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The emergence of tyrosine kinase inhibitors (TKIs) has changed the current treatment paradigm and achieved good
results in recent decades. However, an increasing number of studies have indicated that the complex network of receptor
tyrosine kinase (RTK) co-activation could influence the characteristic phenotypes of cancer and the tumor response to
targeted treatments. One of strategies to blocking RTK co-activation is targeting the downstream factors of RTK, such as
PI3K-AKT-mTOR pathway. RICTOR, a core component of mTORC2, acts as a key effector molecule of the PI3K-AKT
pathway; its amplification is often associated with poor clinical outcomes and resistance to TKIs. Here, we discuss the
biology of RICTOR in tumor and the prospects of targeting RICTOR as a complementary therapy to inhibit RTK co-

Introduction

In the past two decades, cancer treatments have rapidly
changed. The model of precision medicine was affirmed,
and a great deal of targeted drugs have been approved as
the first-line treatment for many tumors. Currently,
more than 80 molecularly targeted drugs have been de-
veloped and applied worldwide, and 47 of these drugs
target receptor tyrosine kinase (RTK) activity, including
8 monoclonal antibodies and 39 small-molecule inhibi-
tors (Yamaoka et al. 2018). Although TKIs made a
breakthrough in clinical treatments, a large proportion
of patients do not benefit from current targeted therap-
ies. One reason is that tumor cells would activate two or
more RTKs to maintain signaling networks robustness
when facing acute disturbances. The methods to over-
come this problem are roughly divided into two categor-
ies. The first approach is to simultaneously target
multiple RTKs to avoid tumor compensation mecha-
nisms. Another is to identify and target delicate sites lo-
cated downstream of RTK co-activation networks. In
clinical studies, investigators observed that patients with
RICTOR amplification had a poor efficacy in taking
tyrosine kinase inhibitors; thus, RICTOR was speculated
to be involved in resistance to TKIs and has potential to
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serve as an independent or combined therapeutic target.
In this review, we summarize the 1) the biology of RIC-
TOR in tumor including the relationship between RIC-
TOR and RTK and mechanisms of RICTOR in tumor
growth, metastasis and drug resistance. 2) preclinical
and clinical studies on RICTOR amplification, which
provide guidance for designing subsequent clinical trials;
and 3) current targeted drugs that inhibit RICTOR.

The biology of RICTOR in tumor
RICTOR and RTKs
Receptor tyrosine kinases (RTKs) control basic cellular
behaviors such as cell proliferation, apoptosis and migra-
tion, and its aberrant activation is regarded as the mech-
anism driving tumorigenesis and progression (Lemmon
and Schlessinger 2010; Robinson et al. 2000). The PI3K/
AKT/mTOR pathway, as the major downstream pathway
for most RTKs, has become the focus of research on the
malignant behavior of tumor cells (Hirsch et al. 2014;
Fruman and Rommel 2014). Extensive research has
shown that mTORC2 plays an important role in the
PI3K-AKT pathway, which could promote cell survival,
growth, metabolism and cytoskeletal organization
(Saxton and Sabatini 2017; Gan et al. 2012; Li and Gao
2014; Garcia-Martinez and Alessi 2008; Zhang et al. 2010).
RICTOR is a component of the endogenous mTORC2
complex and determines mTORC2 complex stability
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and integrity (Oh and Jacinto 2011). More than 37 RIC-
TOR phosphorylation sites were identified by mass spec-
trometry and compared to phosphorylated proteomic
data sets. One of the sites, T1135, could be directly
phosphorylated by S6K1 and subsequently bind to 14—3-
3 proteins, participating in the feedback control of
mTORC2 by mTORCI (Dibble et al. 2009).

Mechanisms of RICTOR in tumor growth and metastasis
With the in-depth study of RICTOR, researchers found
that RICTOR was important for cell proliferation, migra-
tion, autophagy and metabolism and could affect cell
functions through AKT-dependent and -independent
manners.

AKT-dependent mechanisms

After the sustained activation of AKT, mTORC2 could
affect cell migration and invasion via two coordinated
pathways. One of these pathways is the overactivation of
AKT, which promotes Racl activity by activating the Rac-
GEF Tiaml; another such pathway is the suppression of
the endogenous Racl inhibitor RhoGDI2 through the acti-
vation of AKT and PKCa (Morrison Joly et al. 2017). In
addition, mTORC?2 also regulates glucose metabolism and
the synthesis of fatty acids (FA), lipids (glucosylceramide
and cardiolipin) and proteins by promoting the release of
c-Myc (Oh and Jacinto 2011; Hagiwara et al. 2012; Dang
2012; Plas and Thompson 2005; Huang et al. 2009).

