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Abstract

Interferon (IFN) regulatory factors (IRFs) are important determinants of the innate response to infection. We evaluated the role(s)

of combined and individual IRF deficiencies in the outcome of infection of C57BL/6 mice with Sindbis virus, an alphavirus that

infects neurons and causes encephalomyelitis. The brain and spinal cord levels of Irf7, but not Irf3mRNAs, were increased after

infection. IRF3/5/7�/� and IRF3/7�/�mice died within 3–4 days with uncontrolled virus replication, similar to IFNa receptor-

deficient mice, while all wild-type (WT) mice recovered. IRF3�/� and IRF7�/� mice had brain levels of IFNa that were lower,

but brain and spinal cord levels of IFNb and IFN-stimulated gene mRNAs that were similar to or higher than WT mice without

detectable serum IFN or increases in Ifna or IfnbmRNAs in the lymph nodes, indicating that the differences in outcome were not

due to deficiencies in the central nervous system (CNS) type I IFN response. IRF3�/� mice developed persistent neurological

deficits and had more spinal cord inflammation and higher CNS levels of Il1b and Ifng mRNAs than WT mice, but all mice

survived. IRF7�/�mice died 5–8 days after infection with rapidly progressive paralysis and differed from both WT and IRF3�/�

mice in the induction of higher CNS levels of IFNb, tumour necrosis factor (TNF) a and Cxcl13mRNA, delayed virus clearance and

more extensive cell death. Therefore, fatal disease in IRF7�/�mice is likely due to immune-mediated neurotoxicity associated

with failure to regulate the production of inflammatory cytokines such as TNFa in the CNS.

INTRODUCTION

Arthropod-borne viruses, most importantly alphaviruses
and flaviviruses, cause widespread epidemics of fever,
encephalitis and arthritis, and pose increasing threats to
human populations through expansion into new geographi-
cal areas [1]. Encephalomyelitis due to arbovirus infection of
the nervous system is a particularly important global cause of
morbidity and mortality because neuronal damage can lead
to congenital malformations, progressive disease with long-
term disability and acute fatal disease [2]. Neurotropic alpha-
viruses [chikungunya (CHIKV) and Venezuelan, western
and eastern equine encephalitis viruses] and flaviviruses
(West Nile, St Louis encephalitis and Zika viruses) are now
endemic in the Americas. There are no treatments for these
infections, and vaccines are not available for most of them.

Our studies in mice of Sindbis virus (SINV), the prototypic

alphavirus, have shown that the outcome of neuronal infec-

tion is determined by both virus and host factors [3, 4]. Early

activation of innate responses in infected neurons and local
production of type I IFN are major host determinants of out-

come. Mice that are unable to respond to IFNa/b due to the
lack of the a chain of the IFN receptor (IFNAR) or the

IFNAR-activated STAT1 transcription factor needed to
induce IFN-stimulated antiviral genes fail to control alphavi-

rus replication and develop rapidly fatal disease [5–9]. The
innate sensing pathways for RNA viruses include the endoso-

mal toll-like receptors (TLRs) 3, 7/8 and 9 and cytoplasmic
RNA helicases (RIG-I, MDA5) that activate latent tran-

scription factors NF-kB and IFN regulatory factor (IRF) 3.

NF-kB is important for inducing the transcription of several
cytokines and chemokines in response to virus infection,

while IRF3 is required in addition to NF-kB for the induction
of IFNb.

