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Perceptual bias is reduced with longer reaction
times during visual discrimination
Ron Dekel1 & Dov Sagi 1*

Fast and slow decisions exhibit distinct behavioral properties, such as the presence of

decision bias in faster but not slower responses. This dichotomy is currently explained by

assuming that distinct cognitive processes map to separate brain mechanisms. Here, we

suggest an alternative single-process account based on the stochastic properties of decision

processes. Our experimental results show perceptual biases in a variety of tasks (specifically:

learned priors, tilt aftereffect, and tilt illusion) that are much reduced with increasing reaction

time. To account for this, we consider a simple yet general explanation: prior and noisy

decision-related evidence are integrated serially, with evidence and noise accumulating over

time (as in the standard drift diffusion model). With time, owing to noise accumulation, the

prior effect is predicted to diminish. This illustrates that a clear behavioral separation—

presence vs. absence of bias—may reflect a simple stochastic mechanism.
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Human decisions are often biased. In visual perception,
contextual effects, and prior experience lead to systematic
biases in the judgment of objects’ properties such as

orientation, size, and color1–4. Experiments show these biases to
be reduced with longer exposure duration5,6, intuitively explained
by a hierarchy of processing levels, with the slower processes,
computationally more powerful, providing a more veridical per-
ception5–7. Here, we consider an alternative, single process,
account.

A powerful idea in the neurosciences is that decision makers,
brains included, integrate noisy evidence over time to improve
performance8,9. Theories adhering to this principle, such as
drift diffusion models (DDM10), offer remarkable explanatory
power, notably predicting human reaction-time in decision
tasks11, and accounting for neuronal activity in brain regions
correlated with decision-making8. In such integrators, the
initial state of accumulation is set by prior evidence favoring
(biasing) one decision outcome over others12, implementing an
approximation of Bayes’ rule13. The resulting response bias is
expected to decrease with decision time, due to accumulation of
evidence and noise.

The prediction observed and investigated here is that percep-
tual biases are strong with fast decisions and are much reduced,
possibly eliminated, with slow decisions, regardless of stimulus
duration. Our experimental results confirm this prediction, and
suggest that time-dependent bias is due to temporal accumulation
of sensory evidence and noise.

Results
Prior dependent bias. When faced with a difficult visual dis-
crimination task in which one of the objects is more probable,
observers tend to choose the more frequent alternative when
uncertain. For example, consider a task involving a fine dis-
crimination between two oriented objects (Gabor patches, σ=
0.42°, λ= 0.3°, see Methods), slightly tilted from vertical, clock-
wise (CW), or counter-clockwise (CCW) (+0.5° or −0.5°), briefly
presented (50 ms). This is a challenging task, in the sense that our
observers provided the correct answer on only ~70% of the trials.
For example, the “+” stimulus was sometimes reported as having
a “−” orientation, showing Pðanswerþ jþÞ ¼ 0:73, and the “+”
response was sometimes provided when the “−” stimulus was
presented, showing Pðanswerþ j�Þ ¼ 0:36 (mean, SEM ≤ 0.04;
N= 7 observers). The bias in the task, which is the preference for

responding “+” over “−”, independent of stimulus orientation,
can be quantified by comparing the sum of these two conditional
probabilities to 1 (see Fig. 1). Here, the sum shows 1.09, slightly
above 1, indicating a small, statistically non-significant, bias in
favor of the “+” response (t(6)= 1.59, P= 0.16, two-tailed t test).
Importantly, increasing the occurrence frequency of the +0.5°
stimulus to 75% of the trials during a testing block (80 trials)
leads observers to being more likely to provide the “+” response
independent of the stimulus presented, leading to P(+|+)= 0.81
and P(+|−)= 0.44. Similarly, reducing the occurrence frequency
of +0.5° to 25% of the trials leads to a reduced frequency of “+”
responses, showing P(+|+)= 0.66 and P(+|−)= 0.30 (mean,
SEM ≤ 0.04; an average change in the sum of the conditional
probabilites from the 25 to the 75% priors ofM= 0.29 with t(6)=
5.10, P= 0.002, two-tailed paired t test). Overall, these results
illustrate the classic finding that decision bias is modified in
accordance with learned task priors1,2.

Next, we split the decision data into two equal-quantity bins,
around the median reaction time (RT, reflecting the time it took
the observer to provide a response; this was done separately for
each experimental block and for each observer, see the Methods).
The results showed that the overall bias measured across all trials
reflects a strong bias in the faster trials (M= 0.63, t(6)= 7.91, P=
0.0002, Fig. 1a) and remarkably no bias in the slower trials (M=
−0.03, t(6)=−0.63, P= 0.55, Fig. 1b).

To better quantify the observation of time-dependent bias, we
used a probit scale for the probability measurements, i.e.,
probabilities were transformed using z(·), the inverse cumulative
distribution function of the standard normal distribution (using
four equal-quantity bins, see measurements at Fig. 2). This
description of behavioral data permits convenient visualization in
terms of measures motivated by signal detection theory (SDT) for
bias and sensitivity1

Bias ¼ z P þjs; prior1ð Þð Þ � z P þjs; prior2ð Þð Þ: ð1Þ

c ¼ �0:5 � z P þjþð Þð Þ þ z P þj�ð Þð Þ½ �: ð2Þ

d0 ¼ z P þjþð Þð Þ � z P þj�ð Þð Þ: ð3Þ

Specifically, bias (Eq. (1)) is the change in response probability
to a fixed stimulus s (“+” or “−”) under different priors (as
illustrated in Fig. 2). This measure is formally equivalent to the
average change in the internal decision criterion, c (Eq. (2), Fig. 3b,
individual data at Supplementary Fig. 1, see Methods). Using this
measure to quantify the bias between the 25 and the 75% priors,
we found a robust prior-dependent bias in fast trials, and almost
no bias in slow trials (Fig. 3a). To analyze this effect, we used a
linear mixed-effects regression of the average bias (across the two
stimuli options) as a function of time bin index (bin 1 to bin 4, see
the Methods). This analysis revealed a significant overall
bias (intercept term, t(26)= 10.28, P= 2 × 10−10 Bonferroni
corrected for two multiple comparisons), and importantly a
significant reduction in bias with time (slope term, t(26)=−8.68,
P= 7 × 10−9 corrected, slope estimate ± SE of −0.54 ± 0.06).
The reduction in bias was robust, observed on an individual
basis (N= 7, Supplementary Fig. 2), with a large effect size
(Cohen’s d= 3.53, Hedges’ g= 3.14, for the pairwise differences),
and replicated with a larger sample through the Amazon
Mechanical Turk (Fig. 3d, e) (N= 50; statistics at Supplementary
Table 1).

The corresponding measure for discrimination sensitivity, d′
(Eq. (3)), quantifies the observers’ ability to discriminate
between the two stimuli under a fixed prior, as illustrated in
Fig. 2. This measure showed that changes in sensitivity were
small and inconsistent (d’ ≈1 across decision times, Figs. 1 and
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Fig. 1 Prior-dependent bias disappears with decision time. Observers
(N= 7) discriminated between two oriented visual stimuli with their
relative frequency of occurrence varied (“+” stimulus presented in 25, 50,
or 75% of trials, with P(−)= 1− P(+)). Shown is a receiver operating
characteristic (ROC) plot depicting P(+|+) as a function of P(+|−),
averaged across observers, in reaction times (RTs) that are a faster or b
slower than the median. Data points lying on the dotted curves indicate a
discrimination sensitivity of d′= 1, with their position on the curve
corresponding to decision bias. The negative diagonal, P(+|+)+P(+|−)=
1, represents unbiased performance (see the Methods).
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3c). Specifically, using a linear mixed-effects regression analysis
for d′ as a function of time bin index (averaged across the two
priors, 25 and 75%), we found no significant modulation by
time (slope term, t(26)= 0.26, P= 0.8). The MTurk replication

showed the same, with a statistically significant yet negligible
reduction in d′ with time (t(198)=−3.15, P= 0.005 corrected;
linear reduction of 14% from the fastest to the slowest
bin, Fig. 3f).
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Fig. 2 Interaction of bias and time for prior-dependent experiments. Shown is the response probability as a function of RT, in the a “Discrimination” (N=
7), b “Discrimination MTurk” (N= 50), and c “Detection” (N= 9) experiments, for different priors (marked by colors; panels a, b as in Fig. 1), and different
stimuli (line styles), averaged across observers in four equal-quantity bins. Bias (Eq. (1)) is the change in response probability to a fixed stimulus under
different priors (vertical distance between data points of different colors). Similarly, d′ (Eq. (3)) is the change in response probability under different stimuli
for a fixed prior (vertical distance between data points of the same color with different line styles). The results showed a significant prior-dependent bias
only in fast responses. Error bars are ± 1SEM.