AKT-independent mechanisms

In addition, RICTOR could directly activate many down-
stream molecules. For instance, RICTOR directly phos-
phorylates the downstream molecule PKCa and inhibits
RhoGDI2 (inhibitor of Rac), resulting in the upregula-
tion of RAC1 expression, which enhances chemotaxis
and metastatic ability of the cell (Morrison Joly et al
2017); RICTOR could influence the level of p-c-MET in-
stead of the total level of c-MET to modulate autophagy
(Lampada et al. 2017); RICTOR could regulate the ex-
pression of HIF-la and increases the secretion of
hypoxia-induced VEGF-A and constitutive IL-8 in re-
sponse to a hypoxic environment (Schmidt et al. 2017).
These processes are impaired by RICTOR elimination
and increased by RICTOR overexpression.

Mechanisms of RICTOR in drug resistance

Positive feedback between RICTOR and AKT

Recent evidence suggests that RICTOR participates in
the formation of a positive feedback loop in the AKT
pathway. After its activation by upstream RTKs, AKT
phosphorylates the mTORC2 subunit SIN1 at T86 and
stimulates the activity of mTORC2; subsequently, RIC-
TOR further enhances the phosphorylation of AKT at
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S473, resulting in the full activation of AKT (Yang et al.
2015; Sarbassov et al. 2005).

Thus, it was proposed that this positive feedback
would be significantly enhanced in the amplification of
RICTOR, leading to the constant activation of AKT; this
process is independent of upstream signals, and ultim-
ately results in tumor progression and drug resistance.

Metabolic reprogramming

Metabolic reprogramming is the hallmark of cancer and
enables tumor cells to quickly obtain the macromolecu-
lar precursors and energy required for growth (Hanahan
and Weinberg 2011). Recent research has demonstrated
that mTORC?2 acts as a central link between glucose me-
tabolism and EGFR-TKI resistance. mTORC2-mediated
metabolic reprogramming could lead to the lower spare
respiratory capacity (SRC) of cells to cope with glucose
deprivation-mediated environmental stress, but this
process could be reversed after knockdown of RICTOR
(Chiang et al. 2018).

In addition, activated RICTOR could inhibit the phos-
phorylation of class Ila HDAC and the acetylation of
FoxO, subsequently increasing c-Myc levels, thereby regu-
lating cellular metabolism, including the Warburg effect
(Masui et al. 2013). More importantly, the increase in glu-
cose and acetate could induce the acetylation of RICTOR
via acetyl-CoA and maintain mTORC2 signaling through
feedforward activation, causing tumor cells to counteract
the TKI-mediated inhibition of upstream signals via AKT-
independent pathways (Masui et al. 2015).

Furthermore, mTOR-RICTOR could control cystine
uptake and glutathione metabolism by directly phos-
phorylating xCT, enabling tumor cells to buffer reactive
oxygen species (ROS) and transform resources from pro-
liferation to survival processes when the extracellular en-
vironment dramatically changes (Gu et al. 2017).

Inhibiting apoptosis

NF-kB which is downstream of mTOR, is activated in
several types of cancers and is associated with therapy
resistance by inhibiting apoptosis (Karin 2006). RICTOR
could activate NF-kB and render glioblastoma cells re-
sistant to chemotherapy (Tanaka et al. 2011).

It is worth mentioning that this process does not dis-
appear after blocking AKT phosphorylation but can be
reversed by knocking down RICTOR.

Currently, the mechanism by which RICTOR partici-
pates in tumor growth, invasion and drug resistance has
been shown to be affected by many factors, and the de-
tails of these factors are as shown in Fig. 1.

The prevalence of RICTOR amplification in tumors
The mutation rate of RICTOR in patients is summarized
as follows by querying The Cancer Genome Atlas
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Fig. 1 The mechanisms by which RICTOR participating in tumor growth, invasion and drug resistance
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(TCGA) database (Fig. 2a). The most frequently mutated
types of cancer are non-small-cell lung cancer (13.2%,
205/1553), followed by bladder cancer (11.1%, 72/650)
and esophageal gastric cancer (10.5%, 104/990) (Cerami
et al. 2012; Gao et al. 2013).

