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Abstract

High content screening (HCS) technology combining automated microscopy and quantitative 

image analysis can address biological questions in academia and the pharmaceutical industry. 

Various HCS experimental applications have been utilized in the research field of in vitro 
toxicology. In this review, we describe several HCS application approaches used for studying the 

mechanism of compound toxicity, highlight some challenges faced in the toxicological 

community, and discuss the future directions of HCS in regards to new models, new reagents, data 

management, and informatics. Many specialized areas of toxicology including developmental 

toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, 

and nephrotoxicity will be examined. In addition, several newly developed cellular assay models 

including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-

on-a-chip will be discussed. New genome editing technologies (e.g., CRISPR/Cas9), data 

analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the 

applications of machine learning to image processing will be explored. These new HCS 

approaches offer a huge step forward in dissecting biological processes, developing drugs, and 

making toxicology studies easier.
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Introduction

Cellular imaging has become a popular research tool, integrating with cell biology, 

compound safety, and drug discovery. Previously, cellular imaging was considered a 

descriptive science, solely amenable to a low-throughput format [1]. High-throughput 

imaging (HTI) enables visualization and quantification by capturing many cellular features 

on a large scale, using automated microscopy and image analysis platforms [2]. High-

content screening (HCS), or automated microscope-based screening, is one of the HTI 

approaches, combining multi-parametric microscopy with quantitation of large data sets of 

morphological features. Several terms similar to HCS, including HCA (high-content 
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analysis), HCI (high-content imaging) and IC (image cytometry), generally refer to low- or 

medium-throughput automated microscope-based assays [3].

High-content screening was first introduced in the mid-1990s as a promising approach to 

facilitate drug discovery via study of the complex physiology of a cell or organism [4]. 

Recently, HCS has been widely used due to the unprecedented development of automatic 

microscopes with autofocusing, image acquisition and real-time analysis of cellular samples 

in multi-well microtiter plates, single-cell informatics approaches, and a biology toolbox 

enriched with antibodies, dyes, and chemical probes [5, 6]. Boutros et al. described the 

application of HCS in diverse processes, including changes in protein-localization, 

vulnerabilities in cancer cells, and phenotypes of complex organisms. Considerations were 

also discussed for the HCS experimental designs, such as fluorescent probes, miniaturization 

and automation, image acquisition, image analysis, image data, image processing and 

segmentation, quantification of phenotypic features, and image analysis [7].

General steps for the development of a high content screening (HCS) experiment are shown 

in Figure 1. First, cell models (immortalized, stem cells, 3D models) were developed or 

selected depending on the assays to be performed. Second, treatment including chemicals, 

RNAi reagents or CRISPER/Cas9 was conducted. Third, the images were acquired based on 

the use of live cell dyes, fluorescent-labeled antibodies, GFP-labeled protein or 

immunofluorescence. Images parameters were selected and analyzed for quantification. 

Finally, the generated data needs to be formatted and organized for ranking, clustering, 

statistics, and machine learning. Models, treatments, readouts, and data analysis are 

developed iteratively with HCS technology, depending on the specific questions asked. 

Several commercial, automated imagers enable HCS and offer the flexibility of different 

imaging modalities—see Table 1. These high-content readers equipped with confocal 

imaging provide solutions for complex disease models, such as 3D and micro-tissues. 

Selection of an imaging platform is often based on the study needs. Much non-commercial 

online software is available for phenotypic image analysis, for which strengths and 

weaknesses, recent developments, and future perspective have been examined and discussed 

in detail [8]. Incremental HCS improvements and knowledge accumulation in the scientific 

community led to breakthroughs in scientific fields including drug discovery and compound 

safety.

