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Summary

Following T-cell antigen receptor (TCR) engagement, rearrangement of

the actin cytoskeleton supports intracellular signal transduction and T-cell

activation. The non-catalytic region of the tyrosine kinase (Nck) molecule

is an adapter protein implicated in TCR-induced actin polymerization.

Further, Nck is recruited to the CD3e subunit of the TCR upon TCR trig-

gering. Here we examine the role of actin polymerization in the recruit-

ment of Nck to the TCR. To this end, Nck binding to CD3e was

quantified in Jurkat cells using the proximity ligation assay. We show that

inhibition of actin polymerization using cytochalasin D delayed the

recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3e

phosphorylation was also delayed. These findings suggest that actin poly-

merization promotes the recruitment of Nck to the TCR, enhancing

downstream signaling, such as phosphorylation of CD3e.

Keywords: actin polymerization; CD3e; cytochalasin D; Nck; T-cell activa-

tion.

Abbreviations: CD3e, cluster of differentiation 3e; CREB, cyclic AMP-response element binding protein; CytD, cytochalasin D;
Erk, extracellular signal-regulated kinase; F-actin, filamentous actin; LAT, linker of activated T cells; Lck, lymphocyte-specific
protein tyrosine kinase; MHC, major histocompatibility complex; Nck, non-catalytic region of tyrosine kinase ; PLA, proximity
ligation assay; PRS, proline-rich sequence; SH domain, Src homology domain; SLP-76, SH domain containing leukocyte protein
of 76 000 MW; TCR, T-cell receptor; WAsP, Wiskott-–Aldrich syndrome protein; ZAP70, f chain-associated protein kinase of
70 000 MW
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Introduction

T cells use their T-cell receptor (TCR) to interact with

antigenic peptides presented by major histocompatibility

complex (MHC) molecules on the antigen-presenting

cells, in order to carry out their effector functions. This

TCR–peptide–MHC binding results in intracellular signal-

ing that involves a dynamic rearrangement of the actin

cytoskeleton. The latter event is important for T-cell cyto-

kine production, proliferation, survival, metabolism and

differentiation.1

Filamentous actin (F-actin) is enriched at the interface

of the conjugation between the T-cell and antigen-pre-

senting cells, the so-called immunological synapse.

Prevention of actin reorganization by using actin poly-

merization inhibitors such as cytochalasin D (CytD) can

result in impaired synapse formation, intracellular signal-

ing and so T-cell activation.2,3

Understanding of the molecular mechanisms that regu-

late actin rearrangement has expanded in the past years.

Various signaling molecules have been described that are

involved in intracellular signaling from the TCR to actin

rearrangement. Engagement of the TCR by antigen- or

anti-TCR/CD3 antibodies stabilizes the TCR in an active

CD3 conformation that allows the lymphocyte-specific

protein tyrosine kinase (Lck) to access the tyrosines in

the cytoplasmic tails of the signaling subunits of the TCR,

namely CD3f, CD3e, CD3d and CD3c.4,5 This results in

the phosphorylation of CD36 and of multiple effector

molecules, including the f chain-associated protein kinase

of 70 000 MW (ZAP70), the linker of activated T cells

(LAT) and the Src homology (SH)-2 domain containing

leukocyte protein of 76 000 MW (SLP-76).7–9 An adaptor

protein called the non-catalytic region of tyrosine kinase

(Nck) and its associated molecule the Wiskott–Aldrich
syndrome protein (WASp) are recruited to phosphory-