-0.5

0

0.5

1

1.5

2

-0.5

0

0.5

1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

-0.5

0

0.5

-0.5

0

0.5

1

0

1

2

0

1

2

3

0

1

2

400 600 800 400 600 800 400 600 800

500 700 900 500 700 900 500 700 900

400 600 1000 400 600 1000 400 600 1000

+0.5°

-0.5°

+1.5°

-1.5°

Present

Absent

75% +0.5°
Balanced

75% -0.5°

75% +1.5°

75% -1.5°

75% Target
50% Target
25% Target

B
ia

s
B

ia
s

B
ia

s

 c
 c

 c

 d
’

RT (ms) RT (ms) RT (ms)

 d
’

 d
’

g

fd e

ca b

h i

Fig. 3 Behavioral measures for bias and sensitivity in the prior-dependent experiments. Shown for the discrimination experiment is the average across
observers (N= 7) of a bias (Eq. (1)) for the different stimuli (line styles), b internal criterion (c, Eq. (2)) for the different priors (colors), and c sensitivity (d',
Eq. (3)) also for the different priors, as a function of the average RT, in four equal-quantity bins. d–f Same for an Amazon Mechanical Turk replication (N=
50). g–i Same for the detection experiment (conducted in the laboratory, N= 9). Results showed rapid reduction in bias with time. For individual data see
Supplementary Fig. 1. Error bars are ± 1SEM.
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Next, we consider a classic detection task, whereby observers
report whether a visual target is present or absent from the
display (using low-contrast Gabor patches for the target, σ=
0.42°, λ= 0.3°). To experimentally manipulate priors, the
proportion of target-present relative to target-absent trials was
changed (from 25 up to 75%, in different 80-trials blocks). Results
showed a significant prior-dependent bias (intercept term, t(34)=
10.86, P= 3 × 10−12 corrected, N= 9 observers, Fig. 3g, h). Most
importantly, the bias was strong in fast decisions, and almost
entirely absent in slow decisions (Fig. 3g), showing a significant
reduction with time (slope term, t(34)=−8.89, P= 4 × 10−10

corrected, slope estimate ±SE of −0.40 ± 0.04). As before, the
reduction in bias was clearly observed on an individual basis
(Supplementary Fig. 2c), with a large effect size (Cohen’s d=
2.27, Hedges’ g= 2.07).

The sensitivity in the task showed an inconsistent but overall
significant reduction with time (slope term, t(34)=−3.15, P=
0.003, Fig. 3i), though not by much (~36% linear reduction from
the fastest to the slowest bin). It is interesting to note that the time
dependence of the criterion data in the detection task (Eq. (2),
Fig. 3h) reflects a tendency to provide an “absent” response in fast
responses. In both Detection and Discrimination experiments, RT
was mostly stable within block, possibly even slightly increasing,
controlling for the potential confound of gradual learning of the
prior (Supplementary Fig. 3).

Overall, in both discrimination and detection tasks, a change in
behavior due to the learned prior was mostly restricted to the
faster half of the responses.

Context dependent bias. Motivated by the interaction of decision
time and bias when manipulating the prior of the decision
alternatives, we were interested in context-dependent biases. By
this, we refer to the ubiquitous biases observed for perhaps any
visual property (orientation, luminance, color, motion, size, or
facial expression3,4) due to the contextual value of the same
property. For example, a physical vertical target (0°) may be
reported as if it is tilted −2° due to a surrounding context of +20°
(spatial context, Fig. 4a). The same bias can also be caused by a
preceding exposure to a +20° orientation (temporal context,
Fig. 4b; similarities of spatial and temporal contexts are discussed
elsewhere14). Here, we consider how the context-dependent bia-
ses interact with RT. Note that the type of context-dependent
biases measured here are distinct from the prior-dependent biases
analyzed above in the sense that the direction of the bias is
opposite to the orientation of the context (hence denoted “-bias”).
Moreover, context-dependent biases are clearly at least partially
perceptual (e.g., actually seen as reported, thus are referred to as
visual illusions), while the question of whether prior-dependent
biases are perceptual or decisional is currently under debate (e.g.,
recently15).

First, we measured the influence of oriented context on
subsequently perceived orientation (tilt aftereffect, TAE; Fig. 4b,
results in Fig. 4d). To verify that the decision time is not
confounded with the presentation duration of the target5,6, we
used briefly presented targets (50 ms). Thus, a stimulus
sequence consisted of an oriented adapter (+20° or −20°
context, 50 ms), followed by a no stimulus interval (600 ms),
and a close to vertical target (50 ms). Observers reported the
target orientation as being CW or CCW, as in the discrimina-
tion experiment reported above. The target orientation that
received an equal number of CW and CCW reports was
assumed to correspond to the perceived vertical (PV) orienta-
tion. The results showed standard TAE magnitudes, with PV
biased in a direction opposite to that of the context (raw
measurements at Supplementary Fig. 4).

Most importantly, we found that the magnitude of contextual
influence (bias as defined in Eq. (1)) was reduced in slower
decisions, showing about 50% reduction from the fastest to the
slowest bin, as seen in Fig. 4d. To analyze this effect, we applied a
linear mixed-effects regression analysis of bias as a function of the
time bin index. Results showed a significant overall bias (intercept
term, all experiments showing P < 2 × 10−7), and importantly,
a significant reduction with time (Fig. 4d) (slope term, fixation:
N= 12, t(46)= 6.54, P= 9 × 10−8 corrected, periphery: N= 14,
t(54)= 7.35, P= 2 × 10−9 corrected, periphery non-retinotopic:
N= 14, t(54)= 4.35, P= 1 × 10−4 corrected; Bonferroni correc-
tion for two multiple comparisons; experimental names refer to
the retinal positions of the stimuli, with “non-retinotopic”
meaning that the adapting context and the target were presented
at different retinal positions, and periphery referring to the near-
periphery at eccentricity of ±1.8°, see the Methods). The effect
was extremely robust, evident across target orientations (Supple-
mentary Fig. 5), on an individual basis (Supplementary Fig. 6),
with a large effect size (fixation: Cohen’s d= 2.03, Hedges’ g=
1.90, periphery: d= 1.85, g= 1.75, periphery non-retinotopic:
d= 0.90, g= 0.85). The TAE fixation data from Pinchuk et al.16

replicated the effect (Fig. 4d, statistics at Supplementary Table 1).
Note that unlike the known reduction in the aftereffect
magnitude with increased time difference between the adapting
context and the target17, here the involvement of decision
mechanisms was measured by analyzing the TAE at different RTs
and using a fixed target-to-adapter time, implying a fixed
adaptation level.

Next, we measured the influence of surrounding oriented
context on the perceived orientation of a central target (tilt
illusion, TI, Fig. 4a). The results are shown in Fig. 4c. When the
presentation of the stimulus (target+ surround) persisted until
the observers’ response, the results showed a clear reduction in
bias for increased RTs (t(38)= 7.65, P= 7 × 10−9 corrected, N=
10, Fig. 4c), measuring bias of ~3 at ~550 ms which decreased to a
bias of ~1.5 at ~2000 ms (effect size: Cohen’s d= 2.78, Hedges’
g= 2.57, Supplementary Figs. 4–6). Most importantly, when
using a fixed presentation duration (200 ms), the results again
showed a reduction in bias with time (t(38)= 4.23, P= 0.0003
corrected, Fig. 4c), with bias of ~3 at ~500 ms, decreasing to bias
of ~2 at ~1000 ms (Cohen’s d= 1.24, Hedges’ g= 1.14,
Supplementary Figs. 4–6). Therefore, the known reduction in
bias for longer presentation durations5,6,18 can be attributed to
changes in decision-related mechanisms that are measured here
using RT-based analysis. Findings were replicated using a larger
sample size through the Amazon Mechanical Turk (N > 50 per
experiment, see Fig. 4c; including a “mix” condition pooling data
from a number of additional experiments, showing the effect is
robust; statistics at Supplementary Table 1).

Unlike bias, the task sensitivity, d′, did not show a consistent
dependency on RT (as seen in Fig. 5, individual data at
Supplementary Fig. 7), suggesting a dissociation between change
in bias and change in sensitivity at different RTs (as found for the
prior-dependent bias, Figs. 1 and 3). An alternative measure for
bias, though less accurate (see Methods) is the shift in the PV
orientation measured in degrees. Results using this measure
showed similar results as reported above (Supplementary Fig. 8).
Overall, the magnitude of both TAE and TI was reduced in slower
decisions, revealing an interaction between contextual influence
and decision-making processes.