Many studies have demonstrated that patients with a
high expression of RICTOR in tumor tissue samples
have a lower overall survival in cancers, such as small
cell lung cancer, colorectal cancer and esophageal squa-
mous cell carcinoma (Fig. 2b-d). A study analyzed pa-
tients with SCLC and found that RICTOR was the most
commonly amplified gene (approximately 14%), and the
median overall survival of the RICTOR non-amplified
and amplified groups was 11.7 months (95% CI: 10.2—
18.9) and 7.9 months (95% CIL: 1-11.1), respectively
(Sakre et al. 2017). Another study reported that the posi-
tive expression rate of RICTOR in colorectal cancer tis-
sues was 58.1% (36/62), which correlated with Dukes
stage, lymphatic metastasis and prognosis. Patients with
a positive expression of RICTOR had a shorter overall
survival compared to those with a negative expression,
indicating that RICTOR could be used as a prognostic
indicator of CRC (Wang et al. 2017). Furthermore, a

study analyzed 201 tissue samples of esophageal cancer
and found that the percentage of the positive expression
of RICTOR was 70.6% (142/201). Importantly, the ex-
pression was positively correlated with the AJCC stage
of patients (P =0.011) and negatively correlated with the
survival rate (P = 0.007) (Jiang et al. 2017).

In short, RICTOR overexpression is associated with
tumor malignancy and prognosis, which means RICTOR
is a potential drug target.

Preclinical and clinical studies of RICTOR

Lung cancer

Currently, lung cancer therapy has shifted from cyto-
toxic treatments based on physicians’ experiences to per-
sonalized precision medicine (Herbst et al. 2018).
However, a targetable genomic mutation has not been
discovered in nearly half of patients with lung adenocar-
cinomas (Pao and Hutchinson 2012). In 2015, Cheng
evaluated an 18-year-old male never-smoker with lung
adenocarcinoma for possible targeted therapy and found
that the amplification of RICTOR was the only operable
genomic alteration. Notably, the patient had more than
18 months of tumor stability after treatment with dual
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mTOR1 / 2 inhibitors (Cheng et al. 2015). In addition,
Dennis (2018) found that RICTOR mutations were
present in early and advanced lung adenocarcinomas,
and the amplification of RICTOR predicted poor overall
survival in advanced LUAD patients (OS, HR: 1.73, 95%
CIL: 1.23-2.42, p =0.0015). Similar results were found in
surgically resected LUAD (OS, HR: 1.54, 95% CI: 1.03—
2.29, p=0.0337). More importantly, significant enrich-
ment of KRAS/MAPK axis mutations in late and early
LUAD had a RICTOR mutation, so mTORC1 / 2 and
MEK inhibition should be effective treatments for tu-
mors with altered RICTOR / KRAS (Ruder et al. 2018).
In conclusion, RICTOR is a feasible novel target for the
treatment of lung cancer.

Bladder Cancer

For 30 years, little progress has been made in the treat-
ment of bladder cancer, and the majority of patients had
tumor infiltration at the time of diagnosis (Grayson
2017). Once the tumor invades, the disease-specific sur-
vival rate reduces as the pathological stages increase with

the current therapeutic interventions. In 2013, Gupta
found that the activity of mTORC2 was approximately
5-fold higher in invasive human bladder cancer samples
compared to noninvasive samples. Knockdown of RIC-
TOR could inhibit the migration and invasion of bladder
cancer cells by decreasing the levels of Racl-GTP and
phospho-paxillin (Gupta et al. 2013). Therefore, select-
ively targeting RICTOR can be a novel strategy for pa-
tients with invasive bladder cancer.