IRFs belong to a family of transcription factors that are
characterized by a conserved N-terminal DNA-binding

domain and a more variable C terminal regulatory region
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[10]. IRF3 is constitutively present at varying levels in the

cytoplasm of most cells, including neurons [11]. Serine

phosphorylation of the auto-inhibitory region by innate

sensing pathway-induced kinases leads to dimerization and

nuclear translocation [12]. In the nucleus, IRF3 dimers

complex with co-activator CBP/p300 and cooperate with

NF-kB and ATF2/c-Jun for the transcriptional activation

of IFNb and other innate response genes [13, 14]. The

amplification of this response with the production of

IFNas and IFNls, in addition to IFNb, is dependent on

the activation of IRF7 [15–17]. Except in plasmacytoid

dendritic cells [18], IRF7 is present at very low levels and

is one of the many genes induced by IRF3. IRF7 associates

with the toll-like receptor (TLR) adaptor proteins MyD88
or TRIF and the ubiquitin ligase TRAF6 and is activated
by TLR signalling through TRAF6-mediated lysine ubiqui-
tylation followed by IKK"-mediated phosphorylation [19].
Activated IRF7 can homodimerize or heterodimerize with
phosphorylated IRF3 and is responsible for the slow phase
of IFN production and the induction of IFN-stimulated
genes (ISGs) [15, 16, 20–23].

Mice that are triply deficient in IRFs 3, 5 and 7 are highly
susceptible to multiple virus infections with failure to
restrict replication in peripheral organs or the CNS, similar
to mice deficient in type I IFN signalling (IFNAR�/�)
[24, 25]. Dual IRF3/7 deficiency leads to 100% mortality

Fig. 1. Effect of SINV infection on the expression of Irf3 and Irf7 mRNAs in the nervous system. WT, IRF3�/� and IRF7�/� mice were

infected intracranially with 103 p.f.u. SINV TE. Levels of Irf3 and Irf7 mRNAs were measured in the brain (a) and spinal cord (b) by qRT-

PCR. The primers used for the detection of Irf3 mRNA (IDT) can detect residual transcripts in IRF3�/� mice. Data normalized to gapdh

are presented as the mean fold change relative to uninfected WT mice±SEM of three mice/time point/group.
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after infection with West Nile virus (WNV), CHIKV and
Ross River virus [26–28]. However, the effects of single IRF
deficiencies on outcome are distinctive, organ-specific and
less clearly related to the induction of type I IFN. For
instance, single IRF3 deficiency increases susceptibility to
infection of the CNS, but not peripheral infection, with her-
pes simplex virus (HSV)[29, 30], and increased susceptibil-
ity to WNV infection is IFN-dependent in the CNS and
IFN-independent in the periphery [31]. Single IRF7 defi-
ciency increases susceptibility to HSV [29] and to WNV in
both the CNS and the periphery in a manner that is corre-
lated with the induction of IFNa [32]. Both IRF3�/� and
IRF7�/� mice survive peripheral infection with CHIKV
[27].

To determine the roles of IRFs in the well-characterized non-
fatal mouse model of SINV encephalomyelitis caused by the
infection of neurons in the brain and spinal cord, we have
analysed the effects of single and combined deficiencies of
IRF3 and IRF7 on outcomes for mice infected intracerebrally
with the TE strain of SINV. Infection resulted in the death of
IRF3/5/7�/� and IRF3/7�/� mice by day 4, similar to the
outcome in IFNAR�/� mice, while all WT mice survived.
IRF3�/�mice survived but developed persistent evidence of
neurological disease, while IRF7�/� mice showed initial
control of infection but then rapid progression of paralysis
and death by day 7–8 without virus clearance.

RESULTS

Effect of SINV infection on levels of IRF3 and 7
mRNAs

To determine how SINV infection and IRF deficiency
affected the induction of IRFs, we assessed the levels of Irf3
and Irf7 mRNAs in brains (Fig. 1a) and spinal cords
(Fig. 1b) after infection. Irf3 mRNA was not induced by

infection in either WT or IRF7�/� mice, while Irf7 mRNA
was quickly and similarly upregulated in both the brains
and spinal cords of WTB6 and IRF3�/� mice with a peak
at 5 days after infection.

