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Foresight in a Game of Leadership
Logan Perry1 & Sergey Gavrilets1,2*

Leadership can be effective in promoting cooperation within a group, but as the saying goes “heavy 
is the head that wears the crown”. A lot of debate still surrounds exactly what motivates individuals 
to expend the effort necessary to lead their groupmates. Evolutionary game theoretic models 
represent individual’s thought processes by strategy update protocols. The most common of these 
are random mutation, individual learning, selective imitation, and myopic optimization. Recently we 
introduced a new strategy update protocol - foresight - which takes into account future payoffs, and 
how groupmates respond to one’s own strategies. Here we apply our approach to a new 2 × 2 game, 
where one player, a leader, ensures via inspection and punishment that the other player, a subordinate, 
produces collective good. We compare the levels of inspection and production predicted by Nash 
Equilibrium, Quantal Response Equilibrium, level-k cognition, fictitious play, reinforcement learning, 
selective payoff-biased imitation, and foresight. We show that only foresight and selective imitation are 
effective at promoting contribution by the subordinate and inspection and punishment by the leader. 
The role of selective imitation in cultural and social evolution is well appreciated. In line with our prior 
findings, foresight is a viable alternative route to cooperation.

The web of social and economic ties that weaves us together has never been thicker. Every day we make decisions 
based on our expectations of how others will act1. While these waters are difficult to traverse, we are not without 
aid as there exists a plethora of mores to help us navigate this interpersonal maelstrom. The mores that coordi-
nate political and economic relationships are referred to as institutions2–4. Whether it is a teacher corralling their 
students’ behavior or the United Nations placing sanctions on an entire nation, institutions serve as an effective 
tool for resolving conflict and shaping behavior. The role of institutions in modern society cannot be understated, 
with some claiming they are the determining factor of whether nations succeed or fail3,5. However, their origins 
are much older than modern society as they existed even in hunter-gather groups6.

Here, we are concerned with the institution of leadership in small-scale societies7,8. A leader is defined as an 
individual who has non-random differential influence over group behavior9. Leaders can take on several different 
roles within a group, e.g. role-models10, managers11, punishers12 or volunteers13. Leader-follower relationships 
are likely to emerge in groups of conspecifics that benefit from acting in a unified manner14. Examples of actions 
that necessitate high degrees of coordination include migration, hunting, deterring predation, resolving internal 
conflicts, and competing with neighboring groups14.

Joint actions often lead to the collective action problem15 when all individuals can benefit from an action 
but no one is willing to bear its cost. The collective action problem (CAP) is present in many animal and human 
groups15–19. Several solutions to the CAP exist. They include kin selection, direct and indirect reciprocity, pun-
ishment20, selective incentives and institutional design15,21, the presence of within-group heterogeneity17,22–24 and 
influential individuals25.

Here we are focused on the solution by way of punishment and the institution of leadership. In particular, we 
are concerned with the question of why leaders would choose to enforce cooperation since abstaining from doing 
it could be less costly - the so called second-order free-rider effect. We investigate this by developing a modified 
inspection game26.

Inspection games are typically concerned with modeling an inspector that seeks to verify the adherence to 
some pre-arranged contract and an inspectee that may be tempted to violate said contract. In the past, inspection 
games have been used to better understand relationships between law enforcement and criminals27–30, employers 
and their employees31, and countries dealing with nuclear armament32. Here we modify the standard inspection 
game26 to account for interactions between a leader and a subordinate. We do this by altering basic assumptions 
so that the subordinate has no incentive to produce a good, while the leader has a vested interest in seeing the 
good produced. Our motivation for doing this is to mirror a standard CAP with punishment in a two person 
game. In particular we are interested in our model having properties that parallel the first- and second-order 

1Department of Mathematics, Center for the Dynamics of Social Complexity, University of Tennessee, Knoxville, TN, 
37996, USA. 2Department of Ecology and Evolutionary Biology, National Institute for Mathematical and Biological 
Synthesis, University of Tennessee, Knoxville, TN, 37996, USA. *email: gavrila@tiem.utk.edu

OPEN

https://doi.org/10.1038/s41598-020-57562-1
mailto:gavrila@tiem.utk.edu


2Scientific Reports |         (2020) 10:2251  | https://doi.org/10.1038/s41598-020-57562-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

free-rider effects. The simplicity of our proposed model allows us the opportunity to obtain analytical results, 
which can in turn be used to provide a baseline understanding of more complicated models.