Gastroesophageal cancer

Many studies have shown that the overexpression of
mTOR is common in gastric cancer and that p-mTOR is
suggested to be an independent prognostic factor for
gastric cancer (Yu et al. 2009). To clarify the molecular
mechanism and identify novel specific diagnostic
markers, Bian (2015) analyzed 396 gastric cancer tissue
samples and showed that patients with a positive expres-
sion of RICTOR and p-Akt (Ser473) had lower overall
survival and recurrence-free survival rates than those
with a negative staining for RICTOR. The expression of
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RICTOR and p-Akt (Serd73) affect lymph node metasta-
sis, TNM staging and WHO classification. Furthermore,
the amplification of RICTOR is also associated with
tumor size, depth of invasion and tumor thrombosis,
whereas p-Akt (Serd73) is associated with distant metas-
tasis (Bian et al. 2015). In 2017, Kim et al. treated a
RICTOR-amplified patient-derived cell (PDC) line with
selective AKT, mTORC1 and mTORC1/2 inhibitors and
found that AZD2014, a dual mTORC1/2 inhibitor, could
significantly inhibit the proliferation of PDC and that
the knockdown of RICTOR could reverse the sensitivity
of PDC to AZD2014. These results suggested that RIC-
TOR amplification was a treatment-related genomic al-
teration and supported further preclinical and clinical
studies of AZD2014 in RICTOR-amplified gastric cancer
(Kim et al. 2017a).

Colorectal cancer

Colorectal cancer (CRC) is the third leading cause of
cancer deaths worldwide, and the 5-year survival rate
after diagnosis is approximately 65% (Siegel et al. 2017).
Recently, autophagy and its relation to drug resistance
have become a hot research topic in CRC (Lampada
et al. 2017; Shuhua et al. 2015). To determine the spe-
cific mechanism of autophagy, Siegel (2017) analyzed
279 colorectal cancer specimens and found that the pro-
tein and mRNA expression levels of RICTOR, LC3,
MDR-1, Raptor, mTOR and Beclinl were significantly
higher than those of adjacent tissues. Among them, the
expression of RICTOR was positively correlated with
LC3 (ry=0.168, P<0.01) and MDR-1 (ry=0.427, P<
0.01) and negatively correlated with RAPTOR (rg=-—
0.669, P<0.01). As a result, these researchers indicated
that autophagy is tightly correlated with MDR-induced
resistance in CRC (Shuhua et al. 2015).

Hepatocellular carcinoma
Hepatocellular carcinoma (HCC), the most common pri-
mary liver cancer, is the leading cause of death in pa-
tients with cirrhosis, and its incidence has continued to
rise in recent years (Forner et al. 2018). Choline kinase
alpha (CHKA), the first enzyme in the Kennedy pathway,
is shown to be involved in HCC metastasis and resist-
ance to EGFR-targeted drugs. When studying specific
mechanisms, Lin (2017) accidentally discovered that si-
lencing RICTOR abolished CHKA-induced resistance to
gefitinib and erlotinib and even increased the sensitivity
of cells to drugs (Lin et al. 2017).

Therefore, the selective blocking of RICTOR can be
used as a treatment strategy for EGFR-resistant tumors.

Breast cancer
In recent decades, various novel treatment options for
breast cancer (BC) have been developed and have
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obviously improved the clinical outcomes for patients
(Waks and Winer 2019). However, overactive PI3K/Akt/
mTOR signaling makes tumor cells avoid cytotoxicity
and resist treatment (Miller et al. 2011a; Miller et al.
2011b). In 2016, Meghan et al. found that RICTOR was
enriched in HER2-amplified samples and proved that
RICTOR-mediated Akt phosphorylation (s473), instead
of mTORC1-mediated phosphorylation, could maintain
the survival of HER2-amplified breast cancer cells. In
addition, RICTOR ablation increased lapatinib-mediated
cell death in HER2-amplified breast cancer cells, and
similar results occurred with the combined use of lapati-
nib and PP242 (dual mTORCI1/2 inhibition). Subse-
quently, researchers established a lapatinib-resistant cell
model. After the knockdown of RICTOR, the sensitivity of
lapatinib-resistant cells to drugs was reversed. These re-
sults indicate that the TKI-resistant cells are exquisitely
sensitive to RICTOR/mTORC2 targeting and that the
combined use of TKIs and dual mTOR inhibitors is an ef-
fective therapeutic strategy (Morrison Joly et al. 2016).

Recently, several studies showed that inhibiting
mTORC2 while retaining mTORCI signaling is advis-
able (Palm et al. 2015; O'Reilly et al. 2006; Rozengurt
et al. 2014; Carracedo et al. 2008). Thomas et al. (2018)
developed a nanoparticle-based RNAi therapeutic that
could effectively silence the mTORC2 cofactor RICTOR.
By intratumoral or intravenous delivery, nanomedicine
in combination with lapatinib impaired the survival of
HER2-amplified breast cancer cells (Werfel et al. 2018).

This study provides a new approach for the selective
inhibition of RICTOR and provides motivation for sub-
sequent clinical trials.

