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Liver dysfunction and type 2 diabetes (T2D) are consis-
tently associated. However, it is currently unknown
whether liver dysfunction contributes to, results from, or
is merely correlated with T2D due to confounding. We
used Mendelian randomization to investigate the pres-
ence and direction of any causal relation between liver
function and T2D risk including up to 64,094 T2D case
and 607,012 control subjects. Several biomarkers were
used as proxies of liver function (i.e., alanine aminotrans-
ferase [ALT], aspartate aminotransferase [AST], alkaline
phosphatase [ALP], and g-glutamyl transferase [GGT]).
Genetic variants strongly associated with each liver
function marker were used to investigate the effect of
liver function on T2D risk. In addition, genetic variants
strongly associated with T2D risk and with fasting insulin
were used to investigate the effect of predisposition to
T2D and insulin resistance, respectively, on liver func-
tion. Genetically predicted higher circulating ALT and
AST were related to increased risk of T2D. There was
a modest negative association of genetically predicted
ALP with T2D risk and no evidence of association

between GGT and T2D risk. Genetic predisposition to
higher fasting insulin, but not to T2D, was related to
increased circulating ALT. Since circulating ALT and
AST are markers of nonalcoholic fatty liver disease
(NAFLD), these findings provide some support for in-
sulin resistance resulting in NAFLD, which in turn
increases T2D risk.

Observational studies have repeatedly reported that liver
dysfunction and type 2 diabetes (T2D) are associated (1–3).
Since the liver plays a core role in the regulation of glucose
homeostasis, it is hypothesized that liver dysfunction might
increase T2D risk by exacerbating hepatic insulin resistance,
leading to overstimulation of hepatic gluconeogenesis (4).
Alternatively, it is suggested that insulin resistance and T2D
might disturb liver function, possibly via an effect of chronic
inflammation and immunological changes (5,6), as well as
by directly upregulating hepatic lipogenesis (4). It is cur-
rently unknown whether liver dysfunction contributes to,
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or results from, T2D development or whether there is
a genuine bidirectional relationship, where insulin resis-
tance facilitates fat accumulation in the liver, which in turn
leads to hepatic insulin resistance and increased fasting
glucose (7–9). As most evidence to date is from observa-
tional studies, it is possible that the association between
liver dysfunction and T2D reflects underlying common
causes, such as obesity or lifestyle characteristics.

Plasma concentrations of liver enzymes (i.e., alanine
aminotransferase [ALT], aspartate aminotransferase
[AST], alkaline phosphatase [ALP], and g-glutamyl trans-
ferase [GGT]) are routinely measured clinical markers that
represent different dimensions of liver dysfunction. ALT,
located in the cytosol, and AST, located in the mitochon-
dria, are released from damaged hepatic cells into the
blood after hepatocellular injury or death. ALT and AST
are potentially useful surrogates for alcohol-induced liver
disease and nonalcoholic fatty liver disease (NAFLD), de-
fined as hepatic steatosis in the absence of excessive
alcohol consumption. ALP is present in the ducts of the
liver, and GGT is located on liver cell membranes. The
combined elevation of ALP and GGT can indicate obstruc-
tive or cholestatic liver disease, where bile is not properly
transported from the liver because of obstruction of the
bile duct. GGT is also an indicator of alcohol use (10).

Classical observational studies show that plasma con-
centrations of these enzymes, even within the normal
range, are positively associated with T2D (1–3). Mendelian
randomization (MR), where genetic variants that are
strongly associated with a risk factor of interest are
used to test its causal effect on an outcome, can help to
distinguish causal effects from associations due to con-
founding or reverse causality (11,12). Previous MR studies
do not support a link between circulating GGT or ALP on
T2D risk or glycemic status in Europeans (13,14) or of ALT
on T2D risk or glycemic status in Chinese (15). In contrast,
MR studies reported some evidence of a positive association
of circulating GGT with T2D risk in South Koreans (16) and
insulinemia in Europeans (17) and of circulating ALT with
T2D risk in Europeans (14). To the best of our knowledge,
no MR study has investigated the effect of predisposition
to T2D or to insulin resistance on liver function markers.

We have used the largest available data sets to inter-
rogate the potential effect of liver dysfunction, proxied by
multiple biomarkers (ALT, AST, ALP, and GGT), on T2D
risk (64,094 T2D case and 607,012 control subjects), as
well as on related outcomes (fasting glucose, insulin, and
lipids). In addition, we have investigated whether predis-
position to T2D and insulin resistance affects circulating
liver function markers (ALT, AST, ALP, and GGT).