To accurately portray the dynamics of the leader-subordinate relationship we must consider their thought 
processes. While both individuals are interested in bettering their own positions, the leader has sway over the 
subordinate and must make decisions based on this influence. This means that the leader must anticipate how 
their subordinate will react and hence must take into consideration how their subordinate makes decisions. This 
consideration of other’s cognitive processes is referred to as a “theory of mind”33,34. A “theory of mind” is thought 
to be key to promoting cooperation withing groups34, has been linked to the size of individuals’ social networks35, 
their propensity for social cooperation36, and the extent to which they are agreeable37. Standard approaches of 
myopic optimization, adjustment through error and mutation, reinforced learning, and selective imitation fail to 
account for this theory. Here we continue to develop the strategy update protocol of foresight38, which, we argue, 
incorporates some aspects of the theory of mind and in doing so solves the second-order free-rider effect.

Foresight works by altering agents’ utility functions to consider not only how a strategy will do in this round, 
but how it will affect the next round as well38. Fundamental to foresight is the fact that agents consider how their 
actions will shape the future behaviors of others. Thus it accounts both for human’s “theory of mind” and the 
“shadow of the future”39. The major focus of our earlier work was the impact of foresight on a population facing a 
collective action problem in the presence of peer punishment. We showed that in heterogeneous groups possess-
ing foresight a division of labor will develop where the strong will specialize in enforcing the contributions of the 
weak. We now seek to further develop our theory of foresight and obtain analytical results.

Our approach here is broken into several phases. We begin by developing a two-player game based on the clas-
sical inspection game26 to investigate the relationship between a leader and their subordinate, which we dub the 
leadership game. As in our original paper38, we assume heterogeneity, but now take it to be systemic. This is done 
by pre-designating a leader who serves as an enforcer over a subordinate. We show that the leader lacks moti-
vation to enforce the contribution of their subordinate despite their vested interests in seeing goods produced. 
Our investigation of the leadership game is structured as follows. First, we consider some typical approaches to 
analyzing the leadership game, e.g. Nash equilibria, Quantal Response Equilibria (QRE) models, level-k models, 
and fictitious play models. We follow this up by investigating the notion of foresight, which we previously intro-
duced38. Our results show that the ability of foresight successfully motivates leaders to punish subordinates, and 
in turn motivates subordinates to produce. Finally, we compare and contrast foresight with two different learning 
protocols: Cross’s reinforcment learning model40 and selective imitation41.

Results
Leadership game.  We consider a simple 2 × 2 game played between a leader and a subordinate, which is 
based on the inspection game26 described in the Supplementary Information (SI). The subordinate is tasked with 
producing a good or benefit at a personal cost to themselves, while the leader has a vested interest in seeing the 
good is produced. Since we are interested in drawing parallels with collective action problems we make assump-
tions in such a way that the subordinate has no incentive to see the good be produced unless they are facing 
punishment.

The subordinate can either produce the good ( =x 1) or shirk on the production of the good ( =x 0). In the 
case the subordinate produces the good, they pay a cost of c to produce a good of value b. Any benefit produced 
by the subordinate is split with the leader in a θ θ−: 1  ratio. Here θ≤ ≤0 1 can be thought of as a taxation rate. 
The strategies available to the leader are to enforce production via inspection ( =y 1) or to not inspect ( =y 0). 
Inspection costs the leader h, but in the event that a leader inspects a non-producing subordinate they inflict a 
punishment of d at a cost of k. We assume that all parameters are positive (see Table 1). Table 2 describes the cor-
responding payoff matrix.

The payoff functions for the leader and the subordinate are then

π θ= − − − −x y b c x dy x( , ) [(1 ) ] (1 ), (1a)S

π θ= − + − .x y b x h k x y( , ) [ (1 )] (1b)L

We will make three assumptions. First, given the subordinate contributes (i.e., =x 1), the benefit to the leader 
exceeds its cost of inspection, i.e., θ >b h. Second, given our aforementioned interest in mirroring CAP in a 
two-person game, we assume that without punishment (i.e., if =y 0) the subordinate is not motivated to contrib-

Parameter Interpretation

b Benefit produced by a subordinate

c Cost of contributing to a subordinate

d Punishment for shirking

h Cost of inspecting to a leader

k Cost of punishing to a leader

θ Taxation rate

λ Precision parameter

ω Foresight parameter

Table 1.  Parameters in the leadership game.
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ute, i.e., θ− − <b c(1 ) 0. Third, facing the threat of punishment (i.e., if =y 1), the subordinate however is 
motivated to contribute, i.e., θ− − > −b c d(1 ) .