High-content screening applications have been utilized within drug discovery and functional 

genomics, including lead optimization, compound library enrichment, functional annotation 

of genes/alleles, identification of small molecule modulators of gene activity, and disease-

specific phenotypes [9], as shown in Figure 2. Currently, HCS is considered as an important 

tool in supporting drug discovery and development, including target identification, primary 

compound screening, secondary confirmation, mechanism of action (MOA) studies, and in 
vitro toxicology [1, 5, 9–11]. HCS can be used to identify genes required for specific 

biological processes from a genetic perturbation screen using a genome-wide RNA 

interference (RNAi) screen [12–14]. In addition, HCS has been used as an in vitro 
toxicological tool to test compound toxicity and to elucidate MOAs, greatly reducing the use 

of animals in toxicological testing. Animal studies are costly, low-throughput and sometimes 

inconsistent in predicting human toxicity [15]. Target-specific, mechanism-oriented in vitro 
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assays combined with computational models are promising for elucidating compound 

mechanism of toxicity and prioritizing compounds for further in-depth toxicological testing 

[16–18]. Compared with high-throughput screening (HTS), which measures compound 

activities in an entire assay wells, HCS provides detailed information at the cellular level 

with insights into the spatial distribution and the dynamic of responses within a biological 

system. Therefore, HCS is a promising tool to address the challenges of the “Toxicity testing 

in the 21st century” approach [19]. Table 2 lists the HCS assays which have been evaluated 

and validated in the toxicological field. The details of HCS applications in different 

toxicological areas are described in the following sections.

HCS in Developmental Toxicity

Traditional testing for developmental toxicity has relied on in vivo animal models for data 

collection [20, 21]. However, animal tests are time consuming and expensive, and sometimes 

fail to predict human toxicity [16]. Recently, in vitro cellular models have become more 

popular for the assessment of developmental toxicity; these models include mouse 

embryonic stem cells, rat embryos, and zebrafish embryos [22, 23]. Of these models, the 

zebrafish embryo assay is amenable to high-throughput and high-content approaches. High 

content assays using transgenic zebrafish embryos with morphology and behavioral 

endpoints have been used for toxicity screening. Sixteen chemicals from the US 

Environmental Protection Agency’s (EPA’s) ToxCast Phase-I library were evaluated; two 

compounds, abamectin and emamectin benzoate, were found to abolish movement of the 

developing embryos without gross malformations [24]. An image-based high content 

screening (HCS) assay was developed by Lantz-McPeak et al. to identify compounds toxic 

to zebrafish embryos. Embryo length was used as a statistically quantifiable endpoint of 

toxicity. The assay was also validated by evaluating the effects of a group of known 

developmental toxic compounds (e.g., ethanol, nicotine, ketamine, and caffeine) on zebrafish 

embryo models. These HCS developmental assays promise evaluation of the effects of 

developmental toxins in a high throughput manner [25].

HCS in Genotoxicity

Genotoxic chemicals can damage DNA, potentially leading to genetic mutations, which in 

turn increase the risk of tumor formation [26]. Several in vitro assays, such as the Ames test, 

the mouse lymphoma assay, the micronucleus test, and the comet assay have been used to 

assess chemically induced DNA damage [27]. Some of the assays, such as the Vitotox™ 

assay measuring mutagenicity, the RadarScreen assay measuring clastogenicity, and the 

comet assay evaluating DNA breaks, have been optimized for medium to high-throughput 

formats [28–31]. Compared with these methods, HCS assays provide more insight into the 

mechanism of action of genotoxic compounds because of their ability to measure multiple 

parameters (e.g., γH2AX and micronucleus) [32]. In addition, HCS facilitates the filtering 

out of false positives. The isogenic chicken DT40 B-lymphocyte cell line, deficient in DNA 

repair pathways, was utilized for screening genotoxic compounds on a high-throughput 

screening platform by measuring differential cytotoxicity in the US Tox21 program. Many 

well-known genotoxins (e.g., adriamycin, melphalan) were confirmed in this study and 

several potential genotoxic agents, such as 2-oxiranemethanamine, AD-67, and 
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tetraphenylolethane glycidyl ether, were identified as genotoxic agents using an imaging-

based, immunocytological γH2AX (serine-139-phosphorylated histone) assay and 

micronucleus assay [33]. These HCS assays are often used to evaluate genotoxicity. 