Theory. Next, we aimed to account for the observed reduction in
bias with decision time by applying general principles. Generally,
a system that accumulates noisy evidence when making a decision
can be interpreted as a stochastic decision process (e.g.,19).
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Exposure to an oriented adapter leads to a change in the perceived orientation of a subsequently viewed target. c Bias (Eq. (1)) for the TI due to context
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Supplementary Fig. 6. Error bars are ± 1SEM.
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Fig. 5 Task sensitivity in the context-dependent experiments. Shown for the a TI and b TAE experiments is the average across observers of the task
sensitivity (d′, Eq. (3)) divided by the orientation difference (Δθ= 2θ) as a function of RT (four bins). The d′ was measured between the −θ° and +θ°
target orientations, and averaged across the two contexts (averaging is possible because of the symmetry of the +20° and −20° context orientations). θ is
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was no qualitative difference in d′/Δθ between 1° and 3°, permitting an average over observers from both experimental versions). Results showed that
sensitivity is mostly stable across RTs, possibly exhibiting a small improvement at the fastest RTs, and a small deterioration at the slowest RTs, clearly
unlike the bias dynamics (Fig. 4, Supplementary Fig. 5). We note that due to the strong decision bias at shorter times and lack of sufficient trials, the d′ at
shorter times may be under-estimated (see Supplementary Fig. 4). For individual data see Supplementary Fig. 7. Error bars are ± 1SEM.
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Interestingly, in many stochastic processes (notably “memoryless”
ones, such as random walks, Markov chains, and typical diffusion
models), with processing time, the process gradually becomes
independent of the initial state due to accumulated stochasticity
(noise), so biases that reflect initial conditions are expected to
gradually decrease with time. For example, in simple unbounded
diffusion (random walk), the initial state is lost at a slow rate
proportional to

ffiffiffiffiffiffiffiffiffi
time

p
(Fig. 6a), as in many stochastic processes.

From the Bayesian perspective, the initial state measures the a
priori information, and this prior is outweighed when more noisy
evidence has been accumulated, leading to reduced prior effect in
slower decisions.

Importantly, decision bias is reduced rapidly (~exponentially)
in bounded decision models such as the DDM10, in which the
process of evidence accumulation continues until a bound is
reached (Fig. 6b). For a starting point that is not too extreme (i.e.,
a moderate bias), the model predicts almost zero bias after the
median decision time (Fig. 7a). Remarkably, the rapid rate of

reduction of bias was almost identical in the model and in the
prior-dependent experiments (Fig. 7b). Indeed, a change of
starting point in DDM provided an excellent account of
behavioral prior-dependent bias, as indicated by AICc and BIC
measures of the model fits (Table 1; differences relative to a
“Fixed bias” model showed, Discrimination: ΔAICc= ΔBIC=
−61, Discrimination MTurk: ΔAICc= ΔBIC=−204, Detection:
ΔAICc= ΔBIC=−49; all P < 0.001 corrected, obtained by a
random permutation test, and Bonferroni corrected for six
multiple comparisons, see Methods). This result is consistent with
earlier modeling of experimental data with the DDM12,20,21. Note
that the theory presented here to explain decision time-dependent
bias can also account for experimental situations where the bias
effect persists with time (e.g., a change in the drift rate in the
DDM), as evident with experimental manipulations affecting
external noise selection22. More generally, persistent evidence
selection should clearly lead to persistent bias effects20,23.

With context-dependent bias, the observed rate of reduction in
bias was slow (Fig. 4c, d). As such, neither a change of drift rate in
the DDM (which predicts time-independent bias, Fig. 8a), nor a
change of starting point in the DDM (which predicts a rapid
reduction in bias, Fig. 8b), could by themselves explain the
context-dependent bias (Fig. 8a, b, Table 1). We consider two
alternatives. First, that bias is partially persistent, which is
addressed within the DDM framework as a context-dependent
change of both the starting point and the drift rate (i.e., a change
of both the initial conditions and the rate of evidence
accumulation, Fig. 8c). Second, that the process of evidence
accumulation is unbounded rather than bounded (i.e., that
decision timing is independent of the system state, as illustrated
in Fig. 6a), leading to a

ffiffiffiffiffiffiffiffiffi
time

p
rate of reduction in bias (Fig. 8d).

Qualitatively, both accounts offered an explanation for the slow
rate of reduction in context-dependent bias (see Fig. 8c, d).
Quantitatively, the unbounded alternative showed predictive
performance that was occasionally much better than the bounded
alternative (Table 1). Comparing the unbounded alternative to
the “Fixed bias” reference showed a significant difference in
predictive performance (Table 1, differences showing for all
experiments ΔAICc and ΔBICc <−19, and P < 0.001 corrected).
We note that DDM is sufficiently rich in parameters and may
allow for more elaborated models9. A seemingly promising
alternative to the accounts examined here is that the influence of
the context is time independent but varies across trials24, which
can be modeled in the DDM as an intertrial variability in the drift
rate25. However, this would predict the absence of line
intersections in plots of report probability vs. time (Supplemen-
tary Fig. 9), unlike behavioral data (Fig. 2 and Supplementary
Fig. 4). We note that the sign of the context-dependent bias is
opposite to the prior (“anti-Bayesian”), consistent with a shift of
the reference (i.e., bound positions) in the direction of the prior.

Our main goal here is to explain the dependency of decision
bias on RT. The theories considered may also be tested for other
aspects of the data, such as RT distribution and dependence of
discrimination sensitivity (d′) on RT. The latter is found here to
be roughly independent of RT, as predicted by the standard
DDM26, and by design by its predecessor sequential probability
ratio test (SPRT27). To model RT distributions, more trials are
required. We note that the factor we use for analysis, RT, is an
observable rather than an experimentally manipulated factor.
This design decision raised the need to control for potential
confounding factors (as discussed in the text), but importantly,
note that an observable cannot always be replaced by an
experimentally manipulated factor. Notably, under the assump-
tions of the DDM, the stochasticity in diffusion underlies
the co-variability of RT and bias. Therefore, considering the
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lines) is reached. The effect of the initial state is lost with time (white
color mix).
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Fig. 7 Reduction in prior-dependent bias is explained by the drift
diffusion model. a Bias (Eq. (1)) as a function of cumulative RT probability
(i.e., quantiles), for behavioral data of the prior-dependent experiment
(averages of Fig. 3a, d, g, individual data at Supplementary Fig. 2), and for a
change in starting point in the bounded model (DDM) measured in four RT
bins (red lines; the different groups of superimposed lines reflect different
sizes of starting point changes away from the mid-point, and superimposed
lines reflect varying drift rates; the influence of the bound-separation
parameter is ignored because, for reasonable parameter values, it is mostly
accounted for by changes in drift rate and starting point, by virtue of
considering cumulative RT probability). b Bias from panel (a) divided by the
average value (calculated separately for each observer and then averaged
across observes). It can be seen that the stereotypical rate of reduction of
bias owing to a starting point change in the DDM is qualitatively similar to
behavior. Error bars are ± 1SEM.
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Table 1 Descriptive model comparison.

Experiment Comparison method Model

Fixed bias
(DDM drift
rate change)

DDM start
point change

DDM, start point
and drift
rate change

Unbounded, start
point change

Prior-
dependent

Discrimination AICc 82 20 24 59
BIC 85 23 26 61

Discrimination MTurk AICc 504 301 303 417
BIC 637 432 437 551

Detection AICc 83 35 24 54
BIC 90 42 31 61

Context-
dependent

TI until-response AICc 131 116 77 64
BIC 140 125 86 72

TI 200ms AICc 124 125 128 84
BIC 133 134 137 92

TI MTurk until-response AICc 580 846 495 489
BIC 742 1008 659 653

TI MTurk 200ms AICc 589 793 562 519
BIC 732 936 707 664

TI MTurk mix AICc 5083 6928 5006 4673
BIC 7406 9250 7333 7000

TAE fixation AICc 154 158 118 117
BIC 168 172 132 130

TAE fixation Pinchuk
et al.16

AICc 159 104 76 87
BIC 170 115 87 98

TAE periphery AICc 160 166 132 134
BIC 178 185 150 152

TAE periphery non-
retinotopic

AICc 148 122 116 128
BIC 166 140 134 146

Shown are Akaike information criterion (AICc) and Bayesian information criterion (BIC) values which indicate how well a given model accounts for the measured behavioral bias compared to other
models, when taking into account the number of fitted model parameters. Within a row, lower values indicate better model performance, where the standard rule-of-thumb is that a difference of at least
ten can be interpreted as a “very strong” evidence in favor for the winning model42. Correspondingly, models having a difference of approximately ten from the winning model are in bold typeface.
(Between rows, differences mostly reflect differences in the amount of data.) In all models, a single parameter was fit per observer, corresponding to the magnitude of the individual bias. In addition, a
single group-level parameter was fit in two of the models: the “DDM, start point and drift rate change” model with the group level parameter indicating the percentage of the overall bias that is due to a
starting point rather than a drift rate change; and the unbounded model where the group level parameter was the nondecision time, namely, t0. Results show, for both prior-dependent and context-
dependent bias, the validity of a model which assumes a change in the starting point of the process, as indicated by reduced AICc and BIC values relative to the “Fixed bias” null-hypothesis model.
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Fig. 8 Modeling the reduction in context-dependent bias. Shown is bias (Eq. (1)) as a function of RT, averaged across observers, in models and in the
behavioral context experiments (gray lines, reproduced from Fig. 4 cd). a–c Bounded model (DDM, red lines), measured in four RT bins, where the influence of a
context change (−20° vs. +20°) is modeled as a (a) drift rate change, b starting point change (same model as in Fig. 7), c drift rate and starting point change
(see the Methods). d Unbounded model (purple lines), where the influence of a context change is modeled as a change in starting point in an unbounded
diffusion process. This model was analyzed by fitting bias to a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT� t0