Pure strategies.  Next we derive best response functions for the subordinate, yBR ( )S , given the leader’s action y 
and for the leader, xBR ( )L , given the subordinate’s action x. If the leader inspects ( =y 1), the subordinate prefers 
to produce ( =x 1). If, however, the leader doesn’t inspects, then the subordinate’s best option is to do nothing. 
Therefore, =y yBR ( )S . This implies that the subordinate can be motivated to produce the good. On the other 
hand, the leader’s best response is not to inspect no matter what the subordinate does: =xBR ( ) 0L . Therefore, the 
only Nash equilibrium is =⁎ ⁎x y( , ) (0, 0).

Mixed strategies.  Suppose that the subordinate chooses to produce the good with probability p while the leader 
opts to inspect with probability q. Then the expected payoffs are

θ= − − − −E p q p b c p qd( , ) [(1 ) ] (1 ) , (2a)S

θ= − + − .E p q p b q h p k( , ) [ (1 ) ] (2b)L

From the above we can see that the subordinates best response depends upon the leaders strategy. In particu-
lar, there is a critical inspection rate of the leader,

θ
=

− −q c b
d

(1 ) , (3)c

(0 ≤ qc ≤ 1), such that if <q qc, the subordinate is best off always doing nothing: =BR q( ) 0S . If >q qc, the subor-
dinate is best off always producing the good: =BR q( ) 1S . If =q qc, the subordinate will receive the same payoff 
no matter what they do. The case of the leader is much simpler, as the leader’s best response is always to do noth-
ing: ≡BR p( ) 0L . Hence, the only Nash equilibrium is at =⁎ ⁎p q( , ) (0, 0) when the subordinate does not contrib-
ute and the leader does not inspect.

Implications for evolutionary dynamics.  Assume that individuals are bounded rational and attempt to increase 
their payoffs by evaluating some “candidate” strategies, which they generate mentally, and choosing one with 
probabilities proportional to estimated payoffs. (In the terminology of ref. 42, this is a direct strategy revision pro-
tocol). The results above imply that the game will converge to the Nash equilibrium (0, 0) of nothing being done.

Quantal Response Equilibrium (QRE).  Next, we generalize our results for the case when agents make 
errors in evaluating payoffs. We do this by relaxing the assumption that individuals are best responders and 
replace it with the assumption that individuals are better responders. In this new paradigm, all strategies are 
played with non-zero probabilities, but the rate at which they are played is proportional to their payoff. This 
approach leads to investigate what is known as the Quantal Response Equilibrium43 of our model.

Let p be the probability the subordinate contributes, and q be the probability the leader inspects. Let 
π=E q(1, )S S,0  and π=E q(0, )S S,1  be the expected payoff of not contributing and contributing to the subordinate, 

respectively. Define π=E p( , 0)L L,0  and π=E p( , 1)L L,1  for the leader similarly. In the QRE approach, p and q are 
specified as

λ λ
=

+ −
=

+ −
p

E E
q

E E
1

1 exp[ ( )]
, 1

1 exp[ ( )]
,

(4)S S L L,0 ,1 ,0 ,1

where λ is the precision parameter (e.g., with λ = 0, the players’ decision are random: = = .p q 0 5, while as 
λ → ∞, both player use myopic best response). Note that we assume both players have the same precision. The 
QRE solutions for p and q satisfy the equalities43

λ λ
−

= −
−

= − .
p p E E q q E Eln( (1 )) , ln( (1 ))

(5)S S L L,0 ,1 ,0 ,1

We solve the above equations numerically. Figure S1 in the SI shows the impact that the precision parameter 
λ has on the QRE values ⁎ ⁎p q( , ). For λ = 0 play is perfectly random so that ⁎ ⁎= =p q 1

2
, as we would expect. As 

we increase λ, play converges to the single Nash equilibrium at (0, 0), again as we would expect. So unless error is 
very high (i.e., λ is small), there will be not much inspection or contribution.

Leader

Subordinate

Inspect Don’t Inspect

Produce θ− −b c(1 ) , θ −b h θ− −b c(1 ) , θb

Shirk −d, − −h k 0, 0

Table 2.  Payoff matrix for the basic leadership game.
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Before introducing foresight, we show next that just incorporating a theory of mind in our model is not 
enough to overcome the free-rider-like effects. We consider two different models attempting to capture some 
aspects of this theory.