Figure 1—Study design and data sources used to investigate the effect of liver dysfunction (proxied by biomarkers: ALT, AST, ALP, andGGT)
on T2D or secondary outcomes (fasting glucose, fasting insulin, LDLc, HDLc, total cholesterol, and triglycerides) (A) and the effect of
predisposition to T2D or insulin resistance on circulating liver function biomarkers (B). As shown in A, the multivariable association of liver
function markers with T2D risk (or related outcomes) was estimated by meta-analyzing results from each data source using logistic
regressionmodels (or linear regressionmodels in the case of secondary outcomes) with participant-level data from relevant studieswithin the
UCLEB consortium (BRHS, BWHHS,MRCNSHD) and summary-level data from the publishedmeta-analyses of Kunutsor et al. (2013) (2) and
Fraser et al. (2009) (27). We also estimated the association of liver function markers with T2D risk (or secondary outcomes) using an MR
approach. In MR analysis, we used different data sources to estimate the SNP–liver function marker association (UCLEB consortium [BRHS,
BWHHS, and MRC NSHD], Fenland study, and GWAS of liver function markers [Chambers et al., 2011] [28]) and SNP–T2D risk association
(UCLEB consortium [BRHS, BWHS, CaPS, EAS, ELSA, MRC-NSHD, and WHII] and GWAS consortium) or SNP–secondary outcomes. As
shown in B, the summary-level data for the association of SNP–T2D risk and SNP–fasting insulin for the reverse MR was extracted from
GWAS consortia, and the association of SNP–liver function marker was extracted from Chambers et al. (2011) (28).

1682 Liver Dysfunction and Type 2 Diabetes Diabetes Volume 68, August 2019



RESEARCH DESIGN AND METHODS

Study Design
We explored the relationship of four liver function
markers (plasma concentration of ALT, AST, ALP, and
GGT) with T2D (primary outcome) and with six related
metabolic traits (secondary outcomes) reflecting hypergly-
cemia, assessed by fasting glucose, insulin resistance;
assessed by fasting insulin, and dyslipidemia; assessed
by LDL cholesterol (LDLc), HDL cholesterol (HDLc), total
cholesterol, and triglycerides, using two approaches: mul-
tivariable regression and MR. We also used MR to in-
vestigate whether predisposition to T2D and to insulin
resistance is likely to have an impact on circulating ALT,
AST, ALP, and GGT. The hypotheses, study design, and
data sources used are detailed in Fig. 1.

Data Sources

Participant-Level Data
The UCL-LSHTM-Edinburgh-Bristol (UCLEB) consor-
tium consists of 12 prospective observational studies
comprising.30,000 participants (18). For the current study,
data from up to seven UCLEB studies were included in
multivariable and MR analyses: the British Regional Heart
Study (BRHS) (19), British Women’s Heart and Health Study
(BWHHS) (20), Caerphilly Prospective Study (CaPS) (21),
Edinburgh Artery Study (EAS) (22), English Longitudinal
Study of Ageing (ELSA) (23), Whitehall II study (WHII)
(24), andMedical Research Council (MRC) National Survey of
Health and Development (NSHD) (25). Full details of the
studies included in the UCLEB consortium have previously
been published (18). For the multivariable analyses of liver
marker–T2D associations, we used data from up to 6,593
individuals (728 T2D case subjects) from up to five UCLEB
studies (BRHS, BWHHS, EAS, CaPS, and NSHD). For the MR
analyses of the effect of liver function on T2D risk, we used
up to 11,790 individuals (1,202 T2D case subjects) from up
to seven UCLEB studies (BRHS, BWHHS, CaPS, EAS, ELSA,
NSHD, andWHII)where information on genotypes and a liver
function marker/s, and/or information on genotypes and
outcome measure/s, was available.

The Fenland study is a U.K. population-based study
based in the East Cambridgeshire and Fenland areas and
has previously been described in detail (26). Data from
Fenland study participants were included in both the
multivariable (up to 9,968 individuals) and the MR anal-
yses of the liver marker-lipid outcome associations (up to
9,982 individuals) except for AST.

Full details of the exposure, outcome, and confounder
variables available in each UCLEB and Fenland study are
given in Supplementary Table 1 and participant character-
istics in Supplementary Table 2.

Summary-Level Data
For the multivariable analysis, we pooled our individual
participant-level results (from UCLEB and Fenland stud-
ies) with those from two published meta-analyses of the
association of liver function markers and T2D risk:

Kunutsor et al. (2) for ALT and AST (up to 60,359
participants including 3,890 incident T2D cases) and
Fraser et al. (27) for GGT (up to 63,285 including 2,805
incident T2D cases).

For the MR analysis, we also used publicly available
summary-level data from genome-wide association studies
(GWAS) for the association of single nucleotide polymor-
phisms (SNPs) with exposures and outcomes from the rele-
vant GWAS consortia. Summary statistics for the association
between SNP and liver function markers were extracted from
the study by Chambers et al. (28), including 61,089 individu-
als with information of ALT, ALP, AST, and GGT plasma
concentration. Summary data for the association between
SNPs and T2D were extracted from a consortium (29) in-
cluding 62,892 case and 596,424 control subjects, mostly of
European descent. In cases where a liver function SNP could
not be found in this latest T2D GWAS, data were extracted
from a previous T2D GWAS from the DIAGRAM consortium
including 34,840 case and 114,981 control subjects (30).
Summary statistics for the association of SNPs with fasting
glucose and with fasting insulin were obtained from MAGIC
(the Meta-Analyses of Glucose and Insulin-related traits Con-
sortium) (31,32), which included up to 133,010 and 108,557
participants of European ancestry without diabetes, respec-
tively. Summary data for the association of SNPs with LDLc,
HDLc, total cholesterol, and triglycerides were extracted
from the GLGC (Global Lipids Genetics Consortium) (33),
including 188,577 individuals mostly of European ancestry.
We excluded Fenland participants who had been included
in the meta-analyses of the GLGC to avoid having dupli-
cated information from these participants.