lated SLP-76 in the vicinity of the activated TCR.10,11

Here, WASp is activated by the Rho family GTPase

Cdc42 and subsequently leads to the initiation of actin

filament formation.10 Previous studies have confirmed the

involvement of Nck recruitment associated with LAT,

SLP-76 and WASp in the process of actin polymerization

induced by TCR engagement.12,13

Nck is ubiquitously expressed and integrates signals

from transmembrane receptors to downstream effectors

to regulate actin cytoskeletal rearrangement in most, if

not all, cell types.14 In human and mice, two Nck iso-

forms exist (Nck1/Ncka and Nck2/Nckb).15,16 Both iso-

forms consist of three SH3 domains (SH3�1, SH3�2 and

SH3�3) and one SH2 domain, and so potentially interact

with proline-rich sequence (PRS)-bearing proteins and

tyrosine phosphorylated proteins, respectively.17–19 In T

cells, Nck uses its SH3�2 and SH3�3 domains to bind to

WASp,18 which subsequently controls actin polymeriza-

tion.20 Nck also functions as a linker for the recruitment

and activation of other proteins in multiple intracellular

signaling pathways.17 In addition, upon TCR triggering,

Nck is recruited directly to the CD3e subunit of the

TCR.21,22 In fact, in TCRs in the active conformation the

CD3e’s PRS is exposed and binds to the SH3�1 domain of

Nck.4,23 However, this is not sufficient to stably recruit

Nck to the TCR. In addition, the Nck SH2 domain needs

to bind to the phosphorylated first tyrosine of the

immunoreceptor-tyrosine based activation motifs of

CD3e.22 Interestingly, Nck bound to the TCR might bind

simultaneously to WASp and thereby recruit WASp to

the TCR,13 regulating actin polymerization. Indeed,

inhibiting the Nck–TCR interaction reduced actin poly-

merization,24 showing that the Nck pool at the TCR sig-

nificantly contributes to actin rearrangements. However,

the opposite scenario, i.e. whether actin polymerization

affects Nck recruitment to the TCR, has not been investi-

gated so far.

Recently, we have demonstrated that Nck1, rather than

Nck2, plays a major role in TCR signaling in human T

cells.25 Hence, in this work we focus on Nck1, examining

the involvement of actin polymerization in Nck recruit-

ment to the TCR. We show that inhibition of actin poly-

merization is associated with a delayed recruitment of

Nck1 to the TCR upon TCR triggering. This might be

explained by delayed phosphorylation of CD3e.

Materials and methods

Antibodies and reagents

In this present study, the following antibodies were used:

rabbit anti-Nck1, rabbit anti-ZAP70, rabbit anti-phospho-

ZAP70 (Y319) and rabbit anti-GAPDH antibodies were

purchased from Cell Signaling Technology (Danvers,

MA), the anti-idiotypic TCR antibody (C305) was from

Millipore (Merk KGaA, Darmstadt, Germany), mouse

anti-CD3 (OKT-3) antibody was from eBioscience (San

Diego, CA), and goat anti-CD3e M20 antibody was from

Santa Cruz Biotechnology (Santa Cruz, CA). The rabbit

anti-CD3f antiserum 448 and the rabbit anti-phospho-

CD3e antiserum (anti-phospho-eY1) have been described

previously.26,27 The inhibitor of actin polymerization

CytD was purchased from Sigma-Aldrich (St. Louis, MO)

and the rhodamine-coupled phalloidin for F-actin stain-

ing was purchased from Invitrogen (Waltham, MA).

Generation of Nck1-deficient Jurkat T cells

The Jurkat variant N1KO (deficient in Nck1) was gener-

ated by transiently expressing Cas9, a guide sgRNA

against the Nck1 region. The Nck1 sgRNA oligonu-

cleotide sequence used was 50-GTCGTCAATAACCTAAA-
TAC-30. These guide sgRNAs were cloned into the

GeneArt� CRISPR Nuclease (OPF) vector (Invitrogen,
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#A21174) that was then electroporated into Jurkat T cells

using Amaxa Nucleofector II using the manufacturer’s

protocol X-005. The stable Nck1-deficient single cells

were obtained from these lines by limiting dilution. Suc-

cessful positive knockout individual clones were selected

by fluorescence analysis and screening with immunoblot

probed for anti-Nck1 antibody. The selected clones had

100% down-regulation of endogenous Nck1 and TCR

expression was evaluated by flow cytometry. Clones with

similar expression levels of TCR were selected for further

studies. Here, we chose one clone each that was named

N1KO.

T-cell culture and stimulation

The human Jurkat T-cell line (E6-1 clone) obtained from

the American Type Culture Collection (Rockville, MD)

and the N1KO Jurkat cells produced in our laboratory

were used for studying TCR signaling and T-cell activa-

tion. Both cell types were cultured in RPMI-1640 med-

ium (Gibco Thermo Fisher Scientific, Waltham, MA)

supplemented with 10% heat-inactivated fetal bovine

serum (Gibco), 2 mM L-glutamine and 100 U/ml peni-

cillin G and 100 µg/ml streptomycin (HyClone, Fisher

Scientific, Loughborough, UK) in a humidified incubator

with 5% CO2 at 37°. The cells were harvested and starved

in RPMI-1640 medium without fetal bovine serum for

1 hr at 37°. Subsequently they were either stimulated with

the C305 antibody diluted 1 : 50 for the indicated time-

points or left untreated as a control. This antibody dilu-

tion corresponded to � 0�12 mg/ml of C305.