Pancreatic cancer

Pancreatic cancer (PC) is one of the most fatal diseases,
with a 5-year overall survival rate of only 9% (Siegel
et al. 2019). Different from the increase in the survival
rate of other cancers, few advancements have been made
in PC (Kamisawa et al. 2016). In 2017, Katharina
assessed the correlation between RICTOR in PC samples
and the survival of PC patients and found that the ex-
pression of RICTOR significantly reduced the survival of
PC patients (p <0.0001). Subsequent in vitro and in vivo
experiments suggested that RICTOR blockade impaired
tumor growth via decreasing the activation of the AGC
kinase and decreasing the expression of hypoxia-
inducible factor 1-alpha (HIF-1a) and VEGF-A (Schmidt
et al. 2017). Another study obtained similar results and
further tested the effects of the dual mTORC1/2 inhibi-
tor (AZD2014) on mice with pancreatic tumors. Com-
pared to gemcitabine or AZD2014 alone, AZD2014
combined with gemcitabine significantly prolonged the
survival of mice with early-stage tumors (median sur-
vival, 280 vs. 147 days). Interestingly, AZD2014 alone,
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instead of combination therapy, prolonged the survival
of mice with late-stage tumors at the start of the treat-
ment (Driscoll et al. 2016).

Detailed mechanisms need to be studied further, but
these results propose a new therapeutic strategy for PC.

Glioma

Glioblastoma (GBM) is one of the most lethal and per-
sistent malignant tumors (Alexander and Cloughesy
2017). Due to the common alteration of EGFR and
PTEN in GBM, many therapeutic strategies have been
developed (Molina et al. 2008). However, a phase II trial
of EGFR-TKI plus mTOR inhibitor in adults with recur-
rent glioblastoma failed to gain satisfactory results (Rear-
don et al. 2010). A possible explanation for these results
is the feedback mechanism of the inhibition of mTORC1
stimulating the mitogenic pathways (Julien et al. 2010).
Luchman (2014) assessed the effect of the dual
mTORC1/2 inhibitor (AZD8055) and found that
AZD8055 significantly reduced the viability of glioma
cells regardless of their EGFR and PTEN mutation sta-
tus. Systemic administration of the drug could reduce
tumor growth in subcutaneous xenografts but not im-
prove the survival of animals with orthotopic xenografts.
One possible reason for this is that the blood-brain bar-
rier prevents sustained intracranial concentrations from
reaching a certain amount (Luchman et al. 2014). Other
related dual mTORC1/2 inhibitors have also achieved
good results in GBM and includePP242 and JR-AB2-
011 (Mecca et al. 2018; Benavides-Serrato et al. 2017).
These results indicate that mTORC?2 inhibition is a feas-
ible strategy for the treatment of GBM.

Immunity therapy

Recently, the success of checkpoint blockade therapy no-
ticeably inspired research into immune therapy (Sharma
and Allison 2015). The detection of immunometabolism
emphasizes the importance of cellular metabolism on
the biological functions of immune cells (Buck et al.
2017). RICTOR, as the core component of mTORC2,
was found to play an important role in regulating im-
mune cells (Zeng 2017).

Dendritic cells

Dendritic cells (DCs) are the most effective antigen-
presenting cells for initiating the T cell response. In 2015,
Raich-Regué et al. demonstrated that RICTOR ablation
increased DC secretion of pro-inflammatory cytokines
(IL-6 and IL-23), thereby promoting Th1/Th17 responses
and T cell proliferation (Raich-Regue et al. 2015).

These results illustrate a new role of mTOR in DCs
and suggest that an mTORC2-selective inhibitor is a po-
tential treatment for immune-mediated inflammation
and anti-tumor immunity.
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CD8" T cells

CD8" T cells are the main effector cells of the immune
system, and these cells perceive antigens presented by
MHC class I molecules (Godfrey et al. 2018). Several
studies have shown that depletion of antigen-specific
CD8+ T cells significantly affects the efficacy of im-
munotherapy (Im et al. 2016; Chang et al. 2014).

In 2015, Kristen et al. used an adoptive transfer model
to clarify the role of mTORC2 in the function of CD8+
T cells. The results suggested that RICTOR /= T cells
showed not only strong differentiation into memory cells
but also increased responses when stimulated again (Pol-
lizzi et al. 2015).