Effects of combined and single IRF deficiencies on
clinical outcome from SINV encephalomyelitis

To determine the effects of individual and combined IRF
deficiencies on the outcome of SINV encephalomyelitis, we
inoculated 4–6week-old IRF3�/�, IRF7�/�, IRF3/7�/�
and IRF3/5/7�/� mice with 103p.f.u. of the TE strain of
SINV for comparison with similarly infected WTB6 mice
and mice deficient in type I IFN signalling due to lack of the
a chain of the IFN receptor (IFNAR�/�) (Fig. 2). WT mice
developed mild clinical signs, including abnormal hind limb
movement (Fig. 2a), and lost approximately 5% of their ini-
tial body weight (Fig. 2b), but recovered by 14 days after
infection with 100% survival (Fig. 2c). In contrast, mice
deficient in type I IFN signalling (IFNAR�/�) or mice defi-
cient in the induction of type I IFN (IRF3/5/7�/�) had a
rapid onset of disease (Fig. 2a) and died within 4 days
(Fig. 2c; median survival=3 days). Mice dually deficient in
IRF3 and IRF7 (IRF3/7�/�) survived somewhat longer
(median survival=4 days), but mortality was also 100%
(Fig. 2c). IRF7�/� mice developed neurological signs at the
same time as WT mice, but paralysis (Fig. 2a) and weight
loss (Fig. 2b) were accelerated, and they died a median of
8 days after infection (Fig. 2c). IRF3�/� mice developed
abnormal gaits that had not resolved 3weeks after infection
(Fig. 2a) and lost 15–20% of their initial body weight. How-
ever, all mice survived (Fig. 2c) and their body weight even-
tually surpassed that of WT mice (Fig. 2b). Thus, IRFs 3, 5
and 7 separately and together determined the outcome from
SINV encephalomyelitis. Triple deficiency of IRF3, 5 and 7
and double deficiency of IRF3 and 7 had effects that were
equivalent to those from lack of IFNAR, while IRF3 was

Fig. 2. IRF7, but not IRF3, is required for survival following SINV infection. WT (n=19), IFNAR�/� (n=24), IRF3/5/7�/� (n=15),

IRF3/7�/� (n=32), IRF3�/� (n=19) and IRF7�/� (n=19) 4–6-week-old male and female mice were infected intracranially with

103p.f.u. SINV TE. Mice were monitored daily for signs of clinical disease (a, c) and weight loss (b). (a) The clinical scale was: 0, no

signs of disease; 1, abnormal hind limb and tail posture, ruffled fur and/or hunched back; 2, unilateral hind limb paralysis; 3, bilateral

hind limb paralysis or full body paralysis; 4, dead. The data are presented as the mean±SEM. (b) Weights are presented as the mean

±SEMpercentage change in initial weight for each time point/strain. (c) Survival was assessed using a Kaplan–Meier curve and the

log-rank test. The mean day of death was 3 for IFNAR�/� and IRF3/5/7�/� mice, 4 for IRF3/7�/� mice and 8 for IRF-7�/� mice.

The data were pooled from three independent experiments.
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necessary for complete recovery and IRF7 was required for
survival.

Effect of combined and single IRF deficiencies on
CNS virus replication and clearance

To determine how IRF deficiency affected the control of
CNS virus replication and clearance, we measured the quan-
tities of infectious virus in the brains and spinal cords
(Fig. 3a) of infected mice by plaque formation in BHK cells.
In WT mice, SINV p.f.u. peaked at 3 days in the brains and
spinal cords and was cleared to below the level of detection
by 9 days. In contrast, IRF 3/5/7�/� and IRF3/7�/� mice
failed to control virus replication in either the brain or spi-
nal cord, with 10–100-fold higher titres by 48 h. In
IRF3�/� mice, the brain virus titres were higher than those
for WT mice 24 h after infection, but infectious virus was
cleared similarly. In the spinal cord, both the peak replica-
tion and clearance of infectious virus were similar to those
for the WT. In IRF7�/� mice, the brain titres remained
high and had not decreased by 7 days, when the mice began
to die. The levels of infectious virus in the spinal cords of
IRF7�/� mice were similar to that in WT mice at 3 days,
but the initiation of clearance was delayed.