Definition of Diabetes
In UCLEB studies, T2D definition varied by study and
included self-report, medical history review, use of glucose-
lowering medication, or having a fasting glucose value
of $7 mmol/L (18). For the MR analysis, we used both
prevalent and incident cases of T2D to maximize power, as
the prevalent diabetes cases cannot influence genetic
variation, which is fixed at conception.

In the GWAS, criteria for defining T2D differed across
studies and included previous diagnosis, fasting glucose
$7 mmol/L, treatment with glucose-lowering medication,
or self-reported T2D status (29,30,34).

Genotyping and Quality Control
Genotyping in all studies in the UCLEB consortium was
done using the Illumina Cardio-MetaboChip (Illumina, San
Diego, CA). Details on the genotyping and imputation
quality control criteria used have previously been pub-
lished (18,35). Genotyping and imputation of missing
genotypes in the published GWAS studies used here are
described in the original publications (28–37).

Statistical Analyses
All continuous variables in the UCLEB and Fenland stud-
ies that were not normally distributed were natural log
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transformed. All continuously measured traits were stan-
dardized within each study to allow comparison between
studies. In any published GWAS that did not report effects
in SD units, effects were standardized based on the GWAS
reported SD or, where this was not available, the median
SD across UCLEB studies.

For analyses involving fasting glucose and fasting in-
sulin, we removed individuals with T2D (defined as a clin-
ical diagnosis, fasting glucose values $7.0 mmol/L, or
taking glucose-lowering drugs). For analyses involving lipid
outcomes, we removed individuals on lipid-lowering med-
ications.

Analyses were performed using Stata/SE version 14.0
(StataCorp, Brownsville, TX) and R version 3.4.4 (R Foun-
dation for Statistical Computing, Vienna, Austria).

Multivariable Regression Analysis
We estimated the association between each liver function
marker and T2D in each UCLEB study using logistic re-
gression. For continuous outcomes, we used linear regres-
sion models. We adjusted the logistic/linear regression
models for age and sex (if relevant) and for as many
potential confounders available in each study from the
following: BMI, waist circumference, alcohol consump-
tion, smoking, and social class. We then used Der-
Simonian and Laird random effects model meta-analysis
to combine these estimates with results from the pub-
lished meta-analyses of Kunutsor et al. (2) and Fraser
et al. (27) for the associations between ALT, AST, and
GGT with T2D, excluding any UCLEB studies that had
contributed to the published meta-analyses. In the pre-
viously published meta-analyses, all (27) or some (2)
of the participating studies expressed T2D results as
hazard ratios. Given the overall proportion of T2D cases
was ,10%, hazard ratios and odds ratios (ORs) were as-
sumed to approximate to the samemeasure of T2D relative
risk in our meta-analysis.

MR Analysis
For the MR analysis, we used multiple genetic variants
robustly associated with circulating ALT, AST, ALP, or
GGT as genetic instruments for each liver function
marker to investigate their effect on T2D and other
outcomes. We also applied MR analysis to assess the
effect of predisposition to T2D and fasting insulin (a
marker of insulin resistance) on circulating ALT, AST,
ALP, or GGT by using genetic variants robustly associated
with T2D risk and fasting insulin. We used a “two-sample”
analysis strategy in which the genetic variant–exposure
and genetic variant–outcome associations are esti-
mated from different data sources with comparable pop-
ulations (38).

Selection of Genetic Instruments for Liver Function
Markers. Genetic instruments for each liver function
marker were defined as independent SNPs (R2 , 0.3)
associated with each liver function marker at genome-
wide levels of significance (P , 5 3 1028) from GWAS in

the NIHR GWAS catalog (available at www.ebi.ac.uk/gwas/
home). At the time the study was conducted, there were
limited GWAS data available for AST. Therefore, we con-
ducted a genome-wide association analysis in up to 6,647
individuals from five UCLEB studies (BRHS, BWHHS,
CaPS, EAS, and ET2DS) to identify novel variants for
AST, as this biomarker had only been assessed in one
previous GWAS with ,1,000 individuals (37). We selected
GWAS studies, which had been primarily conducted in
populations of European ancestry. In total, we selected 4,
3 (including the two novel SNPs identified from our own
GWAS), 15, and 26 independent SNPs associated with
ALT, AST, ALP, and GGT, respectively (Supplementary
Table 3). UCLEB data were excluded from the MR analysis
of AST (as an exposure) to avoid any bias from winner’s
curse (39).

Selection of Genetic Instrument for Type 2 Diabetes and
Fasting Insulin. We used multiple independent SNPs
strongly associated (P , 5 3 1028) with T2D risk (n =
139 SNPs) (29) and with fasting insulin (n = 14 SNPs)
(32). T2D SNPs were identified as reported by the original
GWAS publication (29). Fasting insulin SNPs were se-
lected from data published by Scott et al. (32) using the
R package TwoSampleMR excluding any correlated SNPs
(R2 . 0.001) (40).