p
decay rate function (see the Methods). The t0 measures the non-decision time

(10–550ms; using a fixed value of 350ms obtained from the RT distributions gives similar results). Note that the x-axis in panels a–c is for relative RTs (i.e.,
cumulative RT probability), while panel d is for physical RT (time difference from t0), which is reasonable considering the different models. Fitting was done on
the group level. Overall, the different modeling approaches (panels c, d) can qualitatively account for a slow rate of reduction in bias.
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slower/faster subset of trials (as we do here) is not immediately
interchangeable with experimental manipulations that affect
the average RT by changing the separation between the bounds.
Overall, we find an excellent account for both prior-
dependent and context-dependent biases by assuming a change
in the initial conditions of evidence accumulation (with or
without bounds, and with or without a change in the rate of
evidence accumulation).

Discussion
Overall, this work illustrates an innovative way of thinking about
bias and time in human decision-making. Instead of fitting a
specific model to data (as in ref. 20), we make a simple yet
powerful general claim: that bias derived from starting conditions
(e.g., prior) gradually decreases with decision time. This claim
applies to an entire family of stochastic decision processes, which
can be indistinguishable with limited data, emphasizing the
importance of focusing on the general principle.

Most importantly, the finding of reduced bias with longer
decision times may appear to perfectly conform with a dual-
theory account of a transition between separate systems7,28,29:
from a fast system that is bias-prone, to a slow system that is
bias-free. Similarly, the known reduction in context-dependent
bias with the duration of testing stimulus presentations is
currently explained by assuming dual processing (in low vs.
high systems)5,6,18. However, we have found that using models
based on the decision principles described above offers a full
mechanistic explanation. Even a rapid reduction in bias, with
the slower half of responses measuring practically zero bias, can
be explained by bounded evidence accumulation (that is, a rule
for when to stop accumulating evidence that depends on the
extent of evidence that has been accumulated). This account has
very strong support in brain decision making (DDM8,9,11) and
clear statistical implications (SPRT12,13,27). Of course, there can
be dual processes in the brain, and there are low vs. high brain
areas, but at least for the basic perceptual decisions considered
here, there is a simple mechanistic account that does not need
to assume multiple systems. Note that it is still possible that the
different model parameters are set by two or more brain or
cognitive modules. For example, the starting point (prior) is
possibly set by a higher-level experience-based module, which
integrates information over extended time scales, while the
information accumulation is possibly performed by a lower-
level module that closely follows the sensory input. The specific
anatomical analogue may depend on the behavioral task at
hand.

Traditionally, perceptual phenomena are considered to be a
part of the faster system28, although there is no clear definition.
One attempt at formulating a definition by Evans and Stanovich29

suggests that “rapid autonomous processes (Type 1) are assumed
to yield default responses unless intervened on by distinctive
higher order reasoning processes (Type 2)”, which at least phe-
nomenologically appear to match the reduction in bias discussed
here. Regardless of terminology, perceptual decisions and the
simple mechanistic models they permit should be considered in
the discussion about fast vs. slow systems.

Methods
Observers. The purpose of this study was to investigate the interaction between
bias and decision time for prior- and context-dependent biases. The experiments
reported here were performed in a laboratory or with a web-based interface
through the Amazon Mechanical Turk (MTurk). The work was carried out in
accordance with the Code of Ethics of the World Medical Association (Declaration
of Helsinki), and was approved by the Institutional Review Board (IRB) of the
Weizmann Institute of Science. All observers were naïve to the purpose of the
experiments.

In the laboratory experiments, N= 43 observers participated (32 females, 11
males, aged 26 ± 4, Mean ± SD, median of 25, in the range 18–40), including data
from eleven observers obtained with permission from ref. 16. One additional
observer dropped out after the first session (for personal reasons), and her data
were not analyzed. Most observers were students of the Rehovot Campus of the
Hebrew University of Jerusalem (i.e., Faculty of Agriculture, Food and
Environment). Observers were recruited by advertisement, and began participation
in the experiments conditioned on passing an eye examination. Observers were
compensated at a rate of 50 NIS per daily session. Observers had normal or
corrected-to-normal vision, and have provided their written informed consent.

In the MTurk experiments, N= 636 observers participated (reported age of
36 ± 11, median of 33, in the range 18–74; gender information was not always
collected). Additional N= 228 observers were excluded, as described below.
Observers were recruited through the MTurk platform, with an offered
compensation that was calculated based on an approximate $7.5/h rate. The typical
selection criteria were as follows: “PercentAssignmentsApproved” ≥99,
“NumberHITsApproved” ≥2000, “LocaleCountry”= “US”. By the nature of the
platform, participants may stop performing the experiment at will, without
providing a justification. Of the participants who “Accepted” the task, roughly 37%
completed the offered experiment and received compensation. The web-based
study was reviewed by the Institutional Review Board (IRB) of the Weizmann
Institute of Science and deemed exempt from the collection of informed
consent forms.

Apparatus. Laboratory setup: The stimuli were presented on a 22″ HP p1230
monitor operating at 85 Hz with a resolution of 1600 × 1200 that was gamma-
corrected (linearized). The mean luminance of the display was 26 cd m−2 (detec-
tion, discrimination, and TAE experiments) or 49 cd m−2 (TI experiments) in an
otherwise dark environment. The monitor was viewed at a distance of 100 cm.

Amazon Mechanical Turk setup: To display time-accurate full-screen stimuli in
the web-browser of arbitrary MTurk observers, we developed a dedicated
JavaScript client for the PC versions of the Chrome, Mozilla, and Opera web
browsers. Using the web-browser version of the OpenGL technology, namely,
WebGL, permitted a highly efficient implementation whereby the client machines
typically achieved single-frame time accuracy. Clients were required to have a
GPU-enabled WebGL implementation, as indicated by the
“failIfMajorPerformanceCaveat” API flag. An additional performance test was
conducted, to ensure that the client machine is able to achieve the required time
accuracy. Importantly, during an experiment, estimations of the stimuli
presentations timing were collected. Post-hoc timing diagnostics showed that most
trials, of most observers, measured nearly perfect single-frame accuracy. For
example, in the TI MTurk 200 ms experiment, the 95% worst-case timing error
relative to the within-observer mean was 24 ms. For the “Discrimination MTurk”
experiment, the 95% worst-case error was 16 ms. The display luminance, gamma
calibration, sitting distance, and environmental lightning conditions were only
controlled to the degree reflected in the task performance (see below). We note that
all statistical comparisons we report are within-observer (paired), hence reflect
measurements from the same display. Also, note that the absence of a gamma-
correction precludes performing experiments that require pure sine-wave
frequencies (e.g., measuring the frequency-selectivity of an effect). RTs were
measured locally on the client machine, so that internet connection speed did not
affect the measured RT. As seen in Supplementary Tables 1 and 2, the reliability of
the crowdsourcing setup was quite high. For example, 48 out of 50 observers
measured an RT-dependent reduction in prior-dependent bias in the
“Discrimination MTurk” experiment.

Stimuli and tasks. All stimuli were presented using dedicated software on a
uniform gray background. To begin stimulus presentation in a trial, observers
fixated on the center of the display and pressed the spacebar (self-initiated trials).
Responses were provided using the left and right arrow keys. As described below,
the used Gabor patches were of the same parametrization (except orientation,
monitor position, and contrast).

In MTurk, the stimuli, defined in pixels, were resized using linear interpolation
to maintain a fixed proportion relative to the full-screen monitor resolution. To
minimize resizing artifacts, the resizing multiplier was rounded down to the nearest
lower multiple of 0.25 (e.g., resizing by a multiplier of 1.25 instead of 1.33).

Discrimination (2AFC) experiment (Lab): Stimuli were Gabor patch targets
tilted −0.5° or +0.5° relative to vertical (50 ms presentation, 50% Michelson
contrast30, Gaussian envelope σ= 0.42°, spatial frequency wavelength λ= 0.3°,
random phase, 750 ms onset ±up to 100 ms onset jitter). Observers were instructed
to report whether the orientation of the target is CW or CCW to vertical (2AFC),
with auditory feedback indicating mistaken reports. Four peripheral crosses co-
appeared with the target.