Level-k approach.  A common way for capturing a theory of mind in models of decision-making is by sup-
posing the agents utilize level-k rationality, which is a hierarchical way of thinking based on iterative logic44. In it 
the most basic model of cognition is level-0 rationality, which makes agents to just play the strategies available to 
them at random. It is important to note, that players are never assumed to be level-0, but rather it is the simplest 
model of others a player may have. A level-1 player will assume that all other individuals are level-0 and select a 
strategy which best responds to their predicted actions. Likewise, a level-2 player will assume all others are level-1 
and select a strategy accordingly. In this way we can iteratively define a level-k player who will assume all others 
are level-k − 1 and choose a strategy which best responds to their predicted action.

We begin by supposing both agents are level-1, which means they assume the other is level-0. Generalizing 
slightly, we suppose that a level-0 subordinate is assumed to contribute with probability p0, while a level-0 leader 
is assumed to contribute with probability q0 (e.g. = = .p q 0 500 0 ). Now the expected payoffs are given by E p q( , )S 0  
and E p q( , )L 0  (See Eqs. (2a) and (2b)). This implies the best response for a subordinate is to not contribute pro-
vided the expected cost of being punished is less than the net cost of producing, i.e. θ< − −q d c b(1 )0 . Likewise, 
it is best to contribute provided the expected cost of being punished is greater than the net cost of producing. 
Meanwhile the leader’s expected payoff E p q( , )L 0  is always maximized by setting =q 0 implying it is always best 
for the leader to not inspect.

Now a level-2 subordinate will assume that the leader is level-1, and thus anticipates that the leader will never 
inspect. This in turn means that a level-2 subordinate will never contribute. A level-2 leader on the other hand will 
expect a subordinate to contribute sometimes, but will always be better off doing nothing. So a level-2 leader will 
always opt to not inspect. Finally, for levels 3 onward we have by similar logic that neither player will do anything. 
Hence, level-k modeling is unable to overcome the free-rider-like problem in our model.

Fictitious play.  In the model of fictitious play45, every player assumes their opponents are playing strategies 
drawn from a certain stationary distribution which the player attempts to estimate via observation. Each player 
then chooses their action (i.e., a value of x or y) in an attempt to maximize their payoff given a prediction or 
assessment of their opponent’s strategy.

The leader assumes that the subordinate uses a mixed strategy contributing with a certain probability. Let p t( ) 
be the leader’s estimation of this probability at time t. The subordinate assumes that the leader uses a mixed strat-
egy inspecting with a certain probability. Let q t( ) be the subordinate’s estimation of this probability at time t. We 
take p (0), and q(0) to be the initial beliefs. Let x t( ) and y t( ) be the action taken, i.e. 0 or 1, by the subordinate and 
leader, respectively, in round t. Now we define a system of recurrence equations describing how the leader and 
subordinate adjust their believes based on observations of previous actions

+ = − +� �� �p t p t x t( 1) (1 ) ( ) ( ), (6a)

+ = − + .� �� �q t q t y t( 1) (1 ) ( ) ( ) (6b)

Here,  is a parameter which scales the impact of the most recent action on the agent’s estimation. In general, 
 can depend on t. For example, 

t
1

1
 =

+
 corresponds to the original approach45. The case of = 1 corresponds 

to best response.
Fictitious play itself is then defined as any rule the agent uses to choose a response from the set of best 

responses to his or her estimation of the opponent’s strategy. For our case, the natural choice of the rule is given 
by the best response functions BR q( )S  and BR p( )L  established above. Since our game is dominance solvable via 
iteration (see the SI for details), we know from ref. 46 that it will converge to an equilibrium asymptotically. As it 
has only one Nash equilibrium at (0, 0), it will converge to it. This makes sense as a rational leader would never 
choose to inspect as not inspecting offers a higher payoff in all circumstances, and a rational subordinate would 
quickly learn this is the case and thus choose to not contribute. Hence, fictitious play modeling is unable to over-
come the free-rider-like problem in our model.

Foresight.  We have shown that under myopic optimization, level-k modeling, or fictitious play leaders will 
fail to enforce and subordinates will fail to contribute. One method to overcoming this is to introduce foresight38. 
If we assume that the leader is willing to suffer a cost this round in order to make a gain in future rounds, then 
they could be motivated to inspect the subordinate. More specifically, we introduce the foresight parameter 
ω ∈ (0, 1), which measures the weight placed on next round’s forecasted payoffs versus this round’s anticipated 
payoff. This averaging of payoff now with payoff later can be compared with the typical practice of discounting 
future payoffs. Where foresight is particularly novel is how we account for the leader forecasting future payoffs. 
These forecasted payoffs depend upon the leader’s model of their subordinate. This consideration of how their 
subordinate reasons is where our leader’s theory of mind is on display. We assume that the leader’s model of their 
subordinate’s behavior is based on a best response and focus on the effect foresight has on a leader’s strategy 
selection.