Main Analysis. In the main MR analyses, we used the
conventional inverse variance weighted (IVW) estima-
tor. The IVW method consists of a weighted regression
of the SNP-outcome regression coefficients on the SNP-
exposure regression coefficients constraining the intercept
to be zero. IVW weights are the inverse of the variance of the
SNP-outcome regression coefficients. For a dichotomous
outcome such as a T2D status, the regression coefficient of
the SNP-outcome association is a log OR from a logistic
regression model. The resulting regression coefficient from
the IVW regression represents an increase/decrease in the
outcome per unit increase in the exposure.

Sensitivity Analyses. We performed several sensitivity
analyses to test whether the MR IVW estimates are likely
to be biased by unbalanced horizontal pleiotropic effects
(i.e., due to genetic variants that affect the outcome
independently of the exposure of interest). We used the
MR-Egger regression method (41) and the weighted me-
dian estimator (42), both of which are more robust to
pleiotropic genetic variants, to test the extent to which any
unbalanced pleiotropy may have biased the IVW result.
The MR-Egger method is similar to the IVW except that
the model allows the intercept to vary. The intercept of the
MR-Egger regression will reflect the average pleiotropic
effect across genetic variants and the slope coefficient will
provide an estimate of the causal effect provided that the
InSIDE (Instrument Strength Independent of Direct Ef-
fect) assumption holds, which requires that there is no
correlation between SNP-exposure association and any
direct (pleiotropic) effects of SNP on outcome (41). In
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contrast, the weighted median estimator gives consistent
estimates even if up to 50% of weight in the analysis comes
from invalid genetic instruments (42). For the MR analysis
of the effect of insulin resistance, proxied by fasting in-
sulin, on liver markers, we have performed an additional
sensitivity analysis, in which we used multivariable MR
(43) to adjust results by BMI (32). In all analyses with
GWAS data, we have excluded SNPs with C/G or A/T
genotypes and minor allele frequency .0.42 due to am-
biguity problems they could introduce in harmonizing of
SNP-exposure and SNP-outcome data sets (44).

RESULTS

Genetic Instruments for Liver Function Markers, T2D
Risk, and Fasting Insulin
Results for the association of genetic instruments with the
respective liver function marker are given in Table 1. Most
of the genetic instruments previously identified in GWAS
consortia replicated (had consistent direction and magni-
tude) in UCLEB and Fenland, seven were not available in
UCLEB but were replicated in Fenland, seven were null or
in the opposite direction in UCLEB but consistent in
Fenland, and one was null in Fenland (but consistent in
UCLEB). Overall, CIs in UCLEB and Fenland included the
point estimate from the published GWAS.

For the known variant for AST (rs17109512), only P
values were provided by the original GWAS, and therefore
it was not possible to compare effect estimates with those
from the previous GWAS. The two novel variants for AST,
identified in our GWAS conducted in five UCLEB studies,
were replicated in independent data sources (Table 1 and
Supplementary Table 4). In meta-analysis of UCLEB and
Fenland studies, 4, 13, and 22 variants were replicated
from 4, 15, and 26 variants associated with ALT, ALP, and
GGT, and the remaining variants were directionally con-
sistent with the previous reports (data only shown for
UCLEB and Fenland separately).

Results for the association of the 139 T2D genetic
instruments with T2D risk are given in Supplementary
Table 5. Results for the association of the 14 fasting insulin
genetic instruments with fasting insulin (in SD log pmol/L)
are given in Supplementary Table 6.

Association of Genetic Variants Related to Liver
Function Markers With Potential Confounders of the
Exposure-Outcome Association
Some individual SNPs used as instruments in the MR
analysis were associated with potential confounders of
the exposure-outcome association (e.g., age, BMI, waist
circumference, waist-to-hip ratio, and other liver func-
tion markers). However, when these were combined into
a single instrument using fixed-effect meta-analysis, there
was no strong evidence that genetic instruments were asso-
ciated with potential confounders, except for the ALT in-
strument, which was also associated with AST and GGT, and
the AST instrument, which was associated with ALT (Sup-
plementary Table 7).

Multivariable Analysis Between Liver Function Markers
and T2D and Related Continuous Outcomes
Pooled results from multivariable analyses across the
relevant UCLEB and Fenland studies and published
meta-analyses are given in Fig. 2A. Most liver function
markers were positively associated with T2D risk. The OR
for T2D was 1.27 (95% CI 1.15, 1.40) for ALT, 1.06 (95% CI
0.97, 1.17) for AST, 1.25 (95% CI 1.10, 1.43) for ALP, and
1.61 (95% CI 1.15, 2.26) for GGT (per standard unit
increase in the liver function marker). Heterogeneity
across studies was low for ALT and ALP (I2 = 0%) but
high for AST (I2 = 81%) and GGT (I2 = 93%) (Fig. 2A).

In meta-analyses of the continuous outcomes, ALT was
positively associated with insulin and triglycerides. AST
was positively associated with insulin and HDLc. ALP was
negatively related with HDLc. GGT was positively associ-
ated with all continuous outcomes (Supplementary Table
8).