Viral RNA in the brain peaked by 3 days after infection with
subsequent decreases for WT and IRF3�/� mice, but not
IRF7�/� mice (Fig. 3b). Viral RNA levels were similar in
the spinal cords of WTB6, IRF3�/� and IRF7�/� mice
through 5 days, with subsequent evidence of clearance in
WT and IRF3�/� mice, but not in IRF7�/� mice, at
7 days (Fig. 3b). These data show that although combined
deficiency leads to uncontrolled virus replication (Fig. 3a),
individual deficiencies of IRF3 and IRF7 have a limited
effect on early control of SINV replication in the CNS.
However, IRF7 but not IRF3 is required for efficient clear-
ance of infectious virus and viral RNA from both the brain
and spinal cord, as well as survival.

Effect of IRF3 or IRF7 deficiency on the production
of SINV-specific antibody

Because virus-specific antibody produced within the CNS is
important for virus control and clearance [33, 34], we exam-
ined the levels of SINV-specific IgM (Fig. 3c) and IgG
(Fig. 3d) antibody in serum, brain and spinal cord after
SINV infection of WT, IRF3�/� and IRF7�/� mice.
SINV-specific IgM was detected in serum by day 3 with a
peak at day 5 and was detected in the CNS between day 5
and 7 for all groups. IgG was detected by day 5 in serum
and day 7 in the CNS in all groups. IRF3�/� mice devel-
oped higher levels of SINV-specific IgG in the brain than
WT mice by 10–14 days after infection. The levels of anti-
body early after infection were not different for IRF7�/�
mice than for WT and IRF3�/�mice.

Effect of IRF3 or IRF7 deficiency on levels of IFN

IRF3 and IRF7 work in concert to transcriptionally direct
type I IFN expression. IRF3 is important for the early induc-
tion of IFNb, while IRF7 is important for the subsequent
amplification of the IFN response with the induction of

multiple IFNas [15, 35]. To determine the effect of defi-
ciency in IRF3 or IRF7 on IFN induction after SINV infec-
tion, sera and brain homogenates were analysed by enzyme
immunoassay for IFNa, IFNb and IFNg proteins (Fig. 4a),
and brain (Fig. 4b), spinal cord (Fig. 4c) and cervical lymph
node (Fig. 4d) homogenates were assessed by qRT-PCR for
Ifna1, Ifnb and IfngmRNAs.

In the CNS, the levels of Ifnb mRNA and IFNb protein in
the brains of WT and IRF3�/� mice were similar, but were
higher in IRF7�/� mice 3–5 days p.i. (Fig. 4a,b). In the spi-
nal cord, the level of Ifnb mRNA was higher in IRF7�/�
mice than WT mice 3 days p.i. (Fig. 4c). In the periphery,
serum levels of IFNb were below the level of detection (data
not shown) and lymph node Ifnb mRNA levels (Fig. 4d) did
not change during infection.

In the CNS, Ifna1 mRNA expression and IFNa protein lev-
els peaked at 3 days p.i. in the brains and spinal cords of
WT mice and then steadily decreased to baseline levels at
7 days p.i. (Fig. 4a–c) when infectious virus had been
cleared (Fig. 3a). Levels were generally lower in IRF3�/�
and IRF7�/� mice and the induction of both Ifna1 mRNA
and IFNa protein was slower in IRF7�/� mice, with an
increase first detected at day 3 in the brain (Fig. 4a, b) and
day 5 in the spinal cord (Fig. 4c). In the periphery, serum
levels of IFNa were below the level of detection (data not
shown) and the lymph node Ifna1 mRNA levels did not
change (Fig. 4d).