To further investigate the mechanism of mTORC2
shaping CD8 effector and memory differentiation,
Zhang (2016) et al. developed a hybrid mouse model
and suggested that the mTORC2-Akt-Foxol signaling
axis is the crucial regulator of CD8 T cell effector
and memory differentiation. Silencing of RICTOR en-
hanced the reservation of FOXO1 in the nucleus,
thereby upregulating the expression of Eomes and
Tcf-1, repressing the expression of T-bet and enhan-
cing the mitochondrial spare respiratory capacity and
fatty acid oxidation (Zhang et al. 2016).

These studies indicated that the RICTOR blockade
could enhance the generation of memory T cells without
impairing the effector response. Therefore, selective in-
hibition of mMTORC2 may be an important target for im-
munotherapy interventions.

Drugs targeting RICTOR/mTORC2

As early as 1984, the first generation of mTOR inhibitor,
rapamycin, was tried for tumor treatment (Eng et al
1984), and subsequent reports suggested that the com-
bined use of rapamycin and other drugs had great anti-
tumor effect (Bae-Jump et al. 2009; Han et al. 2012;
Shafer et al. 2010; Kimura and Huang 2016). However,
rapamycin only targeted mTORCI1 and showed limited
response rates in cancer treatments. Later, second-
generation rapamycin derivatives were developed, and it
has been proven to have more effective pharmacokinetic
properties and better anti-cancer effects in many clinical
trials (Zhou and Huang 2012; Motzer et al. 2016). Cur-
rently, the second generation of mTOR inhibitors target
both mTORC1 and mTORC2 and include 1) ATP-
competitive TKI, targeting mTORC1 and mTORC?2; 2)
dual inhibitors, targeting PI3K along with mTORCI1 and
mTORC2; and 3) rapamycin, inhibiting mTORC1 and
the assembly of mTORC2. More detailed drug informa-
tion is shown in Table 1. Most of these drugs are in clin-
ical trials, and the combined regimen shows better
therapeutic effects than monotherapy based on several
results reports.
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Table 1 Different types of mTORC2 targeted drugs

Drug type Name Tumor or cell line Reference
ATP-competitive CZ415 Head and neck squamous cell carcinoma (Xie et al. 2018; Li et al. 2018)
mTOR inhibitor (HNSCQ), papillary thyroid carcinoma
Torin2 Adult T-cell leukemia/lymphoma, anaplastic (Watanabe et al. 2016; Sadowski et al. 2015)
thyroid cancer
MLNO128 Intrahepatic cholangiocarcinoma (Zhang et al. 2017; Zhang et al. 2015;
(INK128) Neuroblastoma, breast cancer, osteosarcoma Liu et al. 2016)
PP242 Glioblastoma, ovarian cancer (Mecca et al. 2018; Kawata et al. 2018;
Musa et al. 2016)
AZD8055 Adult T-cell leukemia (ATL), hepatocellular (Kawata et al. 2018; Chen et al. 2018;
carcinoma, colon cancer, neuroblastoma Xu et al. 2018)
AZD2014 Diffuse intrinsic pontine glioma (DIPG), (Kim et al. 2017a; Milosevic et al. 2018;
gastric cancer, anaplastic thyroid carcinoma Wong Te Fong et al. 2017;
(ATC), ovarian cancer Flannery et al. 2018)
PI3K/mTOR inhibitor Dactolisib Colon cancer, glioblastomas, breast cancer (Yu et al. 2016; Shi et al. 2018;
(BEZ235) Torki et al. 2017)
GSK1059615 Head and neck squamous cell carcinoma (Xie et al. 2017a)
(HNSCQ)
LY3023414 Esophageal Adenocarcinoma (Zaidi et al. 2017)
voxtalisib endometrial carcinoma (Yu et al. 2014; Inaba et al. 2015)

mTORC1/2 dual

(SAR245409, XL765)
PQR309

gedatolisib (PKI-587,
PF05212384)

omipalisib (GSK2126458)
CC-223

brain tumor or CNS metastasis

breast, colon, lung, and glioma carcinoma

breast carcinoma

Hepatocellular carcinoma, colorectal cancer,

(Beaufils et al. 2017)
(Venkatesan et al. 2010)

(Knight et al. 2010)

