d) Visualization of standard deviation boundaries for input-
output pairs along with the mean of spectral contents of input and output signals in validation and test sets, 
respectively. Please note that the spectral contents of the input signals are shown in “red” color, while those of 
the output signals are depicted with “blue” color. The dominant activity at around 5 Hz is only observed in the 
input signals (“red” color), which is expected due to the strong power of pathological tremor around 5 Hz.
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corresponding to 0 Hz to better scale the figures and present a more detailed picture. It is worth noting that the 
results shown in Fig. 7c,d represent the variability of the spectral contents for each group around the mean spec-
tral value of the population. Although the efficacy of the PHTNet in damping the spectral contents of the PHT is 
reflected in Fig. 7c,d, it is not readily inferred whether the spectral contents of the input and output populations 
are significantly different or not. Thus, the plots in Fig. 7a,b are generated to reveal the p-value between the two 
populations at each frequency point and also to illustrate the position of the two spectral populations with respect 
to each other. As demonstrated in Fig. 7, a significant decrease of power in the spectral content above 3 Hz is 
observed, which reveals the filtering behaviour of PHTNet, although we did not explicitly design a spectral filter. 
More importantly, unlike conventional spectral filtering methods which normally result in phase-lag (delay) in 
their output signals, the proposed PHTNet advances the input signal by predicting the voluntary component in 
the next time.

Predictive behaviour analysis.  As mentioned earlier, one goal of this work is to predict the voluntary 
motion of an individual in a one-step-ahead-of-time fashion, which is of significant importance in robotic reha-
bilitation technologies. To address this goal, we devised a novel training strategy to equip PHTNet with predic-
tive functionalities. Table 2 shows the numerical evaluation of the predictive behaviour of PHTNet over 48600 
input-output pairs for both validation and test sets. However, to visually inspect the output signal and verify if 
it actually advances the input signal, in this part, we employ pure sinusoidal signals as inputs to PHTNet. The 
benefit of feeding the network with sinusoidal signals is that we can clearly observe the status of the output signal 
with respect to the input, without any interference from the involuntary component of the hand motion signals. 
Figure 8 shows the capability of the trained network in predicting the voluntary component.

Qualitative performance monitoring.  Qualitative inspection of the PHTNet framework was performed 
on the action tremor recordings due to the absence of a valid framework to extract the voluntary component 
of hand motion signals. As the performance of PHTNet over real action tremor signals cannot be numerically 
reported, performance monitoring is conducted through visual inspection, where one checks if the estimated 
voluntary component is aligned with the expected low-frequency trend in the signal or not. Figure 9 shows 12 
instances of the processed signals which include action tremor recordings from the training, validation, and test 
sets. To further investigate the performance of the PHTNet framework, we compared our results with BMFLC51, 
EBMFLC13, and WAKE14. While the FLC-based methods, e.g., BMFLC and EBMFLC, are focused on modeling 
the spectral contents of the measurement signal with a linear combination of spectral components, the WAKE 
method employs spectrotemporal techniques and Kalman filtering to decompose the measurement signal into 
the two components of motion. Moreover, to visually inspect the performance of the forward (predictive) path of 
the PHTNet over action tremor data, the action tremor signals shown in Fig. 9 are also processed by the forward 
path and the results are shown in Fig. 10. As it is shown, the output of PHTNet perfectly follows the voluntary 
component of motion that we visually expect.

PHTNet over healthy controls.  To investigate the performance of the PHTNet over hand motion record-
ings from healthy individuals, 2 set of signals from 2 healthy volunteers were recorded. Two healthy male individ-
uals aged 28 and 37 participated in the data collection procedure and the acceleration of their hand motion is 
recorded with Trigno Avanti Wireless System PM-W05 (Delsys Inc.). Trigno Avanti sensors have a built-in 9 DOF 
inertial measurement unit which can relay acceleration, rotation and earth magnetic field information. The sen-
sitivity of the sensor is set to  g16  and the sampling rate by default is 370.37 Hz. However, for this experiment 
the recordings are downsampled to 100 Hz to match the training data of the PHTNet and the results are shown in 
Fig. 11. Performing this test is crucially important to check the performance of the PHTNet over hand motion 
recordings without tremor component. As it is observed in the figure and was expected before implementing the 
test, the estimated signals by PHTNet perfectly match the input signals, as no manipulation should be applied on 
signals without tremor component. It should be noted that the kinematic data for the hand from healthy individ-
uals was recorded with a different apparatus from that collected in the original dataset. While this was due to an 