Therefore, type I IFN was induced in the CNS, but not the
periphery of all mice after intracerebral infection with
SINV. IFN generally peaked at 3 days p.i., with the highest
levels of IFNa in WT mice and the highest levels of IFNb in
IRF7�/� mice. Overall, compared to WT mice, IRF3 defi-
ciency had little effect on the synthesis of IFNb and modest
effects on the synthesis of IFNa in the CNS, while IRF7
deficiency led to slower production of IFNa and higher pro-
duction of IFNb. Therefore, type I IFN was induced in the
CNS despite the absence of IRF3 or IRF7, although the types
of IFN produced differed.

We also investigated the expression of IFNg, as type II IFN
production and the T cell response to infection can be influ-
enced by type I IFN [36]. In the brain, IFNg protein and
Ifng mRNA levels peaked at 5 days p.i. and were more
highly expressed in IRF3�/� mice than WT mice (Fig. 4a,
b). IRF3�/� mice also had the highest levels of Ifng mRNA
in the spinal cord (Fig. 4c).

Effect of IRF3 or IRF7 deficiency on the induction of
IFN-stimulated antiviral genes

IFN signalling directs the expression of hundreds of genes
involved in the antiviral response [37], of which a subset is
known to have a role in controlling alphavirus infection
[38–42]. To determine whether IRF deficiency with altered
proportions of IFNa and IFNb in the CNS affected the
induction of representative antiviral IFN-stimulated genes
(ISGs) after infection, we assessed the brain levels of ISG
mRNAs by RT-qPCR (Fig. 5). By 3 days p.i., Isg15, Isg56
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Fig. 3. SINV replication and antibody responses in brain and spinal cord. WT, IRF3/5/7�/�, IRF3/7�/�, IRF3�/� and IRF7�/� mice

were infected intracranially with 103p.f.u. TE. The quantities of infectious virus in brain and spinal cord (a) homogenates were deter-

mined by plaque assay on BHK cells. The data were pooled from two independent experiments and are presented as the mean±SEM

of 6–9 mice for each time point per strain. SINV E2 genome copies in brain and spinal cord (b) were determined by RT-qPCR. RNA lev-

els are expressed as the mean SINV copy number (log10)±SEM of 6–9 mice for each time point per strain. ****P<0.0001, WT vs

IRF7�/�; ^̂̂̂P<0.0001, IRF3�/� vs IRF7�/�, Tukey’s multiple comparison test. SINV-specific IgM (c) and IgG (d) in serum, brain and spi-

nal cord were measured by EIA and are expressed as the mean optical density (OD) +/�SEM for three mice/timepoint. *P<0.05;

**P<0.01; ***P<0.001 IRF3�/� vs WT.
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Fig. 4. Effect of IRF3 and IRF7 deficiencies on the expression of IFN-a, IFN-b and IFN-g after SINV infection. WT, IRF3�/� and

IRF7�/� mice were infected intracranially with 103p.f.u. SINV TE. (a) The protein levels of IFN-a, IFN-b and IFN-g in the brain were

measured by EIA. The expression of Ifna1, Ifnb and Ifng mRNAs was measured by qRT-PCR in the brain (b), spinal cord (c) and draining

cervical lymph nodes (d). The data are presented as the mean±SEM of 3–6 mice per strain per time point. Significant differences at

each time point determined by Tukey’s (0–7 days p.i.) or Bonferroni’s (9 and 14 days p.i.) post-test are shown (*P<0.05, **P<0.01,

***P<0.001, ****P<0.0001, WT compared to IRF7�/�; #
P<0.05, ##

P<0.01, ###
P<0.001, ####

P<0.0001, WT compared to IRF3�/�; P̂<0.05,

^̂P<0.01,^̂̂P<0.001,^̂̂̂P<0.0001, IRF3�/� compared to IRF7�/�).
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and Isg54 were induced in the brains of all infected mice,
with the highest levels in IRF7�/� mice (Fig. 5a). Similarly,
ISGs induced by both type I and type II IFNs, Zc3hav1 and
Rsad2, were induced in the brains of all infected mice, with
the highest levels being observed in the brains of IRF7�/�
mice (Fig. 5b).