Effect of Liver Function Markers on T2D and Related
Continuous Outcomes Using MR
Pooled results from the MR across UCLEB, Fenland study,
and GWAS are given in Fig. 2A and Supplementary Table 8.
In the main MR analysis (IVW), the OR for T2D was 1.45
(95% CI 1.10, 1.92) for ALT, 1.25 (95% CI 1.14, 1.38) for
AST, 0.91 (95% CI 0.86, 0.97) for ALP, and 0.92 (95% CI
0.80, 1.06) for GGT (per each standard unit increase in the
liver function marker) (Fig. 2A). The other MR methods
(MR-Egger and weighted median) used as sensitivity anal-
yses were consistent with IVW estimates for ALT, AST, and
ALP. The inverse point estimate for the IVW association
between GGT and T2D changed in direction when the
MR-Egger method was used. There was no clear evidence
of unbalanced horizontal pleiotropy in any liver function
marker–T2D associations based on the intercept for
MR-Egger method (all P values $0.38). Heterogeneity
between UCLEB and GWAS estimates was low for all liver
markers. For AST, only GWAS data were available for
analysis (Fig. 2A).

In meta-analyses of the continuous outcomes, there was
some evidence across different MR methods that genetically
predicted liver markers were negatively related to blood lipids
(Supplementary Table 8). There was some evidence of un-
balanced horizontal pleiotropy of ALT instruments in re-
lation to HDLc, LDLc, total cholesterol, and triglycerides
(Supplementary Table 9).

Effect of T2D and Insulin Resistance on Liver Function
Markers Using MR
Overall, findings from MR analysis did not consistently
support a reverse causal effect of T2D predisposition on
any of the liver function markers assessed (ALT, AST, ALP,
or GGT). In the main MR analysis (IVW), higher predispo-
sition to T2D (each increase in 1 log odds) was related to an
increase of 0.06 SD units of ALT (95% CI 0.02, 0.09) but not
of AST (0.01 [95% CI 20.04, 0.07]), ALP (20.04 [95%
CI 20.11, 0.02]), or GGT (0.03 [95% CI 20.01, 0.06]).
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Table 1—The associations of individual SNPs (used as genetic instruments in MR analyses) with the relevant liver function
markers in UCLEB studies, Fenland study, and GWAS

SNP

Liver
function
marker Locus*

Effect size in SD units in
UCLEB studies (95% CI)†

Effect size in SD units in
Fenland study (95% CI)†

Effect size in SD units from
published GWAS (95% CI)‡

rs6834314 ALT HSD17B13,
MAPK10

0.05 (0.01, 0.09) 0.05 (0.02, 0.07) 0.06 (0.04, 0.08)

rs11597390 ALT CPN1 0.09 (0.05, 0.13) 0.03 (0.01, 0.06) 0.04 (0.03, 0.06)

rs2143571 ALT SAMM50 0.14 (0.09, 0.19) 0.07 (0.04, 0.12) 0.09 (0.07, 0.11)

rs2954021 ALT TRIB1n 0.03 (20.01, 0.07) 0.02 (20.00, 0.04) 0.04 (0.02, 0.05)

rs17109512 AST GOT1 20.04 (20.18, 0.11) N/A 0.03 (20.05, 0.1)

rs738407 AST PNPLA3 0.13 (0.08, 0.19) N/A 0.09 (0.06, 0.12)

rs738408 AST PNPLA3 0.12 (0.08, 0.17) N/A 0.19 (0.16, 0.22)

rs1780324 ALP NBPF3-ALPL 0.07 (0.02, 0.12) 0.08 (0.05, 0.10) 0.09 (0.07, 0.11)

rs16856332 ALP ABCB11 20.02 (20.20, 0.15) 0.06 (20.01, 0.13) 0.14 (0.09, 0.19)

rs9467160 ALP GPLD1 0.06 (0.01, 0.12) 0.10 (0.07, 0.13) 0.1 (0.08, 0.13)

rs514708 ALP ABO 0.06 (0.00, 0.12) 0.08 (0.05, 0.11) 0.1 (0.08, 0.13)

rs2236653 ALP ST3GAL4 0.01 (20.05, 0.07) 0.07 (0.04, 0.10) 0.06 (0.04, 0.08)

rs7186908 ALP HPR, PMFBP1 20.02 (20.09, 0.05) 0.02 (20.01, 0.05) 0.07 (0.05, 0.1)

rs7267979 ALP ABHD12, GINS1,
PYGB

0.03 (20.02, 0.08) 0.07 (0.04, 0.10) 0.05 (0.03, 0.07)

rs281377 ALP ABO 0.00 (20.05, 0.06) 0.06 (0.04, 0.09) 0.07 (0.05, 0.09)

rs314253 ALP ASGR1o, DLG4n 0.02 (20.04, 0.07) 0.04 (0.01, 0.07) 0.08 (0.06, 0.1)

rs579459 ALP ABO 0.08 (0.02, 0.14) 0.25 (0.22, 0.28) 0.31 (0.28, 0.34)

rs6984305 ALP PPP1R3B 20.03 (20.11, 0.05) 0.08 (0.04, 0.12) 0.1 (0.07, 0.13)