Measurement of γH2AX and micronucleus using high-throughput flow cytometry also 

received attention for predicting genotoxic potential [34–37]. Garcia-Canton et al. validated 

the HCS γH2AX assay using a group of known genotoxic and non-genotoxic compounds in 

a human bronchial epithelial cell line BEAS-2B. This assay showed high accuracy (86%) 

with 86–92% sensitivity and 80–88% specificity [38]. HCS micronucleus assays were 

developed with the rodent cell line CHO-K1 and the human hepatoma cell line HepG2 used 

in regulatory genotoxicity assays. The sensitivity and specificity was 80% and 88% for the 

CHO-K1 cell line, and 60% and 88% for the HepG2 cell line, respectively [39]. Recently, an 

HCS micronucleus assay in a 384-well plate format was developed for evaluating 

genotoxicity in CHO-K1 cells [40].

HCS in Developmental Neurotoxicity and Neurotoxicity

Developmental neurotoxicity (DNT) and neurotoxicity (NT) have been linked to 

neurological diseases including attention deficit hyperactivity disorder (ADHD), autism, 

Alzheimer’s, and Parkinson’s disease [41–43]. Measuring neuronal morphology and 

connectivity can assess the toxicity of compounds on DNT and NT [44]. Automated neurite 

imaging and analysis platforms as well as algorithms specifically for measuring various 

aspects of neurite outgrowth are commercially available [45–47]. Measuring neurite 

outgrowth is commonly used for in vitro assessment of NT[44].

Several reports state that HCS neurite outgrowth assays can distinguish neurotoxic 

compounds from general cytotoxic compounds. One high-content imaging assay allowed the 

simultaneous evaluation of both neurite outgrowth and cell viability within each well of a 

plate. This dual-readout assay can distinguish neurite outgrowth inhibitors from compounds 

detrimental to cell viability [48–53]. Several studies evaluated larger sets of environmental 

compounds as well as drugs using an HCS neurite outgrowth assay [54–57]. Most of the 

assays utilized immunostaining or calcein acetoxymethyl staining for measuring neurite 

outgrowth. Recently, Li et al. developed an HCS neurite outgrowth assay using induced 

pluripotent stem cell (iPSC) derived neurons labeled with GFP (green fluorescent protein), 

enabling live and time-lapse imaging of neurite outgrowth [58]. Many protocols detail the 

preparation of different neuronal types and specific workflows for utilizing them in HCS 

[59]. Three dimensional (3D) models have been developed and used in neurite outgrowth 

assays for predicting neurotoxicity, such as the human pluripotent stem cell-derived 3D 

model [60], the 3D neurospheres [61], and the 3D dopaminergic neuronal model [62]. The 

3D neurospheres from human neural progenitor cells mimic basic processes of brain 

development and are useful for identification of developmental neurotoxicity hazard. 

Omnisphere software was also developed to assess multiple endpoints in the 3D neurosphere 

assays with user-assisted parameter optimization procedures [61]. Amenable to HCS, these 

new models promise to assist in profiling compounds for neurotoxicity and developmental 

neurotoxicity.
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HCS in Hepatotoxicity

Hepatotoxicity is a great concern in drug development and clinical use, since the liver plays 

a central role in the biotransformation of drugs and toxicants [63]. A group of in vitro assays 

were applied to assess the hepatotoxicity of a large set of marketed drugs [64]. A variety of 

cell models have been employed in hepatotoxicity studies, such as the HepG2 cell line, 

primary hepatocytes, and hepatocyte-like cells derived from pluripotent stem cells [65]. The 

endpoints for predicting hepatotoxicity include mitochondrial function inhibition, calcium 

homeostasis disturbance, apoptosis activation, oxidative stress, and inhibition of specific 

enzymes and transporters [66–68].

However, several mechanisms implicated in hepatotoxicity and the assays using cytotoxicity 

as a single endpoint may lead to poor sensitivity. A panel of pre-lethal mechanistic cellular 

assays, such as oxidative stress, cholestasis, steatosis, phospholipidosis, mitochondrial 

membrane potential, and drug interactions were recommended, since these assays are 

perceived as more sensitive than general cytotoxicity in detecting an MOA for specific drug 

toxicities [66]. In the pharmaceutical industry, HCS assays have become a standard tool for 

identifying the mechanism implicated in toxicity by encompassing multiple endpoints, such 

as cell viability, mitochondrial integrity, and apoptosis. For example, there have been several 

multi-parametric HCS assays that were developed to screen and classify hepatotoxic 

compounds. This multi-parametric strategy using HCS can identify early and late events 

during the hepatotoxic process. More importantly, the mechanisms implicated in the toxicity 

suggest a stratification of compounds according to their particular degree of injury [69–74]. 