We will assume that only the leaders use foresight. (The SI shows that allowing for the subordinate to use 
foresight does not change our conclusions). Consider a weighted sum of the leader’s payoffs for this and the next 
rounds:
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ω θ ω θ− × − + − + × − + −  bx h k x y bx h k x y(1 ) ( [ (1 )] ) ( [ (1 )] ),

where x  and y  are the subordinate and leader’s efforts in the next round. The leader expects that their action this 
round y will affect the subordinate’s action x  in the next round. If the subordinate uses best response, as we will 
assume, =x y. At the same time, y has no effect on the benefit to be produced by the subordinate this round, θbx, 
or the cost of the inspection in the next round, + − ′h k x y[ (1 )] . Therefore the can define the leader’s utility 
function as a weighted sum of the costs of inspection and punishment this round and the benefit next round

ω ω θ= − × − + − + × .u x y h k x y by( , ) (1 ) ( [ (1 )] ) ( ) (7)L

The leader’s utility function is thus different from their actual payoffs. For the subordinate who uses best 
response, the utility function is equal to the expected payoff given by Eq. (1a). Table 3 defines the utilities of dif-
ferent actions in this model.

Pure strategies.  We can see that the state (0, 0) is still a Nash equilibrium but only if ω ωθ− + >h k b(1 )( ) , that 
is, if the foresight parameter is small enough: ω ω< ≡

θ
+

+ +
⁎ h k

b h k
. However there is a new possibility: if 

ωθ ω> −b h(1 ) , or, equivalently, if the foresight parameter is large enough: ω ω> ≡
θ +

⁎⁎ h
b h

, there is another 
Nash equilibrium (1, 1). For intermediate values of ω, i.e. if ω ω ω< <⁎⁎ ⁎, these two equilibria coexist. The leader 
does the best at the (1, 1) equilibrium where the payoffs are θ= − −u b c(1 )S  and θ= −u b hL . The subordinate 
does the best at the (0, 0) equilibrium where the payoffs are 0 and 0.

Mixed strategies.  Assume that the two players make efforts with probabilities p and q, respectively, and consider 
formally the corresponding expected utilities:

θ= − − − −U p q b c p dq p( , ) [(1 ) ] (1 ), (8a)S

ω ωθ= − − + − + .U p q h k p q bq( , ) (1 )( ( (1 )) ) (8b)L

Computing the derivative ∂
∂

U p q
p

( , )S , one finds that the subordinate’s utility uS increases with p for >q qc and 
decrease otherwise, where qc is defined by Eq. (3). Similarly, computing the derivative ∂

∂
U p q

q
( , )L , the leader’s utility 

increases with q if >p pc and decreases otherwise. The critical value

ωθ
ω

=




+ −
−



.p

k
h k b1

1 (9)c

Note that <p 0c  and thus the condition >p pc is always satisfied if ωθ ω> − +b h k(1 )( ), i.e., if the expected 
future benefit is larger than the current cost of inspection and punishment (or, equivalently, if ω ω> ⁎⁎). There is 
a mixed Nash equilibrium = =⁎ ⁎p p q q( , )c c , but this equilibrium is unstable: if one player deviates from it, the 
other player will be motivated to change their strategy as well.

Implications for evolutionary dynamics.  These results imply that in corresponding evolutionary models utilizing 
direct strategy revision protocols42, depending on parameters and initial conditions, the system can go to either 
(0, 0) or (1, 1) state.

To illustrate these possibilities, assume that the subordinate always plays the best response to the leader’s previous 
action, i.e. =x y. Let the leader use a mixed strategy q. There are four possibilities for a combination of x and y entering 
the leader’s utility Eq. (7): (0, 0), (0, 1), (1, 0) and (1, 1) with probabilities − − −q q q q q(1 ) , (1 ), (1 )2  and q2, 
respectively. [Note that x is equal to y in the previous time step]. Therefore the expected utility to strategy q

ω

= − + −

+ − +
= − − .⁎

U q q u q q u
q q u q u

k q q q

( ) (1 ) (0, 0) (1 ) (0, 1)
(1 ) (1, 0) (1, 1)

(1 ) ( )