rs7923609 ALP JMJD1Cnce,
NRBF2e

0.05 (0.00, 0.10) 0.09 (0.06, 0.11) 0.08 (0.06, 0.1)

rs174601 ALP C11orf10e,
FADS1e,
FADS2ne

20.00 (20.06, 0.05) 0.06 (0.03, 0.08) 0.06 (0.04, 0.09)

rs2954021 ALP TRIB1 0.07 (0.01, 0.12) 0.04 (0.01, 0.06) 0.05 (0.03, 0.07)

rs10819937 ALP ALDOBo,
C9orf125n

Not in UCLEB 0.06 (0.02, 0.09) 0.09 (0.06, 0.12)

rs1497406 GGT RSG1, EPHA2 0.05 (0.01, 0.09) 0.07 (0.04, 0.09) 0.06 (0.04, 0.07)

rs12145922 GGT CCBL2, PKN2 20.02 (20.05, 0.02) 0.01 (20.02, 0.03) 0.04 (0.03, 0.06)

rs1335645 GGT CEPT1, DENND2D Not in UCLEB 0.03 (20.01, 0.07) 0.07 (0.04, 0.09)

rs10908458 GGT DPM3, EFNA1,
PKLR

0.04 (0.01, 0.07) 0.05 (0.02, 0.07) 0.06 (0.04, 0.07)

rs13030978 GGT MYO1B, STAT4 0.07 (0.02, 0.12) 0.03 (0.01, 0.06) 0.06 (0.04, 0.08)

rs2140773 GGT EFHD1,
LOC100129166

20.01 (20.04, 0.03) 0.02 (20.01, 0.04) 0.05 (0.03, 0.06)

rs4547811 GGT ZNF827 0.08 (0.03, 0.13) 0.09 (0.06, 0.12) 0.1 (0.08, 0.12)

rs4074793 GGT ITGA1 0.14 (0.07, 0.20) 0.07 (0.02,0.11) 0.08 (0.05, 0.12)

rs9296736 GGT MLIP 0.03 (0.00, 0.07) 0.04 (0.02, 0.07) 0.05 (0.03, 0.06)

rs754466 GGT DLG5 Not in UCLEB 0.07 (0.04, 0.10) 0.05 (0.03, 0.07)

rs8038465 GGT NPTN -CD276 0.04 (20.00, 0.09) 0.00 (20.02, 0.03) 0.04 (0.02, 0.05)

rs4581712 GGT DYNLRB2 0.09 (20.00, 0.18) 0.07 (0.04, 0.10) 0.05 (0.03, 0.07)

rs1076540 GGT MICAL3 0.05 (0.01, 0.09) 0.06 (0.03, 0.09) 0.07 (0.06, 0.09)

rs2739330 GGT DDT, DDTL,
GSTT1,

GSTT2BMIF

0.06 (0.02, 0.10) 0.03 (0.01, 0.06) 0.06 (0.04, 0.08)

rs4820599 GGT GGT1 0.13 (0.10, 0.17) 0.09 (0.06, 0.12) 0.13 (0.11, 0.15)

Continued on p. 1687
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Results for ALT were substantially attenuated with use of
MR methods that are more robust to pleiotropic variants:
0.01 (95% CI 20.06, 0.08) for MR-Egger and 0.03 (95%
CI20.02, 0.07) for the weightedmedian estimator (Fig. 2B).

On the other hand, there was evidence from the MR-
IVW findings that greater insulin resistance, proxied by

fasting insulin, increases circulating ALT. Results were
consistent with the weighted median and BMI-adjusted
estimates. MR-Egger point estimates substantially dif-
fered, but 95% CIs were very wide. Results for the other
liver markers were less consistent across different MR
methods, and 95% CIs were wide (Table 2).

Table 1—Continued

SNP

Liver
function
marker Locus*

Effect size in SD units in
UCLEB studies (95% CI)†

Effect size in SD units in
Fenland study (95% CI)†

Effect size in SD units from
published GWAS (95% CI)‡

rs10513686 GGT SLC2A2nc 0.06 (0.01, 0.11) 0.04 (0.01, 0.08) 0.08 (0.05, 0.1)

rs1260326 GGT C2orf16e,
GCKRnc

0.03 (20.00, 0.06) 0.05 (0.02, 0.07) 0.05 (0.03, 0.07)

rs17145750 GGT MLXIPLnce 0.08 (0.03, 0.12) 0.07 (0.03, 0.10) 0.07 (0.04, 0.1)

rs339969 GGT RORAn 0.05 (0.02, 0.09) 0.05 (0.03, 0.08) 0.07 (0.05, 0.09)

rs516246 GGT FUT2 0.04 (0.01, 0.07) 0.04 (0.01, 0.06) 0.04 (0.02, 0.05)

rs7310409 GGT HNF1Anc,
C12orf27e

0.11 (0.08, 0.15) 0.10 (0.08, 0.13) 0.1 (0.09, 0.12)

rs944002 GGT C14orf73nc 0.12 (0.08, 0.15) 0.09 (0.06, 0.12) 0.1 (0.08, 0.12)

rs6888304 GGT CDH6n Not in UCLEB 0.05 (0.02, 0.08) 0.04 (0.02, 0.06)

rs9913711 GGT FLJ37644e,
SOX9n

Not in UCLEB 0.05 (0.03, 0.08) 0.04 (0.02, 0.05)

rs12968116 GGT ATP8B1ncg Not in UCLEB 0.05 (0.01, 0.09) 0.07 (0.04, 0.1)

rs4503880 GGT NEDD4Ln Not in UCLEB 0.07 (0.04, 0.10) 0.06 (0.03, 0.08)