Inhibitor treatment and fluorescence microscopic visual-
ization

To determine the optimal inhibitory concentration to

inhibit actin polymerization, Jurkat cells were treated with

CytD for 30 min at concentrations of 5 and 10 µM at 37°
before cell stimulation. The investigation of F-actin for-

mation inhibition was performed as previously known for

application in fixed cells.28 Briefly, chambered cover-

glasses (LabTek; Thermo Scientific) pretreated with

0�01% weight/volume poly-L-lysine solution (Merk KGaA)

were coated with anti-CD3 antibody (1 lg/ml) and incu-

bated at 4° overnight. After washing with phosphate-buf-

fered saline (PBS), 2 9 105 cells in 200 µl medium

containing 10% fetal calf serum and 10 mM HEPES were

seeded into the chambers and incubated for 5 min. Cells

were then fixed with 4% paraformaldehyde and perme-

abilized with 0�1% Triton X-100. After washing, the sam-

ples were blocked for 1 hr with 10% fetal calf serum and

0�02% sodium azide in PBS. Subsequently, the chambers

were incubated with rhodamine-phalloidin staining (di-

luted in PBS at 1 : 200) and they were observed for red

fluorescence signals under a fluorescence microscope

(Nikon Eclipse Ti, Nikon�, Melville, NY) using NIS-Ele-

ments D software with 2560 9 1920 record pixels. Three

to five high-power fields in each slide were always

included for visualization to avoid slide-to-slide variation.

Multiplex TCR signaling assay

Ten million Jurkat T cells were pretreated with 5 µM

CytD for 30 min at 37° before being stimulated with

C305 antibody (1 : 50) at 37° for the indicated time-

points (30 seconds, 1, 5, 10 and 30 min) or left untreated

as a control. After stimulation, cell pellets were lysed in

1 ml of MILLIPLEX� MAP Lysis Buffer (Merck KGaA)

containing freshly prepared protease inhibitors. The

working concentration of protein for the assay was 7�5 µg
of total protein/well (25 µl/well at 300 µg/ml). Subse-

quently, the levels of phosphorylation of each protein

were determined using a T-Cell Receptor Magnetic Bead

Kit 96-well Plate Assay, Milliplex Map Kit (Merck KGaA),

following the manufacturer’s instructions and the mean

fluorescence intensity was measured with the MAGPIX,

Luminex� system (Austin, TX).

In situ proximity ligation assay

Jurkat T cells were grown on diagnostic microscopic

slides (ThermoScientific). Cells were pretreated with 5 µM

CytD for 30 min at 37°. Then, cells were stimulated with

the anti-TCR antibody C305 (1 : 50) at 37° for 5 or

10 min, or left untreated as a control. Subsequently, cells

were fixed with paraformaldehyde, permeabilized with

0�5% saponin, and blocked with blocking solution. Then,

cells were co-incubated with goat anti-CD3e M20 anti-

body (Santa Cruz Biotechnology) and rabbit anti-Nck1

antibody (Cell Signaling Technology). A proximity liga-

tion assay (PLA) between the CD3e and Nck1 molecules

was performed using the Duolink kit (Olink Bioscience,

Uppsala, Sweden) according to the manufacturer’s

instructions. The PLA signals appeared as red fluores-

cence dots. Cell nuclei were stained with DAPI. A fluores-

cence microscope (Nikon Eclipse Ti) was used for

imaging and analysis. The number of the PLA signal dots

was scored with the Blob-Finder program (Uppsala

University).