(Xie et al. 2017b; Wang et al. 2018a)

inhibitor head and neck squamous cell carcinoma
(HNSCQO)
Ku0063794 Hepatocellular carcinoma (Kim et al. 2017b)
0sl027 Pancreatic cancer, colon cancer (Chen et al. 2015; Bhagwat et al. 2011;
Zhi et al. 2015)
RES-529 (Palomid 529) Osteosarcoma, angiogenesis and vascular (Hu et al. 2018; Xue et al. 2008;
permeability, prostate cancer Gravina et al. 2011)
WYE-687 Renal carcinoma, acute myeloid (Pan et al. 2017; Cheng et al. 2016)
leukemia (AML)
WYE-354 Colon cancer, gallbladder cancer (Wang et al. 2016; Weber et al. 2015)
Discussion Currently, relevant clinical trials about an inhibitor of

In 2010, Xu et al. demonstrated that the receptor tyro-
sine kinase (RTK) coactivation network was an import-
ant mechanism promoting tumor development and
limiting the lethal effects of targeted drugs (Xu and
Huang 2010). Therefore, aiming to determine the indi-
vidual signaling pathway of an RTK is no longer appro-
priate, and targeting the downstream pathways of RTKs
has become a new strategy to solve this issue (Tan et al.
2017). RICTOR, the core component of the PI3K/Akt
pathway, has been shown to be involved in tumor sur-
vival and drug resistance. Several preclinical experiments
have shown that the single or combined use of mTOR
inhibitors can significantly inhibit tumor growth, in-
crease cell sensitivity to TKIs, and even reverse drug re-
sistance (Lin et al. 2017; Zheng et al. 2015).

RICTOR (AZD2014) are ongoing (ClinicalTrials.gov
Identifier: NCT03061708 and NCT03166904).

As described earlier, nonselective inhibition of the
mTOR pathway may cause off-target effects due to the
complexity of the PI3K/AKT/mTOR pathway. For ex-
ample, even in the case of mTORC2 inhibition, blocking
mTORC1 would activate negative feedback loops, which
causes AKT to reactivate (Fruman and Rommel 2014;
Aylett et al. 2016). Therefore, it is necessary to find a
specific drug that inhibits RICTOR. Recently, Benavides
(2017) identified a small molecule (CID613034) by utiliz-
ing a high-throughput yeast two-hybrid screen. This
small molecular specifically inhibited the phosphoryl-
ation of mTORC2 but had no significant effects on the
phosphorylation status of the mTORCI1 substrate S6K


http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT03061708?term=nct03061708&draw=2&rank=1
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(Thr-389) and therefore does not activate the mTORC]1-
dependent negative feedback loop (Benavides-Serrato
et al. 2017). In addition, Thomas (2019) reported an-
other effective method; a nanoparticle-based RNAi
therapeutic specifically silences the mTORC2 obligate
cofactor RICTOR (Werfel et al. 2018).

These selective mTORC2 inhibitors all achieved good
results in in vitro and xenograft experiments, providing
feasible and efficacious treatments for refractory cancers.

The immunosuppressive activity of rapamycin was first
proposed in 1977 (Martel et al. 1977), and its function in
the immune system has been increasingly valued since
then (Waldner et al. 2016). Preclinical experiments have
found that RICTOR regulates the biological functions of
various immune cells, and its knockdown would be one
of the ways to enhance the efficacy of immunotherapy
(Zeng 2017; Pollizzi et al. 2015; Zhang et al. 2016). How-
ever, some basic studies have shown that mTOR regu-
lates the homeostasis of immune cells in an interactive
manner (Wang et al. 2018b), thus, targeting mTOR in
immune cells may destroy the immune tolerance and
lead to autoimmune diseases. Autoimmune syndrome is
an important factor in the failure of immunotherapy
(June et al. 2017).

As a result, when using targeted or adjuvant immuno-
therapy, doctors need to carefully record the patient status
and promptly resolve immune-related adverse events
(irAEs) to minimize potential risks. Currently, there are
no relevant immune-related trials; however, based on the
regulatory functions of RICTOR in different immune cells,
it is a promising cellular target for cancer immunotherapy.

Conclusion

As a key effector molecule of PI3K/AKT/mTOR, RIC-
TOR plays an important role in tumorigenesis and inva-
sion and causes tumor resistance to RTK-TKIs by AKT-
dependent and -independent pathways, which seriously
limits patients’ benefits from targeted drugs. Therefore,
RICTOR is an important potential target for addressing
drug resistance issues. Additional studies are needed to
elucidate the mechanism of RICTOR and will provide
definitive evidence for future clinical trials.
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