N/A, not applicable. *Mapped gene for each SNP is given as reported in the original GWAS publication. †All SNP–liver function marker
associations in the UCLEB studies and the Fenland study were adjusted for age and sex (if relevant). Individual study estimates in UCLEB
were combined using fixed-effect meta-analyses. ‡Effect sizes extracted from Chambers et al., 2011 (28). GWAS effect sizes for ALT,
ALP, and GGT were converted to SD units using the median SD from the UCLEB and Fenland studies.

Figure 2—Multivariable andMR analysis of the effect of liver function on T2D (A) andMRanalysis of the effect of T2D on liver functionmarkers
(B). Results from Fig. 1A correspond to OR of T2D per unit increase in standardized liver function markers (and 95%CI). Results from Fig. 1B
correspond to change in standardized liver function markers per unit increase in log odds of T2D (and 95%CI). I-squared indicates between-
study heterogeneity and is only presented when estimates for more than one study were available.
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DISCUSSION

More than a century ago, a link between liver disease and dia-
betes was described (45). Since then, multiple observational
studies have repeatedly reported that liver dysfunction
and T2D are associated (1–3), as broadly replicated by our
multivariable analysis using clinical biomarkers (i.e., cir-
culating ALT, AST, ALP, and GGT) as proxies of liver
dysfunction. Nevertheless, it is still unclear whether this
association reflects causation, and if so, whether liver
dysfunction represents a cause or a consequence of T2D.

Our study expands on previous MR analyses investi-
gating the effect of liver dysfunction on T2D risk by
including a more comprehensive set of liver function
markers routinely used in clinical practice in the largest
available data sets and by applying bidirectional MR to
investigate whether predisposition to T2D and to insulin
resistance might instead lead to liver dysfunction.

Our findings from the MR analyses show evidence that
genetic predisposition to higher circulating ALT and AST is
related to higher risk of T2D. No strong evidence of a causal
effect of genetically predicted GGT on T2D and evidence of
a modest negative effect of genetically predicted ALP on
T2D were found. Genetic predisposition to T2D did not
appear to influence blood concentration of any of the
studied liver function markers (ALT, AST, ALP, and
GGT), whereas genetic predisposition to insulin resistance,
proxied by fasting insulin, seems to increase ALT (effects
on other liver markers are uncertain).

Our results are broadly consistent with two previous
MR studies, of largely European origin participants (using
a study sample that partially overlaps with ours), which
reported strong evidence for a positive effect of ALT on
T2D (14) but not for ALP (14) or GGT (13,14). Results for

ALP (14) were directionally consistent with our findings,
but we were better powered to test for the association
between ALP and T2D risk given the substantially larger
number of T2D case and control subjects included in our
analyses. In non-European populations, MR studies sug-
gest that ALT does not relate to T2D risk in Chinese adults
(15) but that higher GGT increases T2D risk in Koreans
(16). However, the latter result might be explained by
statistical overfitting, since instruments were selected
from a GWAS that included the population used in the
MR analyses (;20% of the GWAS discovery sample).

The different liver biomarkers reflect different aspects
of liver dysfunction. High circulating ALT and AST are
widely used proxies of NAFLD, while high circulating ALP
and GGT (in combination) are more related to obstructive
or cholestatic liver disease. The positive association be-
tween genetically predicted liver function markers and
T2D in MR analyses was robust for ALT and AST, but
not as apparent for ALP or GGT, which suggests that
NAFLD might be the primary type of liver dysfunction
driving these associations.

In agreement with that, a genetic variant (rs738409) in
perfect linkage disequilibrium (R2 = 1.0 for 1000 Genomes
European population [GRCh37]) with one of our instru-
ments for AST (rs738408) has previously been reported to
be associated with computed tomography–measured he-
patic steatosis (46,47). NAFLD is the most common cause
of chronic liver disease in Western countries owing to the
rapid increase in obesity prevalence (48,49). NAFLD
affects 70% of patients with T2D in contrast to ;20%
of the general population (48,49).

To our knowledge, previous MR studies have not exam-
ined the causal effect of predisposition to T2D or insulin
resistance on liver dysfunction. We found supportive evi-
dence that insulin resistance increases circulating ALT. Our
combined findings that insulin resistance (but not T2D)may
cause elevated ALT (marker of NAFLD) and that ALT and
AST are in turn related to increased T2D risk (but not insulin
resistance) are consistent with the twin-cycle hypothesis (8),
which postulates that there is a vicious cycle between he-
patic insulin resistance and b-cell dysfunction. According
to the twin-cycle hypothesis, elevated insulin (due to in-
sulin resistance) stimulates de novo lipogenesis in the liver,
which promotes hepatic insulin resistance leading to over-
stimulation of hepatic gluconeogenesis and increased fasting
glucose. The resulting increased output of triglycerides and
glucose by the liver to the circulation would impair b-cell
function, eventually leading to T2D (9).