Discrimination (2AFC) experiment (MTurk): Stimuli were Gabor patch targets
tilted −4.5°, −1.5°, +1.5°, or +4.5° relative to vertical (~66 ms presentation, 300 ms
onset ±up to 100 ms onset jitter). Gabor targets had an amplitude of 64 gray
levels (out of 256, i.e., corresponding to a contrast of 50% in a linearized display),
σ= √2λ, λ= ~2% of screen height, and a random phase. Observers were instructed
to report whether the orientation of the target is CW or CCW to vertical (2AFC),
with visual feedback indicating mistaken reports (a large “X” presentation).
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Detection experiment: In the target-present trials, the stimuli were low-
contrast Gabor patches (50 ms presentation, 0.5–1% contrast, vertical
orientation, σ= 0.42°, λ= 0.3°, random phase, 750 ms onset ±up to 100 ms onset
jitter). Observers were instructed to report whether the target appeared or not,
with auditory feedback indicating mistaken reports. Four peripheral crosses co-
appeared with the target presentation interval (in both target-present and target-
absent trials).

TAE experiments: The following presentation sequence was used (Fig. 4b): a
blank screen (600 ms presentation), Gabor “adapter” (i.e., context, oriented −20°
or +20° to vertical, 50 ms), a blank screen (600 ms), and a near-vertical Gabor
“target” (50 ms). Observers were instructed to inspect the adapter and target
presentations, and then to report whether the orientation of the target was CW
or CCW to vertical (2AFC, no feedback). Gabor patches were 50% Michelson
contrast with σ= 0.42°, λ= 0.3°, and random phase. Two versions of the
experiment were run: fixation and periphery. In the fixation experiment,
adapters and targets were presented at the fixated center of the display, and
targets were oriented −9° to +9° (in steps of 1°). In the periphery experiment,
adapters and targets were presented at either left or right of the fixation (at ±1.8°
eccentricity). The target was presented either at the same side as the adapter
(retinotopic) or at the opposite side (non-retinotopic), randomly. Targets were
oriented from −12° to +12° (in steps of 2°). The reason that the TAE
experiments had no variability in the onset of the target is that the time
difference between adapter and target is known to affect the magnitude of the
TAE31. Four peripheral crosses co-appeared with the target to facilitate
discrimination between the adapter and the target.

TI experiments (Lab): Stimuli (e.g., Fig. 4a right) consisted of a near-vertical
sine-wave circular “target” (oriented from −9° to +9° in steps of 1°, λ= 0.3°,
random phase, a radius of 0.6°), and a sine-wave “surround” annulus (oriented
−20° or +20°, λ= 0.3°, random phase, width of 1.2°, and a gap of 0.15° from the
central circle). The sine-wave gratings had a contrast of 100%. Observers were
instructed to inspect the target, and to report its orientation as CW or CCW to
vertical (two-alternative forced choice, 2AFC; no feedback). The target+ surround
stimuli were presented starting from 450 ms after the trial initiation (±up to 100 ms
jitter), for a duration of either 200 ms (“200 ms” experiment) or for however long it
took the observer to provide a response (“until-response” experiment).

TI experiments (MTurk): The main stimuli used were nearly identical to the lab,
resized by using a conversion of ~5.5% of screen height for 1° of visual angle in the
lab stimuli. The sine wave gratings had an amplitude of 128 gray levels
(corresponding to a contrast of 100% in a linearized display). The target orientation
steps were either 1° (as in the lab) or 3°, and the onset jitter was not always used (in
which case the onset was fixed at 350 ms after the trial initiation).

Procedure. In the laboratory, most observers participated in multiple experiments
of this study, separated by at least 3 days of a break. We required a very low rate of
finger errors (less than one reported mistake in 200 trials), to minimize con-
tamination by fast guesses32. All observers managed to achieve this level of accu-
racy with persistent coaxing. Observers were encouraged to respond quickly, unless
the speed of response led to mistakes. Under all experiments, each daily session was
preceded by a brief practice block with easy stimuli (this practice was repeated until
close-to-perfect accuracy was achieved).

In the MTurk, observers participated in a single experiment, for a single daily
session, as indicated by having a unique “Worker ID”. To participate in an
experiment, MTurk observers had to achieve a near-perfect accuracy in a brief
practice block with easy stimuli. Finger errors were partially controlled for by
pruning low performing MTurk observers. Specifically, MTurk observers were
excluded based on the parameter thresholds described in Supplementary Table 3.
The thresholds were intended to be relatively lenient, so as to not exclude nearly
any of the cooperative observers who performed the task(s) as instructed. The
exclusion criteria were predetermined for all experiments, with the exception of the
“TI mix” dataset (see Supplementary Method 1).

Discrimination (2AFC) experiment (Lab): Observers (N= 7) completed a single
session. Trials were blocked into 80 trials with a given prior (either 75 vs. 25, 50 vs.
50, or 25 vs. 75% for the −0.5° vs. +0.5° orientation alternatives). In each session, a
set of six blocks (two per prior, in random order, each lasting ~2 min, separated by
a 20-s break to minimize inter-block contamination by learned priors) was
completed twice (totaling four blocks per prior; ~13.5 min per set, separated by a 2-
minute break). Observers were informed that different blocks may have different
priors of the decision alternatives. Two observers were disqualified before data
analysis, one having anomalously high sensitivity (d′= 2.5, with other observers
showing d′= 1.01 ± 0.18, mean ± SD), and one having an anomalously strong
baseline response bias in favor of one of the alternatives, which saturates the
measured probabilities. (Both disqualified observers exhibited a prior-dependent
bias in fast replies and no prior-dependent bias in slow replies.) Note that
the experimental design assumes that all observers have comparable sensitivity.
The horizontal orientation of the monitor and the table was verified using a
spirit level.

Discrimination (2AFC) experiment (MTurk): Observers (N= 50; additional
N= 34 observers were excluded based on the predetermined criteria described in
Supplementary Table 3) completed a single session. Trials were blocked into 80

trials with a given prior, using priors of 75 vs. 25, and 25 vs. 75%, for the CCW vs.
CW orientation alternatives (of both 1.5° and 4.5° target orientations). Observers
completed a total of 10 blocks (5 per prior alternative), separated by breaks of at
least 10 s, lasting ~30 min (sometimes more). Observers were not informed that
different blocks have different priors. Compared with the laboratory design, the
MTurk version was intended to be less rigid.

Detection experiment: Observers (N= 9) completed from two to three daily
sessions. Trials were blocked into 80 trials with a given prior (either 75 vs. 25, 50 vs.
50, or 25 vs. 75% for target-present vs. target-absent). In each session, two sets
of six blocks were completed (two per prior, in random order). Blocks (lasting
~2 min) were separated by a 15-s break. The two sets (~14.5 min each) were
separated by a 2-minute break. To ensure a stable d′, the level of difficulty was
adjusted per observer at the beginning of each session with a staircase procedure,
and occasionally also during the break between the two sets.

TAE experiments: Sessions were composed of blocks of 125 trials (lasting
~5 min), separated by 2-min breaks of blank screen free viewing. In the fixation
experiment, observers (N= 12) performed a single session consisting of six blocks.
In the periphery experiment, observers (N= 14) performed 3–8 daily sessions each
consisting of five blocks.

TI experiments (Lab): Sessions consisted of blocks of 190 trials (lasting ~5 min),
separated by 2-min breaks of blank screen free viewing. Observers (N= 10 and
N= 10, in “200 ms” and “until-response” experiments, respectively) performed a
single session consisting of five blocks.

TI experiments (MTurk): In the “200 ms” and the “until-response” experiments,
observers (N= 53 and N= 58, respectively; additional N= 17 and N= 5,
respectively, were excluded) performed a single session consisting of four or five
blocks of 190 or 196 trials. Some of the supplementary analyses depended on
the step size of the target orientation range (either 1° or 3°, see above). Blocks lasted
~5 min and were separated by breaks of at least 2 min (sometimes more). The
exclusion criteria were predetermined.

Additional data. TAE fixation experiment from Pinchuk et al.: We used, with
permission, data from the “No expectation” and “Control” conditions reported
in16, which used a nearly identical stimuli and procedure as the TAE fixation
described above (N= 11 observers).

TI “mix” dataset: We used data pooled from a number of TI experiments. The
stimuli and task were similar to the ones used here (Fig. 4a), with modifications
described in Supplementary Method 1. Data were collected using the Amazon
Mechanical Turk from N= 475 observers (no overlap with the other conditions
reported in this work).