In addition, HCS assays using 3D models formed with iPSC-derived hepatocytes and HepG2 

were evaluated using 48 known hepatotoxic compounds; significant differences were 

observed in the hepatotoxicity assessment of compounds between the two cell types [75].

HCS in Cardiotoxicity

Cardiotoxicity is one of the leading causes for drug failure during clinical development, 

accounting for 22–28% post-marketing drug withdrawal [76, 77]. The new strategies for 

detecting drug-induced cardiotoxicity were explored by Gintant et al. using in vitro ion 

channel assays, in silico reconstructions, and human stem cell-derived cardiomyocytes [78]. 

Inhibition of the human ether-a-go-go-related gene (hERG) is a routinely used to assess 

cardiotoxicity. Cell-based hERG assays, such as thallium influx [79] and hERG channel 

current [80] have 78% and 73% accuracies, respectively, in predicting cardiotoxicity. In vitro 
phenotypic assays such as action potential, field potential, impedance, and Ca2+ dynamics 

predict cardiotoxicity with 80–100% accuracy [81].

HCS assays for nuclear remodeling, mitochondrial status, apoptosis, and necrosis were also 

developed for predicting in vitro cardiotoxicity using human pluripotent stem cell-derived 

cardiomyocytes [82]. With kinetic imaging cytometry, an HCS assay for Ca2+ dynamics was 

developed for assessment of cardiotoxicity [83]. Alternations in permeability of the ion 

channel (Na+/K+-pump), intracellular Ca2+ levels, and induction of cell death were also 

coupled with an HCS system to evaluate the cardiotoxic effects of compounds [84]. 

Combined phenotypic assays (Ca2+ flux) and HCS assays (cell viability, mitochondrial 
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integrity, and reactive oxygen species) can not only identify potential cardiotoxic 

compounds, but also explore their MOAs [85, 86]. An HCS assay, utilizing transgenic 

zebrafish expressing enhanced GFP (eGFP) in vascular endothelial cells, was also developed 

and optimized to evaluate potential cardiotoxic chemicals. Following treatment, body length, 

circulation, heart rate, pericardial area, and intersegmental vessel area were quantified using 

custom image analysis protocols [87]. Moreover, a 3D models including engineered heart 

tissue and human iPSC-based cardiac micro-physiological system (MPS) were also 

developed for evaluating cardiotoxic compounds [88, 89]. The engineered heart tissue was 

generated in a 24-well plate format using differentiated human embryonic stem cells; the 

tissue showed chronotropic responses to calcium and the β-adrenergic agonist isoprenaline 

[88]. The cardiac MPS kept stem cell-derived cardiac tissue viable and functional for several 

weeks. Compared with cellular level studies, the data from cardiac MPS is more consistent 

with data from whole organs than those done with in vivo models [89].

HCS in Nephrotoxicity

The kidney is particularly vulnerable to chemical- and drug-induced injury because of its 

role in filtration. Acute renal failure can result from exposure to a variety of drugs, natural 

products, and industrial and environmental chemicals. Several in vitro cell models have been 

used for nephrotoxicity evaluations including human embryonic kidney 293 (HEK293), 

porcine kidney (LLC-PK1), human kidney-2 (HK-2), hTERT immortalized human renal 

proximal tubular epithelial cell line (RPTEC/TERT1), modified human primary renal 

proximal tubule epithelial cell (SA7K), and human iPSC-derived renal cells [90–94]. The 

renal cell types differentiated from pluripotent stem cells, and microfluidic and 3D culture 

systems are more physiologically relevant, improving the ability to identify and characterize 

the nephrotoxicants [95]. Several biomarkers, such as Kim-1 and clusterin, indicating renal 

damage, have been identified and used to predict compound nephrotoxicity [96]. Ma et al. 

used an HCS assay measuring cell viability, nuclear area, nuclear roundness, mitochondrial 

mass, and mitochondrial membrane potential in HEK293 cells to evaluate thirteen herbs. 