On the other hand, it is worth emphasizing that the
relation between ALT/AST and T2D risk might be
explained by factors other than NAFLD, since circulating
ALT/AST are not specific markers of NAFLD and can also
increase in response to liver injury from other causes,
such as drug toxicity, infection, and alcohol consumption
(50,51). In addition, there is some evidence that he-
patic triglyceride accumulation by itself may not neces-
sarily cause metabolic changes increasing the risk of

Table 2—MR analysis of the effect of insulin resistance
(proxied by circulating fasting insulin) on liver function
markers

Outcome Method b 95% CI P

ALT IVW 0.46 0.22, 0.69 0.0001
MR-Egger 0.14 21.15, 1.42 0.84

Weighted median 0.43 0.10, 0.76 0.01
IVW adjusted by BMI 0.47 0.21, 0.72 0.0004

AST IVW 0.31 20.1, 0.71 0.14
MR-Egger 21.01 23.31, 1.29 0.41

Weighted median 0.32 20.26, 0.89 0.28
IVW adjusted by BMI 0.25 20.22, 0.72 0.30

ALP IVW 20.14 20.78, 0.49 0.66
MR-Egger 3.39 0.37, 6.41 0.05

Weighted median 20.40 20.88, 0.07 0.09
IVW adjusted by BMI 20.21 20.6, 0.18 0.29

GGT IVW 0.28 20.24, 0.8 0.3
MR-Egger 22.35 24.95, 0.25 0.10

Weighted median 0.51 0.18, 0.84 0.003
IVW adjusted by BMI 0.22 20.1, 0.54 0.18

Results correspond to mean difference (in SD units) of log10 liver
function marker (95% CI) per 1 SD increase in fasting insulin (in
pmol/L).
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cardiometabolic complications (52) and that there
might be multiple T2D subtypes that differ in terms
of disease presentation and responsiveness to interven-
tions (53), which we were unable to tease out due to the
predominant use of summary-level data. Finally, given
the key roles of ALT and AST in the intermediary
metabolism of glucose and amino acids, we cannot fully
discard that they might be directly implicated in T2D
development.

Although MR can substantially improve causal infer-
ence in epidemiological studies (54), it is important to note
that the reliability of MR findings depends on the three
core assumptions of instrumental variable (IV) analysis,
which require that genetic instruments are strongly asso-
ciated with the exposure (IV1), are not related to exposure-
outcome confounders (IV2), and only influence the
outcome through the exposure (IV3).

To avoid violations of IV1, we selected genetic variants
strongly associated with liver function markers (P , 5 3
1028) that broadly replicated in independent data sets. It
should also be noted that our genetic instruments were
selected to be strongly associated with each liver function
marker in the largest available GWAS (P , 5 3 1028) and
that some variants relevant to specific forms of liver
dysfunction might not have met our inclusion criteria, as
is the case of variants near TM6SF2, previously reported
to be associated with NAFLD in a GWAS (55) and with
alcohol-related cirrhosis in an exome-wide association
study (56). To minimize the risk of population stratifica-
tion, which could violate IV2, we mostly restricted our
analyses to individuals of European ancestry. IV3 could be
violated in the presence of horizontal pleiotropy. We have
attempted to address that by examining the relation of the
genetic variants with several social, behavioral, and met-
abolic phenotypes and by using methods that are more
robust to violations of this assumption in sensitivity
analyses (i.e., MR-Egger and weighted median estimator).
Overall, there was no strong suggestion that horizontal
pleiotropy could have biased our results. Importantly, our
liver function instruments were not associated with gen-
eral adiposity measures such as BMI, and therefore it is
unlikely that these associations are driven by general
adiposity. However, it is important to note that we cannot
fully discard that our genetic instruments may be associ-
ated with exposure-outcome confounders that we have
not tested for and that the sensitivity analyses used (i.e.,
MR-Egger and weighted median) are of limited use for
exposures instrumented by few genetic variants (as in the
analyses of ALT and AST as exposures).

Two-sample MR makes the additional assumption that
data from two independent (but comparable) populations
are used. In our study, there was some overlap between
participants used to estimate SNP-exposure and SNP-
outcome associations. However, this is unlikely to bias
the study results, since the overlap is very low in pro-
portion to the overall sample size (,7% of T2D cases in
the main analysis) (57).

Finally, effect estimates for the relation of each liver
function marker on T2D risk should be interpreted with
caution given these biomarkers are unlikely to be the
causal factors for T2D risk but proxies of liver function.

In conclusion, MR findings indicate that increased
circulating ALT and AST are related to higher T2D risk,
while increased circulating ALP is associated with lower
T2D risk. In addition, higher fasting insulin (but not
predisposition to T2D) is related to higher circulating
ALT. Since circulating ALT and AST are markers of
NAFLD, these findings provide some support for insulin
resistance resulting in NAFLD, which in turn increases
T2D risk.
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