Analysis. Trial pruning: For all data (laboratory and MTurk), single trials were
pruned based on RT. In all context experiments (TAE and TI), trials with RT < 300
ms were pruned (this rule was intended to address the rare occasions where the
observers judged the perceived orientation of the adapter instead of the target in
the TAE experiments). In all MTurk experiments (prior-dependent, TAE, and TI),
trials with RT slower than 10 s were pruned.

Data binning: To measure the interaction of time and bias, behavioral data were
binned, based on RT into N bins. For the detection and discrimination
experiments, binning was carried out separately for each combination of trial
stimulus type × experimental block (note that different blocks correspond to
different experimental priors). For example, separately for target-present and
target-absent trials of each block. For the TAE and TI experiments, binning was
carried out separately for each combination of experimental day × target
orientation × context orientation (adapter or surround). Under the TAE periphery
experiments (retinotopic and non-retinotopic), binning combinations were further
conditioned based on adapter side × target side. When the number of trials was not
an exact multiple of the required number of bins, a deterministic rule was used.
Binned trials were pooled from all relevant repetitions, separately for each observer.
Conceptually, the strict binning rule we applied prevents/minimizes confounds,
and in particular, prevents interaction between trial type and the bin used (because
different target stimuli, under different priors/contexts, can have different inherent
difficulties and hence, different average RT11). As a sanity check, to verify that the
results are not contingent on the chosen analysis, we also tried less strict binning
combinations. For example, ignoring the prior/context in binning leads to perfect
alignment of the time bins, see slight misalignment in Fig. 2 and Supplementary
Fig. 4. We found that any reasonable binning rule we tried that had more trials
than binning combinations led to nearly identical results. In the prior-dependent
experiments, the first ten trials were excluded from the analysis, so that the priors
could be learned (which takes at least a few trials to learn, e.g.33).

Bias and sensitivity calculation: To quantify bias and sensitivity, we relied on
measures motivated by SDT1. Specifically, we used bias (Eq. (1) and d′ (Eq. (3)).
The definition of bias (Eq. (1)) is equivalent to the average change in the internal
criterion c (Eq. (2)) (as seen in Fig. 3). Formally, define psd to be the response
probability (the percent of “+” responses) for stimulus s (s= “−” or s = “+”) in
condition q (taking one of two values, for two prior probabilities, or two context
orientations). The average change in bias of the two stimuli is then
0:5 � Biasþ þ Bias�ð Þ, and the shift of the internal criterion is c2− c1 (where cq is
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the internal criterion in condition q). Thus

0:5 � Biasþ þ Bias�ð Þ
¼ 0:5 � z pþ1

� �� z pþ2
� �� �þ z p�1

� �� z p�2
� �� �� �

¼ �0:5 � z pþ2
� �� z p�2

� �� �þ 0:5 � z pþ1
� �� z p�1

� �� � ¼ c2 � c1:

ð4Þ

Therefore, the average change in bias of the two stimuli is equal to the shift of
the internal criterion.

To avoid saturation, probabilities were clipped to the range 1
2n ; 1� 1

2n

� �
, where n

is the number of trials in a measurement. Bias and d′ were calculated by applying
Eqs. (1) and (3), respectively, after the probabilities were clipped to the above
range. Probabilities were calculated after pooling RT-binned trials from all relevant
days, blocks, spatial positions, and target stimuli (see below).

In the prior-dependent experiments, bias was calculated separately for each
stimulus (as in Fig. 3, Supplementary Fig. 1), then averaged (Fig. 7, Supplementary
Fig. 2). In the “Discrimination MTurk” experiment, only the ±1.5° target stimulus
orientations were analyzed (the ±4.5° orientations were intended to stabilize the
observers’ performance).

In the context-dependent experiments, the range of target orientation was
continuous, having steps of 1°, 2°, or 3°. (The use of a continuous range permits
measuring the bias in degrees, see Supplementary Fig. 8). In the experiments with
1° steps, the d′ between adjacent orientations was small (d′ ≈ 0.35, see Fig. 5). In
these experiments, we pooled data from a pair of adjacent target orientations when
calculating the bias. We chose, separately for each observer, the pair of orientations
having discrimination performance that is closest to chance level. This approach
improves the dynamic range over calculating bias for a single, fixed target
orientation, especially under less-controlled conditions (MTurk) (data for single,
physical orientations is reported at Supplementary Figs. 4 and 5). In the
experiments with 2° and 3° steps, the d′ between adjacent orientations was ~1
(Fig. 5). For these experiments, bias was calculated for the single orientation that is
closest to chance level. It can be observed that the measured bias for most observers
was not saturated (Supplementary Figs. 2 and 6). An alternative approach for
avoiding saturation is to average probabilities across observers before calculating
bias and sensitivity. This approach led to the same qualitative findings as reported
here. Moreover, the same results were found when measuring bias as the shift in
the PV orientation (described below; Supplementary Fig. 8).

Fitting perceived orientation: In addition to the bias measure motivated by SDT
(described above), we also measured context-dependent bias using the magnitude
of the shift in degrees in the perceived target orientation (reported in
Supplementary Fig. 8). Specifically, the magnitude was defined as half the shift in
the PV orientation between the two context orientations. To find the PV
orientation in a given condition, the percentage of CW reports as a function of the
target orientation was interpolated to find the orientation with 50% CW reports
(i.e., equal probability for CW and CCW reports; fitting to a cumulative normal
distribution that takes into account the lapse rates was achieved with the Psignifit
3.0 software34). Under the TAE periphery conditions (retinotopic and non-
retinotopic), the data reflected two “target” sides measured at several experimental
days. The effect magnitude was calculated separately for the different experimental
days and sides, then averaged across days and sides. Note that although this
method of analysis is standard for measuring the TAE and the TI, it is less
meaningful when binning RT, because different target orientations have different
difficulties, and hence, different mean decision times. Specifically, if binning is done
based on time irrespective of target orientation, then the bins are unbalanced (e.g.,
the fastest bin will only contain trials of easy target orientations). If binning is done
separately for each target orientation (as we do here), then the bins are balanced,
but there is no descriptive time range associated with a bin (i.e., bins reflect relative
rather than physical times).

Model comparison. We wish to stress that our main point is not related to a
specific model, but to a general theoretical idea that can be implemented using
different models. For the purpose of comparing how well different mechanistic
models can account for the observed time-dependence of bias, we followed
recommendations35,36 and considered both the generative performance (how well
the model can generate the data, Figs. 7 and 8), and the predictive performance
(how well the model can predict the data, Table 1). Both generative and predictive
performances were obtained by fitting the model to the data (there was no need for
simulations, because the models under consideration have analytical expressions).
The illustrations in Fig. 6 were obtained by simulations (100,000 trials).

Unbounded model: The model assumes some diffusion process of evidence
accumulation, equivalent to a simple random walk (a Wiener process, Fig. 6a). The
process starts from some initial condition, and gradually diverges due to stochastic
diffusion (noise). In this case, we expect the influence of a change in the starting
point of the random walk to diminish at a rate proportional to a square-root of the
time, that is

Bias ¼ b0ffiffiffiffiffiffiffiffiffiffiffi
t � t0

p ; ð5Þ
where t is time, t0 is the initial time (i.e., the non-decision time), and b0 is the

initial bias at time t0. Note that the unbounded model does not explain the decision
time itself, just how the decision time affects the bias. The t0 was restricted to the
range 10–1000 ms.

When fitting to the unbounded model, the predictor was physical time (average
RT in a bin), and the predicted bias was given by Eq. (5) where t is the predictor,
and b0 and t0 are the two free parameters. Predictions were clipped to the
approximate range used for the behavioral measurements (see above). The b0
parameter was fit per observer, while the t0 parameter was fit on the group level
(separately for each experiment). Because t0 represents the non-decision time, we
also verified that using a fixed value of t0 (350 ms), obtained from the behavioral
RT distributions, leads to the same findings as found when t0 is fitted from the bias
data. Note that under this model the predictor is physical time, so different
observers can have different predictor values.

Bounded model (DDM): An alternative approach of modeling decision
processes, which also explains the decision times, is to assume that there are
decision bounds. When the accumulated evidence reaches a bound, the process is
stopped and a decision is made. Here, we consider the standard bounded
model (DDM8–11,37, Fig. 6b; see mathematical background in refs. 38,39). The DDM
can be defined using four parameters: the drift rate (v), bound separation (a),
starting point (z), and non-decision time (t0). In this description, the bounds are at
0 and a, and the process starts from point z. Under these conditions, the analytical
expression of the probability distribution of the decision times is known, and for
the lower bound is given by40

f tjv; a; zð Þ ¼ π

a2
exp � vaz

a
� v2t

2

� �X1
k¼1

k exp � k2π2t
2a2

� �
sin

kπz
a

� �
: ð6Þ

The distribution of decision times for the upper bound is similar, given by
setting v0 ¼ �v and z0 ¼ a� z. Additional parameters can be introduced to the
DDM, such as intertrial variability parameters9. Here, we did not consider such
extensions, with the exception of Supplementary Fig. 9b, where the intertrial
variability of the drift rate was used25 (computed using the fast-dm-30 software41).