The compounds, cantharidin, triptolide, diosbulbin-B, and sophocarpine, present in 

traditional Chinese medicines, were confirmed to cause nephrotoxicity [97]. By quantifying 

129 image-based phenotypic features, chromatin and cytoskeletal characteristics proved to 

be highly predictable with 82% (primary renal proximal tubular cells) and 89% 

(immortalized renal proximal tubular cells) accuracies with evaluation of 44 reference 

compounds [98]. Recently, bioengineered 3D platforms, replicating the complex 3D 

architecture of a nephron and organ-on-a-chip technologies have shown an increase in 

sensitivity during the evaluation of toxic agents [99–101]. Future studies should focus on 

implementation of these complex models in an HCS format, to increase accurate prediction 

of nephrotoxicity.

Perspectives of HCS technology in Toxicology

Tox21

Toxicology in the 21st Century (Tox21) is a federal collaboration among the Environmental 

Protection Agency (EPA), the National Center for Advancing Translational Sciences 
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(NCATS), the National Toxicology Program (NTP) at the National Institute of 

Environmental Health Sciences (NIEHS), and the Food and Drug Administration (FDA) 

[102]. One of the goals of Tox21 is to develop and validate alternative, non-animal methods 

to quickly and efficiently test hundreds and thousands of chemicals for potential health 

effects. HCS promises to address challenges confronted by Toxicity Testing in the 21st 

Century. To better understand pathways and mechanisms of toxicity in human cell systems, 

the role of HCS needs to expand [19].

Since 2008, more than 70 quantitative high-throughput assays have been optimized and then 

used to screen approximately 10,000 chemicals, including approved and investigational 

drugs, industrial chemicals, and consumer products, such as food additives and chemical 

mixtures. Many cell-based HTS assays were used to screen compounds with validation done 

in 384-well or 1536-well plate format. Readouts for these assays include angiogenesis [103, 

104], micronucleus [40], phospholipdosis [105], and neurite outgrowth assays [58]. These 

HCS assays will be incorporated into the Tox21 screening program. The newly published 

Tox21 strategic plan focuses on assays for molecular events in high priority adverse outcome 

pathways (AOPs), including previously inaccessible signal types (e.g. ion channel 

signaling), high-content microscopy, and two-photon imaging of 3D cellular organoid 

structures [106]. Thus, HCS will play a critical role in bringing Tox21 goals to fruition.

3D Modeling and CRISPR/Cas9 Systems

Advances in cellular models, more closely resembling in vivo cell environments, such as 

engineered cells, stem cells, 3D cellular models or organisms, have been applied to HCS [5]. 

The availability of HCS instrumentation to image 3D models and tissues in a 384-well or 

1536-well plates, enhances the role of HCS in drug discovery, biological sciences, and 

toxicological testing. Moreover, methods using 3D cell models and tissues have greatly 

increased the depth to which tissues can be imaged in situ [107]. Complex 3D systems can 

be detected and quantified using multiplexed probes [108–110]. Challenges in using 3D 

models in high-throughput robotic screening system arise because of the tissue’s complexity.

A novel gene-editing approach, CRISPR/Cas9-mediated gene editing can identify new 

perturbation reagents and build new cell lines [111, 112]. CRISPR/Cas9-mediated gene 

editing generated cell lines expressing GFP. In addition, CRISPR/Cas9 can be employed to 

make mutated primary cells, increasing disease relevance. HCS can generate millions of data 

points with its multi-parametric readouts as well as capturing thousands of images, each 

associated with metadata. A widely adopted algorithm employed in HCS is t-distributed 

stochastic neighbor embedding (t-SNE) [113, 114]. HCS employing fluorescence-based 

readouts can identify a number of false-positives due to compound optical interference 

[115]. The majority of HCS assays require fluorescent readouts using GFP, potentially 

inadvertently altering native biological conditions. The first label-free (non-GFP) HCS assay 

targeting cellular lipid accumulation was developed and validated by combining Bessel 

beam illumination with sparse sampling acquisition in hyperspectral coherent anti-Stokes 

Raman scattering (CARS) imaging [116]. This label-free technology has an advantage over 

fluorescent labeling by not artificially disrupting the biology of the system, improving the 

biological relevance of HCS.