Immunoprecipitation and Western blotting

Jurkat T cells that were either pretreated or not with

CytD for 30 min were stimulated with anti-TCR antibody

(C305, 1 : 50) at 37° for 3, 10 and 30 min or left unstim-

ulated. Cells were then lysed in 100 ll lysis buffer

(20 mM Tris–HCl pH 8�0, 137 mM NaCl, 2 mM EDTA,

10% glycerol, protease inhibitor mixture (Sigma-Aldrich),

1 mM phenylmethylsulfonyl fluoride, 5 mM iodoac-

etamide, 0�5 mM sodium orthovanadate, 1 mM NaF, and
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0�3% Brij96V) for 30 min on ice. TCRs from the total

cellular lysates were then immunoprecipitated with 1 mg

anti-CD3e antibody (OKT3) -coupled protein-G Sephar-

ose beads (GE Healthcare Life Sciences, Uppsala, Swe-

den). The sodium dodecyl sulfate–polyacrylamide gel

electrophoresis and immunoblotting were performed with

the antibodies indicated, and visualization was carried out

using a CCD camera (ImageQuant LAS4000; GE Health-

care Life Sciences, Pittsburgh, PA). Band intensity was

assessed by The ImageJ software (Rasband, W.S., U. S.

National Institutes of Health, Bethesda, MA).

Statistical analysis

Data were analyzed using SPSS software and presented as

means � SEM. Differences between two experimental

groups were analyzed with Student’s t-test. Significant dif-

ferences were considered when P-values were < 0�05.

Results

Analysis of F-actin distribution in Jurkat T cells
treated with CytD

To study the function of actin polymerization in the

recruitment of Nck1 to the TCR, CytD was used to disturb

actin polymerization. To confirm that the CytD used was

having the expected inhibitory effect on actin polymeriza-

tion, Jurkat T cells were treated with 5 and 10 µM CytD for

30 min before TCR stimulation or not. Subsequently, the

TCR was stimulated with the anti-idiotypic monoclonal

antibody C305, which binds to the variable regions of the

endogenous TCR expressed by Jurkat cells.29 Then the

amount of polymerized actin (F-actin) was probed with

rhodamine-conjugated phalloidin and was assessed by fluo-

rescence microscopy (Fig. 1a,b). As anticipated, TCR stim-

ulation led to actin polymerization showing an apical ring

of F-actin. CytD treatment prevented actin polymerization

compared with the staining pattern observed in C305-stim-

ulated cells without CytD. The result suggested that 5 µM

of CytD was sufficient to inhibit actin polymerization

under our experimental system and this concentration was

used in all following experiments.

Requirement of actin polymerization for an efficient
TCR-induced Nck1-CD3e interaction

A possible involvement of actin polymerization in the

recruitment of Nck to CD3e has not been studied so far.

To determine this, we used the in situ PLA, which is a

technique that allows visualization of the close proximity

between endogenous proteins in fixed cells by red fluores-

cent dot detection.30 Recently, we established the PLA to

quantify the proximity of Nck with the cytoplasmic tail

of CD3e in T cells using anti-Nck1 and anti-CD3e

antibodies22 (Fig. 2a). Here, we left Jurkat T cells

untreated as a control or treated them with CytD to pre-

vent actin polymerization. Subsequently, the cells were

stimulated with the anti-TCR antibody C305 for 5 and

10 min at 37° or left unstimulated. PLA was performed

with anti-Nck1 and anti-CD3e antibodies and analyzed by

fluorescence microscopy. The red fluorescent dots indica-

tive of close proximity between Nck and TCR were

counted (Fig. 2b). Without CytD treatment and as

reported before,22 we detected an increase in the number

of red dots when the TCR was stimulated for 5 min com-

pared with unstimulated cells, showing that endogenous

Nck was recruited to CD3e upon TCR stimulation. At

10 min of stimulation, Nck recruitment to the TCR

ceased, demonstrating that this is a very transient event

following TCR triggering (Fig. 2c).

In the presence of CytD, the anti-TCR-induced prox-

imity between Nck and CD3e was delayed, so that Nck

recruitment was hardly detectable after 5 min, but promi-

nent after 10 min of stimulation (Fig. 2b,c). Hence, actin

cytoskeletal rearrangement is necessary for a fast recruit-

ment of Nck1 to the TCR, including a fast shut-off of the

signal. To test whether the induced Nck–TCR proximity

was caused by Nck binding to the TCR, Jurkat cells were

stimulated under the same conditions as in Fig. 2(b) and

subjected to immunoprecipitation with anti-CD3 anti-

body. Consistent with the data from the PLA, Nck bind-

ing to the TCR was increased upon TCR triggering

(Fig. 2d). Importantly, lower amounts of Nck were co-

immunoprecipitated with the TCR from anti-TCR C305

antibody-stimulated and CytD-pretreated cells compared

with C305-stimulated cells alone (Fig. 2d,e). Collectively,

these data indicate that actin polymerization is required

for an efficient recruitment of Nck to the TCR.