L L L

L L

2

2

where =⁎q pc. That is, function U q( )L  is quadratic with a maximum at =q 1.
If candidate strategies evaluated by the leader deviate only slightly from their current strategy, the dynamics 

will proceed in the direction of the gradient of U q( )L . That is, if <⁎q 0, or equivalently θ ω> − +b k h(1 )( ), q will 
evolve to 1 for any initial condition. If θ ω< − +b k h(1 )( ), q evolves to 1 if it exceeds q*/2 initially. These con-
clusions are not affected qualitatively if the leader make errors in predicting the subordinate’s behavior (see 

Leader

Subordinate

Inspect Don’t Inspect

Produce θ− −b c(1 ) , ω ωθ− − +h b(1 ) θ− −b c(1 ) , 0

Shirk −d, ω ωθ− − + +h k b(1 )( ) 0, 0

Table 3.  Utility matrix for the leadership game with foresight.
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the SI). If candidate strategies can deviate from the current strategy substantially, reaching the state =q 1 can 
happen quickly and for any initial condition. The evolution towards the state where both players always make 
maximum efforts is the new dynamical feature made possible by the leader’s foresight.

Learning.  Finally we compare foresight with two models of learning: reinforcement learning40 and 
payoff-biased selective imitation41.

Reinforcement learning.  In reinforcement learning, agents form opinions of strategies based on the payoffs 
received when those strategies are implemented. Following ref. 40, let U x y( , )X  be the utility to player ∈X L C,  
when the subordinate plays x and the leader plays y. Let p t( ) be the probability the subordinate contributes and 
q t( ) be the probability the leader inspects at time step t. Then in Cross’ learning process40 version of our model the 
probabilities p and q change according to stochastic equations

+ = + −p t xu x y u x y p t( 1) ( , ) (1 ( , )) ( ), (10a)S S

+ = + − .q t yu x y u x y q t( 1) ( , ) (1 ( , )) ( ) (10b)L L

What this means is that, after players observe how their current action (i.e. x or y) did, they update their state 
(i.e., p or q) by taking a weighted average between their old state and the state that puts all the weight on the cur-
rent action (either 0 or 1), where utility U x y( , )X  serves as the weight. This approach requires40 that all utilities are 
scaled to be between 0 and 1. We can achieve this, e.g. be defining them as

λπ
λπ

λπ
λπ

=
∑

=
∑

u x y x y
x y

u x y S x y
x y

( , ) exp{ ( , )}
exp( ( , ))

, ( , ) exp{ ( , )}
exp( ( , ))

,S
S

x S
L

L

y L

where λ is a parameter. By this construction, utility increases with the payoff, and all utilities fall between 0 and 1.
In the continuous time limit, stochastic system (10) can be approximated40,47 by deterministic differential 

equations:

= = −
dp t

dt
p t U x U( ) ( )( ( 1) ), (11a)S S

= = − .
dq t

dt
q t U y U( ) ( )( ( 1) ) (11b)R L

where

= = − +
= = − +

U x q u qu
U y p u pu

( 1) (1 ) (1, 0) (1, 1),
( 1) (1 ) (0, 1) (1, 1)

S S S

R L L

are the expected utilities of strategies =x 1 and =y 1, and

= + − + −
+ − −

= + − + −
+ − −

U pq u p q u p qu
p q u

U pq u p q u p q u
p q u

(1, 1) (1 ) (1, 0) (1 ) (0, 1)
(1 )(1 ) (0, 0),

(1, 1) (1 ) (1, 0) (1 ) (0, 1)
(1 )(1 ) (0, 0)

S S S S

S

L L L L

L

are the expected utilities of subordinates and leaders, respectively.
We analyzed both the stochastic and deterministic versions of this model. Stochastic numerical simulations of 

Eq. (10) show that the system always converges to equilibrium (0, 0) (see the SI). This conclusion is supported by 
linear stability analysis of equilibria of Eq. (11): the only stable equilibrium is (0, 0) (see the SI). We conclude that 
reinforcement learning is unable to overcome the free-rider-like problem in our model.

Selective imitation.  Here we assume that individuals compare their payoff with that of a peer and choose to 
either copy the selected individual (if their payoff is higher than the focal individual’s) or keep their own strategy41.

Consider a population of pairs each consisting of a subordinate and a leader. Let the i-th pair’s actions at time 
t be denoted by x t x t( ( ), ( ))i i  where all variable retain their usual interpretations. For each individual i, randomly 
select a peer j (i.e. leader for leader and subordinate for subordinate) and have the focal individual observe that 
peer’s payoff and action. Then the probability that at time t subordinate i continues playing their current action 
given they observed subordinate j is

λπ

λπ λπ
→ | =

+
p i i j

x t y t
x t y t x t y t

( )
exp{ ( ( ), ( ))}

exp{ ( ( ), ( ))} exp{ ( ( ), ( ))}
,t

S i i

S i i S j j
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which of course means the probability i switches to mimic j is → | = − → |p i j j p i i j( ) 1 ( )t t . A similar equation 
describes changes in the leader’s probability qi given they observe leader j′. As above, λ measures precision in 
payoff comparisons.