Figure 8.  Visualization of the predictive capability of the network over special test signals.

https://doi.org/10.1038/s41598-020-58912-9


1 4Scientific Reports |         (2020) 10:2195  | https://doi.org/10.1038/s41598-020-58912-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

unforeseen situation whereby the original equipment was not available, we believe that the use of a different but 
clinically accepted device to assess the functionality of the PHTNet provides a good opportunity to examine the 
generalization of the network and its level of independence of the recording device. In fact, the results shown in 

Figure 9.  Visualization of the network output when real action tremor signals are fed to the network. Our 
method was compared with three other methods, referred to as BMFLC, EBMFLC, and WAKE. The details of 
each patient whose signal is shown here are as follows. (a) [ET - Right hand - de novo - Training]. (b) [PD - 
Right hand - Under treatment - Validation]. (c) [PD - Left hand - de novo - Test]. (d) [ET - Right hand - Under 
treatment - Test]. (e) [PD - Right hand - Under treatment - Test]. (f) [PD - Right hand - de novo - Test]. (g) 
[PD - Right hand - Under treatment - Test]. (h) [ET - Right hand - de novo - Training]. (i) [PD - Right hand - 
Under treatment - Training]. (j) [PD - Right hand - de novo - Training]. (k) [ET - Left hand - Under treatment 
- Validation]. (l) [PD - Left hand - Under treatment - Validation].
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Fig. 11 not only show the flawless performance of the PHTNet in processing the kinematics of hand but also 
reflect a high degree of generalization over the characteristics of PHT and the independence of the PHTNet with 
regard to the recording device.

Figure 10.  Visualization of the network output when real action tremor signals are fed to the network. In this 
case, the prediction samples are employed. The details of each patient whose signal is shown here are as follows. 
(a) [ET - Right hand - de novo - Training]. (b) [PD - Right hand - Under treatment - Validation]. (c) [PD - Left 
hand - de novo - Test]. (d) [ET - Right hand - Under treatment - Test]. (e) [PD - Right hand - Under treatment -  
Test]. (f) [PD - Right hand - de novo - Test]. (g) [PD - Right hand - Under treatment - Test]. (h) [ET - Right 
hand - de novo - Training]. (i) [PD - Right hand - Under treatment - Training]. (j) [PD - Right hand - de 
novo - Training]. (k) [ET - Left hand - Under treatment - Validation]. (l) [PD - Left hand - Under treatment - 
Validation].
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Discussion
From the results of the experiments over the validation and test sets presented in Figs. 5 and 9, and Table 2, we can 
clearly observe the superior performance of PHTNet in accurate estimation of the voluntary hand motion from 
pseudo-synthesized and real action tremor signals. The examples presented in Fig. 5 include different possible 
cases for voluntary component, i.e., [high vibration amplitude - low frequency] in Fig. 5a,c; [low vibration ampli-
tude - high frequency] in Fig. 5b, and [very low (near zero) vibration amplitude] in Fig. 5d. Observing the PSDs 
of input-output pairs also clearly shows how the high frequency components are damped, while at the same time, 
the low frequency trend in the measurement signal is magnified. RNNs typically yield inaccurate outputs for the 