Effect of IRF3 or IRF7 deficiency on induction of
innate chemokines and cytokines

In addition to inducing IFN and ISGs, viral infection indu-
ces the early expression of chemokines and cytokines
through similar innate signalling pathways that may involve
IRF3 or 7 [43]. Chemokines attract inflammatory cells
expressing the appropriate receptors into the CNS in
response to infection and can also induce signalling that has
detrimental effects in the nervous system [44]. In the brain
(Fig. 6a) and spinal cord (Fig. 6b), Ccl2, Ccl5, Cxcl10 and
Cxcl13 mRNAs were higher in IRF7�/� mice compared to
WT mice. While levels of Ccl5 and Cxcl10 mRNAs in the

brain and spinal cord were decreasing by 7 days p.i., Ccl2
mRNA expression was still increasing in the brains and
remained high in the spinal cords of IRF7�/� mice. Cxcl13
mRNA levels were orders of magnitude higher in IRF7�/�
mice than in WT or IRF3�/� mice from 3 to 7 days p.i. in
both the brain and the spinal cord.

To determine the effects of IRF deficiency on cytokine
induction, we analysed the expression of the mRNAs for the
innate cytokines IL-1b, TNFa, IL-6 and IL-10 in the brain
(Fig. 6c) and spinal cord (Fig. 6d). In the brain, the expres-
sion of Il1b mRNA was similar, with the highest expression
in IRF3�/� mice, while the expression of Tnf, Il6 and Il10
mRNAs tended to be higher in IRF3�/� and IRF7�/�
mice compared to WT mice. All cytokine mRNAs except
Tnf showed evidence of appropriate regulation, with peak
expression at 5 days p.i. followed by a rapid decrease by 7
and 9 days p.i. In IRF7�/� mice, however, Tnf mRNA con-
tinued to increase at 7 days p.i. in both the brain and spinal

Fig. 5. Effect of IRF3 and IRF7 deficiencies on the expression of ISGs in the nervous system after SINV infection. WT, IRF3�/� and

IRF7�/� mice were infected intracranially with 103p.f.u. SINV TE. The expression of (a) IFNa/b-responsive and (b) IFNa/b and IFNg-

responsive antiviral protein gene mRNAs in the brain was measured by qRT-PCR, normalized to Gapdh and compared to uninfected

WT controls. The data were pooled from two independent experiments and are presented as the mean±SEM of six mice for each time

point per strain. **P<0.01, ***P<0.001, ****P<0.0001WT vs IRF7�/�; #P<0.05, ###P<0.001, ####P<0.0001WT vs IRF3�/�; P̂<0.05,^̂P<0.01,

^̂̂P<0.001,^̂̂̂P<0.0001 IRF3�/� vs IRF7�/�, Tukey’s multiple comparison test.
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Fig. 6. Effect of IRF3 and IRF7 deficiencies on the expression of chemokine and cytokine mRNAs and TNFa protein in the nervous sys-

tem after SINV infection. WT, IRF3�/� and IRF7�/� mice were infected intracranially with 103p.f.u. SINV TE. The levels of expression

of Ccl2, Ccl5, Cxcl10 and Cxcl13 chemokine mRNAs (a, b) and Il1b, Tnf, Il6 and Il10 cytokine mRNAs (c, d) were measured by qRT-PCR in

the brain (a, c) and spinal cord (b, d), normalized to Gapdh and compared to uninfected WT controls. (e) Levels of TNFa protein in brain

and spinal cord. The data were pooled from two independent experiments and are presented as the mean±SEM of six mice for each

time point per strain. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001WT vs IRF7�/�; #
P<0.05, ##