Assume that leaders and subordinates update their strategies at the same rate. In numerical simulations (not 
shown) the leaders and subordinates opt to do nothing. However if subordinates always play the best response to 
their leader’s previous action (i.e., if =x yprev), the system can evolve to a state with nonzero efforts. (See the SI for 
numerical illustrations).

Pure strategies.  Consider the case of pure strategies: inspect and not inspect. Given our assumptions about 
parameters and best response in the subordinates, the former strategy always has a higher payoff than the latter. 
Therefore the frequency of leaders who inspect will always increase (subject to stochastic errors). The larger pre-
cision parameter λ, the faster it happens.

Mixed strategies.  If leaders use mixed strategies, then using an approach similar to the one we applied to analys-
ing foresight, there are four possible combinations of x and y in the equation for the leader’s payoff π x y( , )L : 
(0, 0), (0, 1), (1, 0) and (1, 1) with probabilities − − −q q q q q(1 ) , (1 ), (1 )2  and q2, respectively. Therefore the 
expected payoff to the leader’s strategy q is

π π

π π

Π = − + −

+ − +
= − .⁎⁎

q q q q
q q q

kq q q

( ) (1 ) (0, 0) (1 ) (0, 1)
(1 ) (1, 0) (1, 1)

( )

L L L

L L

2

2

where = − θ −⁎⁎q 1 b h
k

. This is a quadratic maximized at =q 1. If variation in q in the population is small, q will 
evolve in the direction of the gradient of Π q( )L . That is, if the cost of punishment is small (i.e., θ< −k b h), q** is 
negative, and Π q( )L  is always increasing with ∈q [0, 1]. Thus, q is expected to evolve by selective imitation to 

=q 1 for any initial value. If the cost of punishment is large (i.e., θ> −k b h), then ≤ ≤⁎⁎q0 1. So q will 
increase to one for initial > ⁎⁎q q /2, but will decrease to zero for initial < ⁎⁎q q /2. If variation in q in the popula-
tion is large, the population will always evolve towards increasing q.

That is, with the best response in subordinates and selective imitation in leaders the dynamics are similar to 
those under foresight. In both cases, the system can evolve to state (1, 1).

Discussion
Here we have studied the impact of foresight on leader-subordinate dynamics in some simple models. Our aim in 
doing this was to shed light on what can motivate individuals to enforce contribution to production of a collective 
good. Typically, such enforcement comes with an inherent cost that discourages group members from being coer-
cive as they seek to avoid the cost. This is known as the the second-order free-rider problem. Earlier work high-
lighted several mechanisms such as meta-punishment12, conformism48, signaling49, and group-selection50,51 as 
potential routes to overcoming the second-order free-rider problem. We have shown here as well as in ref. 38 that, 
in addition to these mechanisms, foresight is an effective way of motivating enforcement of cooperation. Here, 
“foresight” refers to a novel strategy update protocol, which stresses two key components38. First, that individuals 
care about their future payoffs. Second, that individuals consider how others will respond to their present actions 
in future interactions. Both of these are fairly intuitive assumptions that make few requirements of agent’s cogni-
tive abilities. Consideration of future interactions in important in many other game-theoretic models39,42,52–54. By 
developing foresight we sought to incorporate the deterrence theory55 into our model, which is the notion that 
punishment is used to modify the future behavior of the target.

We approached this problem by altering the payoffs and assumptions of the inspector game26. In particular, we 
were concerned with modeling the interaction between a single leader interested in enforcing production and a 
single commoner tasked with producing some good. In this way we were able to incorporate characteristics of the 
general collective action problem (namely the first- and second-order free-rider effects) into a simple 2x2 game. 
While our earlier work38 has relied exclusively on numerical simulations, the simplicity of our models here has 
allowed us to get some analytical results.

Our models can be interpreted as describing a simple case of institutionalized punishment. There are both 
similarities but also differences with earlier evolutionary studies of social institutions. In our paper, the evolving 
part of the institution of leadership was the level of monitoring which translated into punishment levels in a way 
similar to that in refs. 56,57. In refs. 11,58 it was the tax imposed by the leaders while in ref. 59 it was the proportion 
of public goods invested into the group’s growth rate. In refs. 11,58,59 players inherited their strategies from parents 
(subject to rare random mutation). In refs. 56,57 players used payoff-biased imitation. In contrast, we have consid-
ered and compared a number of different strategy revision protocols.