Figure 11.  (a,b) Results of applying PHTNet on the recordings of static posture tasks and finger-to-nose 
motion test for the two healthy subjects.
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first few samples of the input sequence and as more information is fed into the network, the estimation process 
becomes more accurate. This natural behavior of RNNs is also observed in the validation examples shown in 
Fig. 5, which confirms the necessity to employ a bidirectional architecture with two separate processing pipelines 
within the PHTNet. Thus, the bidirectional architecture empowered the PHTNet to maintain the required level of 
accuracy for PHT elimination tasks, when it is used for online applications through forward cells, and for offline 
applications via its backward cells. It is important to note that the instances presented in Fig. 5 are derived by 
employing the forward cells of PHTNet. To evaluate the network in online and offline applications, the estimation 
accuracy is shown in Table 2 for the next time sample when forward cells and backward cells are employed. The 
results clearly show the accuracy of PHTNet in estimating the voluntary component, when enough information 
is fed to the network. In addition to the instances shown, a rigorous statistical analysis is performed on all of 
the samples in the validation and test sets to fully examine the operation of PHTNet. In this regard, standard 
deviation and 95% confidence boundaries were calculated over 24, 300 samples in the validation and test sets, as 
shown in Fig. 7. These results suggest that PHTNet operates as a low-pass spectral filter; however, the predictive 
behaviour of PHTNet makes it distinct from any previously known spectral filter. In Fig. 7, a dominant activity 
at around 5 Hz is observed in the spectral domain of input signals (“red” color), which verifies the reported 
characteristics of the PHT in the literature, i.e., the PHT in PD and ET patients commonly occurs in 4–6 Hz and 
4–8 Hz17,70, respectively, which results in accumulation of power in frequencies around 5 Hz. In the qualitative 
performance monitoring part, the output of PHTNet is compared with well-regarded, recent works in the field of 
PHT estimation, i.e., BMFLC, EBMFLC, and WAKE. As shown in Fig. 9, our proposed method provides a smooth 
and tremor-free output, which is compatible with the visual trend that we expected, and is also robust to sudden 
high amplitude vibrations. Please note that for the instances presented in Fig. 9, the backward cells of PHTNet 
are employed to extract the voluntary component of hand motion signals. In this setup, the PHTNet slides over 
the action tremor signal and the estimated voluntary component is obtained. To only keep the accurate part of 
the output signal, which in this case consists of the first few samples of the estimated signal, PHTNet advances 
for 50 samples and again the estimation is performed. This process continues until the whole sequence of action 
tremors is processed. In this context, the network slides over the measurement signal and outputs the voluntary 
component. To show the generalization of the network, we have included action tremor instances from training, 
validation, and test sets. To further assess the predictive behavior of the network in addition to the numerical 
results reported in Table 2, which clearly illustrate the accuracy of estimation when forward cells are employed, 
we fed the network with pure sinusoidal signals to investigate its response to the inputs and verify if the network 
shows any predictive behaviour.

This paper proposes the design and implementation of a novel voluntary motion prediction and tremor 
removal technique that can be used for enhancing assistive devices and clinical settings. Although the proposed 
trained technique significantly performed better than all existing approaches, it requires relatively stronger com-
putational support to be implemented due to the deep neural structure. It should be noted that the training of the 
model is completed in this paper, and the model can be used as a ready, plug-and-play trained algorithm without 
the need for retraining. However, utilization of any deep neural network with memory gates, requires sufficient 
computational power, which can be a limiting factor if the computational resources are strictly limited. Thanks 
to the power of new processing technologies, this challenge will not be very concerning but should be considered 
when implementing. In addition, we are working on a cloud computing approach for this work, which can be 
used for minimizing the need for having on-site computational power. Also, in order to enhance this aspect of the 
technique, we have an ongoing research to optimize the design of the PHTNet and implement hybrid and shal-
lower models with comparable performance. In addition to the above points, it should be also highlighted that the 
accurate predictability of the proposed technique is a novel and unique feature, which do not exist in conventional 
techniques. However, the achieved horizon of prediction was limited. We are planning to augment the input space 
with other biological modalities and biomechanical models while improving the prediction ability of the tech-
nique to further enhance the horizon. Lastly, another future direction for this work would be to expand the size 
of the dataset employed and investigate the performance of the framework when the kinematics of motion in all 
dimensions are jointly fed to the network to potentially enhance the perception of the network over the voluntary 
action and increase its predictive horizon.
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