Antibody-mediated CD3e phosphorylation was
delayed under CytD treatment

Nck recruitment to the TCR requires both an interaction

of Nck with the exposed PRS of CD3e and with a phos-

phorylated tyrosine in CD3e.22 Since the exposure of the

CD3e PRS occurs concomitantly with ligand-binding to

the TCR,4,23 we hypothesized that CD3e phosphorylation

might decrease under CytD treatment. To explore this

possibility, we tested for CD3e phosphorylation using

C305 as a TCR stimulus and immunoprecipitation of the

TCR (Fig. 3a). In the absence of CytD, CD3e phosphory-

lation was maximal at 3 and 10 min of stimulation and

decreased at 30 min. In contrast, in the presence of CytD,

there were lower amounts of tyrosine phosphorylation at

CD3e at all stimulation time-points (Fig. 3a). Hence,

CytD prevented tyrosine phosphorylation of CD3e after

TCR antibody-mediated engagement.

To substantiate this finding, CD3e tyrosine phosphory-

lation in total cell lysates was measured using the Luminex
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system and Western blotting. To this end, Jurkat T cells

were stimulated with the antibody C305 for the indicated

time-points in the absence or presence of CytD and the

levels of tyrosine phosphorylated CD3e were quantified

(Fig. 4a,b, respectively). Consistent with the immunopre-

cipitation data, the phosphorylation of CD3e was a tran-

sient event, peaking at around 5 min. In sharp contrast,

CytD treatment resulted in a delay of phosphorylation of

CD3e with the peak occurring at 10 min (Fig. 4c).

Together this suggested that inhibition of actin polymer-

ization was associated with a delayed and reduced tyrosine

phosphorylation at CD3e upon TCR triggering.

Actin polymerization is required for the stimulation-
induced interaction between ZAP70 and the TCR

To test whether the interaction between TCR and ZAP70

was altered by inhibiting actin polymerization, we per-

formed a time–course experiment of ZAP70 co-immuno-

precipitation with the TCR using the anti-TCR C305

antibody as a stimulus in the presence or absence of CytD

(Fig. 3b). Binding of ZAP70 to TCR was decreased upon

TCR triggering in the presence of CytD compared with

C305-stimulated cells alone (Fig. 3b). This was correlated

with a decrease of phosphorylated ZAP70 which was co-

immunoprecipitated with TCR in the presence of CytD

(Fig. 3c). These data indicate that actin polymerization is

required for an efficient recruitment of ZAP70 to the

antibody-stimulated TCR.

Defective actin filament formation correlates with
impaired TCR-induced phosphorylation of
intracellular signaling proteins

Following the proximal TCR phosphorylation data of

Fig. 3, we hypothesized that upon TCR triggering, actin

polymerization would also be involved in more

downstream signaling. To investigate this, Jurkat T cells

were stimulated with the anti-TCR antibody C305 at 37°
for the indicated time-points in the absence or presence of

CytD. Then, the phosphorylation of ZAP70, Extracellular-

signal regulated kinase (Erk) and the transcription factor

cyclic AMP-response element binding protein (CREB) in

total cell lysates was measured using the Luminex system

(Fig. 4c,e,g, respectively) and Western blotting (Fig. 4d,f,h,

respectively). As predicted, the impaired actin polymeriza-

tion was associated with decreased and delayed phospho-

ZAP70, decreased phospho-Erk, and decreased phospho-

CREB. Therefore, actin polymerization promoted the phos-

phorylation of ZAP70, Erk and CREB upon TCR triggering.