P<0.01, ###
P<0.001, ####

P<0.0001WT vs

IRF3�/�; P̂<0.05,^̂P<0.01,^̂̂P<0.001, ^̂̂̂P<0.0001 IRF3�/� vs IRF7�/�; Tukey’s multiple comparison test (0–7 days p.i.), Bonferroni’s mul-

tiple comparison test (9 and 14 days p.i.).
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cord, which was concurrent with the development of paraly-
sis in these mice. Compared to WT and IRF3�/� mice, the
levels of TNFa protein were significantly higher in the
brains of IRF7�/� mice at 5 days p.i. and 4 to 5-fold higher
in the spinal cord at all times examined (Fig. 6e).

Therefore, IRF3- and IRF7-deficient mice developed a
robust expression of cytokines and chemokines in the CNS
in response to SINV infection, but IRF7�/� mice failed to
limit expression of TNFa, Ccl2 and Cxcl13.

CNS inflammation and cell death in the CNS of
SINV-infected mice

To determine whether the inflammatory response to infec-
tion was influenced by IRF3 or IRF7 deficiency in the light
of differences in chemokine expression, brain (Fig. 7a) and
spinal cord (Fig. 7b) sections were stained with haematoxy-
lin and eosin (H and E) and examined for inflammatory
infiltrates. Inflammatory cells were primarily noted around
vessels as perivascular cuffs and within the tissue paren-
chyma of infected mice and were minimal in mock-infected
controls. Inflammation was quantified on coded slides using
previously established scoring systems [45, 46]. In the brain,
the scores for mock-infected mice were typically less than 1,
while the brains of infected mice had scores greater than 2,
with IRF3�/� brains having the highest scores at both 5
and 7 days (Fig. 7c). The inflammatory scores for spinal
cords from mock-infected mice were all 0 regardless of
mouse strain. At 5 days after infection, the scores were sig-
nificantly higher in spinal cords from IRF3�/� and
IRF7�/� mice compared to WT mice, and at 7 days the
scores were highest in IRF3�/�mice (Fig. 7d).

To better characterize the inflammatory response, the leu-
kocytes infiltrating the CNS 6 days after infection were ana-
lysed by flow cytometry (Fig. 7e). The numbers of CD45+

cells were not significantly different, but in IRF3�/� mice a
higher proportion of these cells were CD4+ T cells com-
pared to WT and IRF7�/� mice and CD19+ B cells com-
pared to IRF7�/�mice. Although not significant, IRF7�/�
mice tended to have more infiltrating CD45+ cells with a
higher proportion of CD8+T cells than WT or
IRF3�/�mice.

To determine whether prolonged neurological deficits in
IRF3�/� mice and mortality in IRF7�/� mice were associ-
ated with cell death in the CNS, the brains (Fig. 8a) and spi-
nal cords (Fig. 8b) of infected mice were examined by
terminal deoxynucleotidyl transferase dUTP nick end label-
ling (TUNEL) staining. TUNEL-positive cells were rarely
present in the brains and spinal cords of mock-infected
mice, but were readily identified in tissues from SINV-
infected mice. The numbers of TUNEL-positive cells
(brown staining) were quantified in SINV-infected mouse
brains (Fig. 8c) and spinal cords (Fig. 8d). IRF7�/� mice
had significantly more TUNEL-positive cells in both the
brain and spinal cord than WT or IRF3�/� mice. Many,
but not all, of the TUNEL-positive cells were morphologi-
cally consistent with neurons, suggesting the death of

neurons as well as bystander cells in the brains and spinal
cords of IRF7�/� mice. Cell death was not correlated with
the amount of inflammation, as IRF3�/� mice typically
showed the most inflammation, while IRF7�/� mice had
the largest number of TUNEL-positive cells.