When fitting to the DDM, the predictor was relative time (cumulative RT
probability, i.e., quantiles), and the predicted bias was obtained by changing the
drift rate and/or the starting point. We considered three modeling approaches. (1)
“Fixed bias” model (one parameter per observer). The model is given by assuming
that the bias is fixed in time, or equivalently, that the bias is a consequence of a
change in the drift rate of the DDM (i.e., a change of v from + to −, the single
parameter being the size of this change). (2) “Start point change” model (one
parameter per observer). The model is given by assuming that the bias is caused by
a change in the starting point (i.e., a change of z from a

2 þ b to a
2 � b for some b, the

single parameter being the size of this change). (3) “Start point and drift rate
change” model (one parameter per observer, one parameter on the group level).
The model is given by assuming that the bias is caused by a change in both the drift
rate and the starting point. The two parameters used were the size of the overall
change, b, and the proportion of the change that is applied to the starting point
over the drift rate, p. Then, bias is given by a change in both starting point (z,
changed from a

2 þ b � p to a
2 � b � p) and drift rate (v, changed from +b · (1− p) to

−b · (1− p)). The p parameter was fit on the group level (separately for each
experiment).

The bias between two DDM parametrizations (that differ by starting point
and/or drift rate) was obtained by computing the analytical distributions of the
upper and lower bounds for each parametrization (Eq. (6)), binning by RT,
clipping probabilities to the approximate range used for the behavioral
measurements (see above), and measuring the bias (Eq. (1)). This results in
bias as a function of cumulative RT probability. Note that this function is
practically invariant, within the relevant range of parameters used, to the value
of the drift rate, bound separation, and non-decision time parameters, if they
are fixed (not changed between the two parametrizations). We verified this
claim by using simulations, see examples for invariance at Fig. 7 and
Supplementary Fig. 9a.

Fitting: Fitting of parameters was achieved by minimizing the squared
difference between the predicted and the measured bias. Fitting was done on the
individual or hierarchical level (i.e., always one parameter per observer, possibly
with an additional parameter on the group level, as described above). Fitting was
achieved by using the “fminsearch” function of MATLAB® R2019b.

AICc and BIC: To quantify the predictive performance, we used the small-
sample correction of the Akaike information criterion (AICc), as well as the
Bayesian information criterion (BIC). First, to calculate the likelihood of the data
given a fitted model, samples were assumed to be drawn from a normal distribution
around a model prediction (with standard deviation equaling to the standard
deviation of all errors). This assumption permits calculating the log-likelihood (LL)
of the data for the maximum-likelihood model by using the sum of the squared
errors (SSE) of the least-squares model, according to: LL ¼ � 1

2 n ln 2π SSE
n

� �þ 1
� �

,
where n is the number of samples and ln(·) is the natural logarithm. Then, AIC=
−2LL+ 2K, and BIC=−2LL+ ln(n)K, where K is the number of fitted model
parameters plus one (for the fitted “parameter” of the standard deviation of the

errors). Finally, AICc ¼ AICþ 2KðKþ1Þ
n�K�1 , which is the recommended approximation

of the small-sample correction for AIC42. The small-sample correction was used
because n/K < 40.

Statistics and reproducibility. Linear mixed-effects regression: The statistical test
used to determine if measured bias depends on time was a linear mixed-effects
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regression analysis. The linear model had a fixed intercept term, a fixed slope term
using the relative RT (i.e., time bin index, 1:4), and a random intercept term
grouped by observer (similar to a repeated-measures ANOVA). This model can be
described using Wilkinson notation as: “Bias ~ RT_ bin_index+ (1 | Observer)”.
The use of relative rather than physical time is important because the distribution
of RTs is skewed (as seen in all figures here that depict RTs, note that the scaling is
always logarithmic, and as discussed elsewhere25). The use of linear mixed-effects
regression rather than, e.g., repeated-measures ANOVA permits analyzing sys-
tematic time-dependent trends in the data. We used a Bonferroni correction for
two multiple comparisons because we considered using either four or six time bins.
Using six bins led to saturation of the bias measurements in the TI experiments, so
we decided to use four bins. (The findings we report remain significant when using
either four or six bins, with the slope term always showing P ≤ 1 × 10−4 corrected
for two multiple comparisons.) We note that other analysis decisions were moti-
vated by best practice/necessity, so they did not inflate the alpha. The main idea we
followed was to be as strict as possible, to prevent/minimize confounds.

Effect sizes: To compute Cohen’s d for the difference between the fastest and the
slowest bins, we consider the mean difference divided by its standard

deviation: Cohen0s d ¼ Y1�Y2
SDiff

, where Y1 is the mean bias in the fastest bin, Y2 is the

mean bias in the slowest bin, and SDiff is the sample standard deviation of the
pairwise differences43,44. This is the calculation employed by the standard R
statistical programming language in the paired-samples case (effsize v0.7.4)45,46.
We also report Hedge’s g, which is the small-sample correction to Cohen’s d43,47:
Hedge0s g ¼ d 1� 3

4n�1

� �
, where n is the number of samples (i.e., observers).

Random permutation tests: We consider the null hypothesis that bias is
independent of RT. To test if a proposed model is significantly better than expected
under the null hypothesis, we employed a random permutation test. Specifically, in
N= 12,000 random repetitions, the RT of all trials was randomly permuted, and
the ΔAICc was recorded for each iteration, where the ΔAICc is the difference in
AICc between the proposed model and the “Fixed bias” null hypothesis model. The
distribution of ΔAICc under the null hypothesis was then compared to the ΔAICc
measured behaviorally (one-tailed, because only one side of the distribution
indicates that the proposed model is better). Specifically, the probability to measure
under the null hypothesis ΔAICc values that are at least as extreme as the
behaviorally measured ΔAICc was recorded (with a minimum of 1

N=2 ¼ 0:006). The

same test was used for ΔBIC. We then applied a Bonferroni correction for six
multiple comparisons, because there were three considered models, and two
options for the number of time bins (see above). Therefore, the lowest possible P
value was 0:006

6 ¼ 0:001. The reason we used a permutation test is that the standard
likelihood ratio test (and similar alternatives) cannot be used for non-nested
models. Additionally, the permutation test is nonparametric, supplementing the
remaining statistical tests used here which are parametric.

Sample size: Here, we use standard psychophysical methods employed in
vision research. The effects studied (response bias, TAE and TI) are expected to
be found with each observer tested in standard experimental conditions, as
indicated by previous work (response bias1, TAE6,16,48, and the TI49). The reader
is invited to try (aftereffects3,50, TI51,52). The behavior studied here concerns the
dependency of these robust effects on RT. We estimated that, if a strong RT-
dependence exists (as predicted by a change in starting point in the DDM), then
the effect size should be very large (e.g., Cohen’s d > 1.5). Although the context-
dependent experiments showed shallower time-dependence than we initially
predicted, the statistical analysis confirmed the robustness of the results (see
Supplementary Tables 1 and 2). Our laboratory sample sizes were somewhat
arbitrarily set (7 ≤ N ≤ 14), taking advantage of existing unpublished RT data
collected in the lab (testing properties of the TAE and the TI; some of them from
previously published experiments, e.g.16), and having at least seven participants
per experiment (a standard number used in the field for experiments of this
kind). To ensure that the findings are robust and easily replicable, we also report
data collected using the Amazon Mechanical Turk (N ≥ 50 per experiment). We
estimated, using power analysis based on the laboratory study and our
experience with the reliability of observers in the MTurk platform, that 10–15
observers are sufficient per MTurk experiment. We decided to use larger sample
sizes (predetermined) for the purpose of ensuring that the statistical results are
overwhelmingly convincing. Data were collected from multiple observers
simultaneously (usually in batches of 15 to 30 observers), so sample sizes were
chosen approximately, with final counts that depended on the number of
excluded observers (see Supplementary Table 3). For the MTurk TI “Mix”
dataset (N= 475 observers), we pooled all relevant data from a set of MTurk
experiments that investigated spatial properties of the TI, to be published
elsewhere (see Supplementary Method 1).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The behavioral measurements reported in the main figures are available as
Supplementary Data 1. All other data are available from the corresponding author upon
reasonable request.

Code availability
The code used for data collection is available from the corresponding author upon
reasonable request.