We started by considering several different ways of simulating human behaviour, namely Nash equilibria, 
Quantal Response Equilibria, level-k cognition and fictitious play. Our results show that each of these methods 
were vulnerable to the second-order free-rider problem. That is, in these basic models while the subordinate 
could be motivated to produced the good, the leader was not inclined to enforce production and as a result noth-
ing got done. We proceeded by analyzing the effect foresight had on the best response functions and the Nash 
equilibrium. Upon introducing foresight, we saw that the leader now viewed punishment as an utility increasing 
action and thus (provided sufficient emphasis on future payoffs) willingly enforced production of their subordi-
nate. Foresight in the subordinate only served to lessen the magnitude of the their payoff. This difference in 
impact is due the fact that the subordinate’s action do not directly influence the leader on the same scale as the 
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leader’s action directly influence the subordinate. Our main results are that the introduction of foresight produced 
new Nash equilibria at which leaders led and subordinates followed. These new equilibria were found to be 
dependent upon the emphasis placed on future payoffs measured by parameter ω. Additionally, we found that in 
the repeated leadership game that foresight could effectively overcome the second-order free-rider effect. Even 
when error was introduced into the leader’s predictions, they were motivated to inspect provided certain condi-
tions were met. Our final task was to compare foresight with two other strategy update protocols: reinforcement 
learning and selective imitation. Our results show that reinforcement learning is not able to overcome the 
second-order free-rider effect. In contrast, selective imitation is able to accomplish that.

Earlier refs. 56,57 studied similar models of institutionalized punishment with multiple subordinates per leader. 
They showed that selective imitation can lead to the evolution of punishment if leaders update their strategy at a 
much slower rate than subordinates. This happens because a low update rate prevents the leaders from abandon-
ing a costly punishment strategy before subordinates have learned to contribute to avoid punishment. In contrast, 
in our model of selective imitation subordinates do not have to learn from others via incremental improvements 
to adapt but rather they use the best response to the current strategy of the leader. This introduces a new Nash 
equilibrium which can be then discovered by some leaders via random innovation and then spread across the 
whole system by imitation. In a similar way, foresight in leaders results in the appearance of a new Nash equi-
librium discoverable by leaders via, say, a process of mental scenario building by considering several candidate 
strategies and comparing their expected utilities (i.e., by using a direct strategy revision protocol sensu ref. 42).

In our approach, players condition their actions on anticipated future payoffs. An alternative, which we have 
not explored here, is that players condition their actions on the memory of past events. For example, the leader 
can use a reciprocal, memory-based strategy such as “inspect with probability p if the subordinate shirked and 
inspect with probability q if the subordinate produced”. (We are grateful to an anonymous reviewer for suggesting 
this possibility). It is possible that such a strategy space will produce more Nash equilibria or ESS’s than those 
discussed here (see for example, refs. 60,61).

Our approach is related to models of level-k cognition44,62. Specifically, best response utilized by subordi-
nates can be viewed as a level-1 strategy to level-0 players who do not change their strategies while foresight in 
leaders is related to level-2 reasoning. Typically level-k model assume that level-0 players choose their strategies 
uniformly randomly. Were we to make this assumption, neither inspection nor production would happen in our 
model. Thus, our work shows that the exact assumptions placed on the level-0 players strongly impacts the overall 
dynamics of the game.

Overall, our work highlights the importance of strategy revision protocols in evolutionary dynamics42. While 
the free-rider problems exists regardless of the strategy revision protocol employed, the assumptions made on 
how people think can impact how effective groups are at overcoming these problems. Our protocol of foresight 
is a new way to consider how people think, which can be used in conjuncture with existing strategy revision 
protocols.

There are several different questions of interest that must be answered by future work. First and foremost is 
the question of whether foresight would evolve in a population where it is initial absent. In our current and prior 
paper, we have taken for granted that foresight is present and sought only to show how it could be an effective 
route to overcoming the second-order free-rider problem. Having proved its efficacy we should now turn our 
attention to whether or not its emergence is a reasonable assumption. Secondly, here we considered the leader-
ship game for only two players. A reasonable extension would be to assume multiple agents acting in the role of 
subordinates (and potential in the role of leaders as well). Thirdly, our results indicate that foresight can affect the 
basic dynamics of a game (in that it alters the Nash equilibria). It would be a worthwhile endeavour to investigate 
the impact foresight has on a wider range of classical games.
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