Li and Xia Page 7

Arch Toxicol. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Machine Learning

Analyzing large image data sets is a challenge, requiring hours of hands-on work filled with 

subjective pitfalls. With minimal user input, machine learning has the capacity to identify 

cellular features and phenotypes, greatly reducing the labor required to interpret HCS 

readouts. Machine learning strategies include supervised and unsupervised approaches. 

Unsupervised machine learning can derive biologically meaningful information by 

clustering data points into patterns [117]. Supervised machine learning is typically used to 

classify problems based on pre-defined classes, and to predict to in which category a new 

object belongs. Supervised learning can be applied to predicting the MOA with an overall 

accuracy of 94% [118], predicting compounds-target activities based on data from high-

throughput image assays [119]. In addition, supervised learning can also identify small 

molecules for reverting disease phenotype, such as cerebral cavernous malformation disease 

caused by loss-of-function of the CCM2 gene [120]. Finally, HCS can also predict gene 

function using genome-wide RNAi screens, identifying hundreds of genes involved in 

cellular functions [121].

In summary, to bring toxicological related screening into the twenty-first century, the 

application of HCS in many areas of toxicology and drug discovery holds much promise. 

With the development of automated microscopy platforms and image-based informatics, 

HCS uncovers even subtle phenotypic changes within cell models or tissues in response to 

perturbations of a chemical or genetic nature. As new methods develop, with better 

biological insights, HCS stands as a front runner in delivering necessary information for 

drug discovery in addition to toxicology screening. HCS will significantly contribute to drug 

discovery, profiling compounds in specific toxicological pathways, and dissecting diverse 

biological questions.
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Figure 1. 
Flow chart of high-content screening. The design of a HCS assay includes development or 

selection of cell models, incubation with test compounds or genetic reagents, and image 

acquisition and analysis. The final step is to analyze the data and interpret the results.
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Figure 2. 
Applications of high content screening. HCS has been applied at all stages of drug discovery 

and development processes. HCS can also be used in genetic screens for identifying genes 

required for a specific biological process or proteome-wide changes. Moreover, HCS can be 

used as an in vitro tool to prioritize compounds for toxicological and mechanistic studies.
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Table 1.

High content screen instrumentation

Instrument names Applications and biological models Image analysis 
software

Website

ImageXpress Micro Confocal 
(Molecular Devices)

• Cellular events

• 2D/3D cell models

• Tissues

• Organisms

MetaXpress® https://www.moleculardevices.com

Opera Phenix™ HCS System 
(PerkinElmer)

Harmony http://www.perkinelmer.com

IN Cell Analyzer 6500HS (GE 
Health)

IN Cell Investigator & 
IN Carta

https://www.gelifesciences.com

CellInsight™ CX7 LZR (Thermo 
Fisher)

HCS studio https://www.thermofisher.com

CellVoyager® CV8000 HCS 
(YOKOGAWA)

CellPathfinder https://www.yokogawa.com
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Table 2.

High content screens for toxicological applications

Toxicology areas Assay models Assay readouts

Developmental toxicity • Zebrafish embryo • Embryo length19

Genotoxicity • BEAS-2B

• CHO-K1

• HepG2

• Micronucleus31, 32

• γH2AX34, 35

Neurotoxicity • SH-SY5Y

• Neuron stem cells

• Neurons

• 3D

• Neurite outgrowth43–51

Hepatotoxicity • HepG2

• Primary hepatocyte

• iPSC derived hepatocyte

• 3D

• Cell viability 64

• Mitochondrial integrity 64

• Apoptosis 65

• Calcium homeostasis 65

Cardiotoxicity • iPSC derived cardiomyocytes

• 3D

• Zebrafish with eGFP

• Cell viability 76

• Ca2+ dynamics 77

• Ion channel (Na+/K+-pump)78

• Mitochondrial integrity 80

• Reactive oxygen species 80

Nephrotoxicity • HEK293

• iPSC derived renal cells

• Cell viability 90

• Nuclear area 90

• Nuclear roundness 90

• Mitochondrial mass and membrane potential 90

• Chromatin 90

• Cytoskeletal features 90
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