Received: 17 March 2019; Accepted: 21 January 2020;

References
1. Green, D. M. & Swets, J. A. Signal Detection Theory And Psychophysics (1966).
2. Gorea, A. & Sagi, D. Failure to handle more than one internal representation

in visual detection tasks. Proc. Natl Acad. Sci. 97, 12380–12384 (2000).
3. Webster, M. A. Adaptation and visual coding. J. Vis. 11, 3–3 (2011).
4. Clifford, C. W. G. & Rhodes, G. Fitting the mind to the world: Adaptation and

after-effects in high-level vision. 2, (Oxford University Press, 2005).
5. Kaneko, S., Anstis, S. & Kuriki, I. Brief presentation enhances various

simultaneous contrast effects. J. Vis. 17, 7 (2017).
6. Wolfe, J. M. Short test flashes produce large tilt aftereffects. Vis. Res. 24,

1959–64 (1984).
7. Kahneman, D Thinking, Fast and Slow.1st edn, (Farrar, Straus and Giroux:

New York, 2011).
8. Gold, J. I. & Shadlen, M. N. The neural basis of decision making. Annu. Rev.

Neurosci. 30, 535–74 (2007).
9. Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model:

current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).
10. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59 (1978).
11. Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for

two-choice decision tasks. Neural Comput. 20, 873–922 (2008).
12. Summerfield, C. & De Lange, F. P. Expectation in perceptual decision making:

neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745 (2014).
13. Moran, R. Optimal decision making in heterogeneous and biased

environments. Psychon. Bull. Rev. 22, 38–53 (2015).
14. Schwartz, O., Hsu, A. & Dayan, P. Space and time in visual context. Nat. Rev.

Neurosci. 8, 522–35 (2007).
15. Linares, D., Aguilar-Lleyda, D. & Lopez-Moliner, J. Decoupling sensory from

decisional choice biases in perceptual decision making. Elife 8, e43994 (2019).
16. Pinchuk-Yacobi, N., Dekel, R. & Sagi, D. Expectations and visual aftereffects. J.

Vis. 16, 19 (2016).
17. Magnussen & Johnsen Temporal aspects of spatial adaptation. A study of the

tilt aftereffect. Vis. Res. 26, 661–72 (1986).
18. van Zoest, W. & Hunt, A. R. Saccadic eye movements and perceptual

judgments reveal a shared visual representation that is increasingly accurate
over time. Vis. Res. 51, 111–119 (2011).

19. Dayan, P. & Daw, N. D. Decision theory, reinforcement learning, and the
brain. Cogn. Affect. Behav. Neurosci. 8, 429–453 (2008).

20. White, C. N. & Poldrack, R. A. Decomposing bias in different types of simple
decisions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 385 (2014).

21. Mulder, M. J., Wagenmakers, E.-J., Ratcliff, R., Boekel, W. & Forstmann, B. U.
Bias in the brain: a diffusion model analysis of prior probability and potential
payoff. J. Neurosci. 32, 2335–2343 (2012).

22. Urai, A. E., De Gee, J. W., Tsetsos, K. & Donner, T. H. Choice history biases
subsequent evidence accumulation. Elife 8, e46331 (2019).

23. Kloosterman, N. A. et al. Humans strategically shift decision bias by flexibly
adjusting sensory evidence accumulation. Elife 8, e37321 (2019).

24. Solomon, J. A. & Morgan, M. J. Stochastic re-calibration: contextual effects on
perceived tilt. Proc. R. Soc. B Biol. Sci. 273, 2681–2686 (2006).

25. Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions.
Psychol. Sci. 9, 347–356 (1998).

26. Ratcliff, R. & Smith, P. L. A comparison of sequential sampling models for
two-choice reaction time. Psychol. Rev. 111, 333 (2004).

27. Wald, A. Sequential tests of statistical hypotheses. Ann. Math. Stat. 16,
117–186 (1945).

28. Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and
biases. Science 185, 1124–1131 (1974).

29. Evans, J. S. B. T. & Stanovich, K. E. Dual-process theories of higher cognition:
advancing the debate. Perspect. Psychol. Sci. 8, 223–241 (2013).

30. Pelli, E. Contrast in complex images. JOSA A, 7, 2032–2040 (1990).
31. Greenlee, M. W., Georgeson, M. A., Magnussen, S. & Harris, J. P. The time

course of adaptation to spatial contrast. Vis. Res. 31, 223–236 (1991).
32. Ratcliff, R. & Tuerlinckx, F. Estimating parameters of the diffusion model:

approaches to dealing with contaminant reaction times and parameter
variability. Psychon. Bull. Rev. 9, 438–481 (2002).

33. Zylberberg, A., Wolpert, D. M. & Shadlen, M. N. Counterfactual reasoning
underlies the learning of priors in decision making. Neuron 99, 1083–1097
(2018).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0786-7 ARTICLE

COMMUNICATIONS BIOLOGY |            (2020) 3:59 | https://doi.org/10.1038/s42003-020-0786-7 | www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


34. Fründ, I., Haenel, N. V. & Wichmann, F. A. Inference for psychometric
functions in the presence of nonstationary behavior. J. Vis. 11, 16–16 (2011).

35. Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in
computational cognitive modeling. Trends Cogn. Sci. 21, 425–433 (2017).

36. Wilson, R. & Collins, A. Ten Simple Rules for the Computational Modeling of
Behavioral Data (2019).

37. Ratcliff, R. & Smith, P. Modeling simple decisions and applications using a
diffusion model. in The Oxford Handbook of Computational and
Mathematical Psychology (Oxford University Press, 2015).

38. Shadlen, M. N., Hanks, T. D., Churchland, A. K., Kiani, R. & Yang, T.
The speed and accuracy of a simple perceptual decision: a mathematical
primer. Bayesian Brain Probabilistic Approaches to Neural Coding 209–237
(2006).

39. Luce, R. D. Response Times: Their Role in Inferring Elementary Mental
Organization. (Oxford University Press on Demand, 1986).

40. Navarro, D. J. & Fuss, I. G. Fast and accurate calculations for first-passage
times in Wiener diffusion models. J. Math. Psychol. 53, 222–230 (2009).

41. Voss, A., Voss, J. & Lerche, V. Assessing cognitive processes with diffusion
model analyses: a tutorial based on fast-dm-30. Front. Psychol. 6, 336 (2015).

42. Burnham, K. P. & Anderson, D. R. Practical use of the information-theoretic
approach. in Model Selection and Inference 75–117 (Springer, 1998).

43. Herzog, M. H. Understanding Statistics and Experimental Design: How to Not
Lie With Statistics. https://doi.org/10.1007/978-3-030-03499-3 (Springer,
2019).

44. Lakens, D. Calculating and reporting effect sizes to facilitate cumulative
science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863
(2013).

45. Gibbons, R. D., Hedeker, D. R. & Davis, J. M. Estimation of effect size from a
series of experiments involving paired comparisons. J. Educ. Stat. 18, 271–279
(1993).

46. Team, R. C. R: A Language and Environment for Statistical Computing
(2013).

47. Cooper, H., Hedges, L. V & Valentine, J. C. The Handbook of Research
Synthesis and Meta-analysis. (Russell Sage Foundation, 2009).

48. Knapen, T., Rolfs, M., Wexler, M. & Cavanagh, P. The reference frame of the
tilt after effect. J. Vis. 10, 8–8 (2010).

49. Song, C., Schwarzkopf, D. S. & Rees, G. Variability in visual cortex size reflects
tradeoff between local orientation sensitivity and global orientation
modulation. Nat. Commun. 4, 2201 (2013).

50. Thompson, P. & Burr, D. Visual aftereffects. Curr. Biol. 19, R11–4 (2009).
51. Clifford, C. W. G. The tilt illusion: phenomenology and functional

implications. Vis. Res. 104, 3–11 (2014).
52. Schwartz, O., Sejnowski, T. J. & Dayan, P. Perceptual organization in the tilt

illusion. J. Vis. 9, 19 (2009).

Acknowledgements
This research was supported by the Basic Research Foundation, administered by the
Israel Academy of Science, and by The Weizmann Braginsky Center for the Interface
between the Sciences and the Humanities. We thank Drs. Misha Katkov and Noga
Pinchuk-Yacobi for their suggestions and comments, and Dr. Ron Rotkopf for statistics
advice.

Author contributions
R.D. and D.S. designed, performed, and analyzed the research and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
020-0786-7.

Correspondence and requests for materials should be addressed to D.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0786-7

12 COMMUNICATIONS BIOLOGY |            (2020) 3:59 | https://doi.org/10.1038/s42003-020-0786-7 | www.nature.com/commsbio

https://doi.org/10.1007/978-3-030-03499-3
https://doi.org/10.1038/s42003-020-0786-7
https://doi.org/10.1038/s42003-020-0786-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Perceptual bias is reduced with longer reaction times during visual discrimination
	Results
	Prior dependent bias
	Context dependent bias
	Theory

	Discussion
	Methods
	Observers
	Apparatus
	Stimuli and tasks
	Procedure
	Additional data
	Analysis
	Model comparison
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