Phosphorylation of CD3e depends on the presence of
Nck

Next, we tested whether CD3e phosphorylation was caused

by the recruitment of Nck to the TCR. To this end, we

stimulated Nck1-CRISPR/Cas9 knockout (N1KO) and

wild-type Jurkat cells with the anti-TCR antibody C305 or

left cells unstimulated. All cells expressed similar amounts

of TCR on their cell surface, as shown by flow cytometry

(Fig. 5a). We show that an efficient phosphorylation of

CD3e required the presence of Nck1, as this phosphoryla-

tion was reduced in N1KO cells after TCR stimulation

compared with the control Jurkat cells containing Nck1.

These data indicate that Nck recruitment to the TCR is

required for an efficient phosphorylation of CD3e
(Fig. 5b). Therefore, this finding places the recruitment of

Nck to the TCR upstream of CD3e phosphorylation.

Discussion

In this study, we describe the role of actin polymerization

in proximal TCR signaling involving the recruitment of

the adaptor protein Nck to the TCR upon TCR
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triggering. Our data show that disruption of actin poly-

merization resulted in a delayed recruitment of Nck1 to

the TCR. This was correlated with a delay in tyrosine

phosphorylation of the CD3e. In the present finding, Nck

was recruited as early as 5 min after TCR ligation. A pre-

vious work has demonstrated that a mechanotransduction

caused by TCR engagement at the immune synapse leads

to actin polymerization.31 Hence, together with our

findings, Nck is required for CD3e phosphorylation by

Lck, in which F-actin acts to link Nck and Lck to initiate

this phosphorylation. Nck and F-actin, therefore, could

function to promote each other at proximal TCR signal-

ing.

Inhibition of actin polymerization might delay CD3e
phosphorylation by the following mechanisms. First, on

TCR triggering, Nck interacts with a proline motif of the
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(a). The proximity between Nck1 and the TCR was detected by in situ PLA in intact fixed Jurkat cells. Jurkat T cells were either left untreated or

treated with 5 µM cytochalasin D (CytD) for 30 min at 37°. Subsequently, cells were stimulated with the anti-TCR antibody C305 (1 : 50) for 5

and 10 min or left unstimulated. After fixation and permeabilization, PLA was performed using goat anti-CD3e (M20e) and rabbit anti-Nck1 pri-

mary antibodies, followed by secondary antibodies. Nuclei were stained with DAPI. Cells were imaged using a Nikon Eclipse Ti-U fluorescence

microscope. Original magnification is 6009 (b). The corresponding quantification of the red PLA dots from (b) and the mean � SEM is dis-
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subjected to immunoprecipitation with the anti-CD3 antibody (OKT3). After sodium dodecyl sulfate–polyacrylamide gel electrophoresis, the

Western blot was developed with anti-Nck1 and anti-CD3e antibody. The corresponding lysates were developed with anti-Nck1 antibody. Data

are representative of four independent experiments. The intensity of the Nck1 and CD3e bands in the immunoprecipitation was quantified using

IMAGEJ software and is presented as a ratio of Nck1 to CD3e normalized to the unstimulated/untreated cells. The data represent the mean � SEM

(ns, non-significant, **P < 0�01, ****P < 0�0001) (e).
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Figure 3. Inhibition of the actin polymerization impairs tyrosine phosphorylation at CD3e and recruitment of f chain-associated protein kinase

of 70 000 MW (ZAP70) to the T-cell receptor (TCR). Jurkat cells were left untreated or pretreated with 5 µM cytochalasin D (CytD) for 30 min

at 37° before stimulation with the anti-TCR antibody C305 (1 : 50) at 37° for the indicated time-points or left unstimulated (uns) as in

Fig. 2(d). After stimulation, cell lysates were subjected to immunoprecipitation with the anti-CD3 antibody OKT3. After sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS–PAGE) the Western blot was developed with anti-phospho-CD3e and anti-CD3f antibodies. The lysates

were developed with anti-GAPDH antibody (a). Jurkat cells were stimulated as in (a). Cell lysates were subjected to immunoprecipitation with

the anti-CD3 antibody OKT3. After SDS–PAGE the Western blot was detected with anti-ZAP70 and anti-CD3ɛ antibodies (b), and anti-phos-

pho-ZAP70 and anti-CD3f antibodies (c). The corresponding lysates were developed with an anti-ZAP70 antibody. The intensity of the phos-

pho-CD3e and CD3f bands (a), the ZAP70 and CD3ɛ bands (b), and the phospho-ZAP70 and CD3f bands (c) in the immunoprecipitation was

quantified using IMAGEJ software and is presented as a ratio of phospho-CD3e to CD3f (a), of ZAP70 to CD3ɛ (b), and of phospho-ZAP70 to

