Table 3.
Test Set | Model | auROC | auPRC | Pearson value | Spearman value |
---|---|---|---|---|---|
Total test set | CnnCrispr | 0.975 | 0.679 | 0.682 | 0.154 |
CFD | 0.942 | 0.316 | 0.343 | 0.140 | |
MIT | 0.77 | 0.044 | 0.150 | 0.085 | |
CNN_std | 0.947 | 0.208 | 0.321 | 0.141 | |
DeepCrispr | 0.981 | 0.497 | – | 0.133 | |
Hek293t test set | CnnCrispr | 0.971 | 0.686 | 0.712 | 0.160 |
CFD | 0.936 | 0.318 | 0.371 | 0.143 | |
MIT | 0.756 | 0.048 | 0.153 | 0.084 | |
CNN_std | 0.939 | 0.204 | 0.330 | 0.144 | |
DeepCrispr | 0.984 | 0.521 | – | 0.136 | |
K562 test set | CnnCrispr | 0.995 | 0.688 | 0.426 | 0.134 |
CFD | 0.965 | 0.322 | 0.336 | 0.128 | |
MIT | 0.814 | 0.033 | 0.057 | 0.086 | |
CNN_std | 0.983 | 0.287 | 0.319 | 0.132 | |
DeepCrispr | 0.953 | 0.41 | – | 0.126 |
We downloaded the prediction models of CFD, MIT and CNN_std from relevant websites and obtained the prediction results on the same test set as CnnCrispr. Since the training process of CnnCrispr was consistent with DeepCrispr’s, we directly used the test results in Additional file 2 given by DeepCrispr for performance comparison. The numbers in boldface indicate the highest scores for each metric