CD3f (c) normalized to the unstimulated/untreated cells. Data are representative of four experiments, and the statistical analysis was performed

as in Fig. 2(e) (ns, non-significant, *P < 0�1, **P < 0�01).
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unique domain of the lymphocyte-specific protein tyro-

sine kinase Lck,32 the interaction being enhanced by a

specific T-cell adaptor protein TSAd.33 Therefore, it could

be that disruption of actin polymerization impairs

recruitment of Nck-TSAd-Lck to the TCR, leading to

delayed CD3 phosphorylation. Second, proximal TCR sig-

naling involves very early and simultaneous binding

between Nck, CD3e, and Lck. This signaling complex for-

mation might require actin polymerization in stabilizing

the recruitment of either of these molecules. Hence,

inhibition of actin polymerization then causes a delayed

formation of the signaling complex and as a consequence

the delayed CD3e phosphorylation. Third, actin polymer-

ization was shown to be important for the directed

movement of TCRs upon TCR triggering. A study used

CytD to inhibit actin retrograde flow. It was demon-

strated that actin retrograde flow is required for cen-

tripetal TCR microcluster transport and drives the

receptor cluster dynamics at the immunological synapse

in Jurkat T cells.34 Importantly, TCR clustering enhances

phosphorylation of CD3.35,36 Hence, without actin poly-

merization TCR clustering might be delayed, resulting in

less CD3 phosphorylation.

T-cell antigen receptor microcluster formation by

transgenic TCR T cells on synthetic lipid bilayers with

MHC–peptide agonist and intercellular adhesion mole-

cule-1 (ICAM-1) depends upon F-actin.37 Another report

using latrunculin-A to inhibit F-actin formation showed

that TCR microclusters stopped translocating immediately

after latrunculin-A treatment. This inhibitory effect

was primarily on disorganization of the peripheral

supramolecular activation complex (pSMAC), but very

little on the central supramolecular activation complex

(cSMAC), showing that the stability of the cSMAC might

not depend on F-actin. In addition, the newly formed

TCR microclusters could be inhibited by F-actin inhibi-

tor, whereas those already generated were resistant to F-

actin inhibitor.38 These findings are in accordance with

another report suggesting that TCR microcluster forma-

tion is resistant to inhibition by Src family kinase
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Figure 5. Non-catalytic region of tyrosine kinase 1 (Nck1) is required for the phosphorylation of CD3e. Jurkat wild-type and Nck1-CRISPR/Cas9

knockout (N1KO) Jurkat cells were stained with allophycocyanin-conjugated anti-CD3e antibody UCHT1. The expression levels of surface CD3

molecule of the cell clones were evaluated by flow cytometry. The clones with similar expression of T-cell receptor (TCR) were selected for fur-

ther studies (a). The cells were either stimulated with C305 or left unstimulated for 5 min at 37°. Cell lysates were collected and TCRs were

immunoprecipitated with the anti-CD3 antibody OKT3. After sodium dodecyl sulfate–polyacrylamide gel electrophoresis, the Western blot was

developed with anti-phospho-CD3eY1 (pCD3e) and anti-CD3e antibodies. The corresponding lysates were developed with anti-Nck1 and anti-f
antibodies (b).

Figure 4. Down-regulation of the proximal and downstream signaling proteins upon disturbance of polymerized actin. Phosphorylation of CD3ɛ

(pan-phospho-Tyr CD3e) (a), f chain-associated protein kinase of 70 000 MW (ZAP70; pan-phospho-Tyr ZAP70) (c), Erk (phospho-Tyr185/

Tyr187) (e) and CREB (phospho-Ser133) (g) was measured with the Luminex system. Jurkat T cells that were either left untreated or pretreated

with 5 µM cytochalasin D (CytD) for 30 min at 37° before stimulation with anti-T-cell receptor (TCR) antibody C305 (1 : 50) at 37° for the

indicated time-points or left unstimulated. Cells were then lysed and the mean fluorescence intensity (MFI) was measured using the MAGPIX,

Luminex� system. The graph represents the MFI of duplicate wells from two independent experiments. Jurkat cells were stimulated and lysed as

in the Luminex experiments (a,c,e,g). Total cell lysates were subjected to sodium dodecyl sulfate–polyacrylamide gel electrophoresis and Western

blot. Membranes were detected with anti-phospho-CD3ɛ (b), anti-phospho-ZAP70 (d), anti-phospho Erk1/2 (f) and anti-phospho-CREB (h)

antibodies. The corresponding lysates were detected with an anti-actin or anti-CD3e antibody. Data are representative of three independent

experiments. Significant differences were determined by ordinary one-way analysis of variance (ns, non-significant, *P < 0�05, **P < 0�01,
***P < 0�001, ****P < 0�0001).
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inhibitor PP2, but can be inhibited by latrunculin-A.37 In

our present study, phosphorylation of CD3ɛ was reduced

when F-actin was inhibited, hence, it is likely that F-actin

supports Src kinase-independent formation of TCR

microclusters in response to MHC–peptide agonist for

TCR signal amplification.

Actin drives the process of cell polarization and main-

tains the cell–cell contact; its polymerization also likely

provides a scaffold for clustering, translocation and spatial

segregation of proteins, these are key steps to amplify and

maintain T-cell signaling.12,39–42 These data were consistent

with our study showing that actin polymerization is

required for an efficient recruitment of ZAP70 and Nck1 to

the antibody-stimulated TCR. Therefore, the actin poly-

merization is essential for the translocation of signaling

proteins, especially for the recruitment of proximal signal-

ing molecules to TCR to sustain initial T-cell signaling. The

present finding shows that the presence of Nck is required

for an efficient phosphorylation of CD3e. However, F-actin

has been demonstrated to be essential for micro-adhesion

rings, LAT and SLP76 clusters, but not for TCR microclus-

ters and ZAP70 clusters.43 F-actin might support phospho-

Phospholipase C gamma (PLC-c) as actin foci similar to

the F-actin localized at the core of the synapse-like struc-

ture that supports SLP76 clusters and the micro-adhesion

ring.3,43 This is in agreement with the present study

demonstrated that the inhibition of actin filament forma-

tion resulted in the impaired TCR-induced phosphoryla-

tion of intracellular signaling proteins including ZAP70,

Erk and CREB. Previous studies have also shown the

involvement of F-actin in the function of calcium signaling

molecules and calcium influx.38,44,45 It has also been sug-

gested that actin polymerization acts very early at immune

synapses when TCR is ligated and it also serves as a scaffold

to which signaling molecules would bind and so be pro-

tected from degradation by proteasomal pathways.31,45,46

In summary, our present study reveals that the TCR

engagement leads to actin polymerization, this might be

caused by fast and very-low-level downstream signaling.

The polymerized actin stabilizes the exposure of the PRS

of CD3e and allows the early binding of the SH3�1–Nck
to the PRS. This transient and weak interaction promotes

CD3e phosphorylation, possibly because Nck can interact

with Lck. Then, Nck can bind to TCR stably using its

SH3 and SH2 domains, resulting in a subsequent induc-

tion of the downstream signaling cascade (Fig. 6). Taken

together, our data highlight the important mechanism of

actin polymerization in the recruitment of the endoge-

nous Nck1 molecule to phosphorylated CD3e contribut-

ing to T-cell activation.
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Figure 6. Our model of the role of actin polymerization in promoting non-catalytic region of tyrosine kinase (Nck) -binding to the ligand-/anti-

body-engaged T-cell receptor (TCR). Engagement of the TCR first leads to actin remodeling (1); this might be caused by fast and very-low-level

downstream signaling. The polymerized actin promotes binding of the SH3�1(Nck) domain to the proline-rich sequence (light blue box) in the

CD3e (2). This transient and weak interaction promotes the phosphorylation of CD3, possibly due to the interaction of Nck with Lck (3). If the

second immunoreceptor-tyrosine based activation motif (ITAM) tyrosine of CD3e is phosphorylated, Nck can bind using its SH3�1 and SH2

domains in a cooperative manner (4). This binding mode is strong and together with f chain-associated protein kinase of 70 000 MW (ZAP70)

binding to doubly phosphorylated ITAMs leads to T-cell activation (left panel). If actin polymerization is blocked, the following downstream

events do not occur in an efficient manner (right panel).
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