DISCUSSION

IRFs are transcription factors that regulate the induction of
type I IFN and ISGs in response to viral infection, as well as
other cellular responses [47, 48]. In these studies of alphavi-
rus encephalomyelitis, we have shown that the outcome of
infection in mice with single and combined deficiencies of
IRFs 3, 5 and 7 is indicative of distinct roles in the patho-
genesis of CNS infection. Lack of IRFs 3, 5, and 7 or IRFs 3
and 7 together resulted in an outcome that was comparable
to the loss of IFN signalling in IFNAR�/� mice, with fail-
ure to control virus replication and rapid death. However,
the effects of single deficiencies of IRF3 or IRF7 revealed the
unique contributions of these two IRFs to the pathogenesis
of viral encephalomyelitis. IRF3�/� mice survived with
persistent neurological disease, while IRF7�/� mice devel-
oped rapidly fatal paralysis. Both IRF3�/� and IRF7�/�
mice had lower levels of IFNa in the CNS than WT mice,
but the levels of IFNb, ISG mRNAs and antiviral antibody
were similar or higher, indicating that the differences in out-
come were not due to deficiencies in the type I IFN or anti-
body responses in the CNS. IRF3-deficient mice had
somewhat more inflammation, with higher proportions of
CD4+ T cells and B cells than WT mice, but similar
amounts of cell death in the CNS. IRF7-deficient mice dif-
fered from both WT and IRF3�/� mice in showing higher
levels of IFNb, TNFa and Cxcl13, failing to downregulate
the expression of brain Ccl2 and brain and spinal cord Tnf
and Cxcl13, and developing more extensive cell death. Thus,
IRF3 is important for the resolution of neurological disease,
while IRF7 is important for the control of inflammatory
cytokine production and neuronal survival.

IRF3 and IRF7 are expressed in the normal mouse CNS at
low levels [11, 49, 50]. IRF3 is constitutively present in the
cytoplasm of most cells, while IRF7 must be induced [51–
53]. In response to SINV infection, CNS levels of Irf3
mRNA did not change, and levels of Irf7 were similarly
increased in both IRF3�/� and WT mice, consistent with
the previously reported virus-induced IRF7 expression by
microglia, neurons and infiltrating inflammatory cells that
is dependent on STAT2 [49, 50].

Both IRF3 and IRF7 are activated by phosphorylation, and
their functions with respect to the induction of IFN and
ISGs are overlapping [12, 54–58], so that cells deficient in
both IRF3 and IRF7 do not produce IFN [16]. Mice with
combined deficiencies of IRFs 3, 5 and 7 or IRFs 3 and 7
had a phenotype similar to that seen in IFNAR�/� mice
[9]. SINV infection was rapidly fatal, with failure to control
virus replication, indicating the importance of early induc-
tion of IFN for survival. Similar outcomes have been
observed for IRF3/5/7�/� mice after infection with WNV,
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Zika virus and murine norovirus [24, 59], but mice infected
with dengue virus survive [60]. Previous studies with IRF3/
7�/� mice have had more variable outcomes, with uni-
formly fatal encephalitis after CNS infection with CHIKV
[27, 61], WNV [28] and Kunjin virus [62], as well as SINV
(Fig. 2), but not after peripheral infection with dengue virus
[60], murine norovirus [63], or oropouche virus [64], sug-
gesting greater importance for the response to CNS
infection.

IRF3�/� mice develop fatal disease after infection with
WNV, Sendai and encephalomyocarditis viruses and CNS
infection with HSV, but survive CNS infection with
Theiler’s murine encephalomyelitis virus (TMEV) and
peripheral infection with herpes simplex, Kunjin, chikungu-
nya and Oropouche viruses [27, 29–31, 61, 62, 64–66]. IRF3
was not required for survival after SINV CNS infection, or
for the induction of IFN and ISGs, or for the early control
of virus replication. However, compared to WT mice, IRF3
deficiency was associated with a higher proportion of infil-
trating CD4+ T cells and B cells, and higher levels of antivi-
ral IgG and IL1b mRNA, consistent with a role for IRF3 in
regulating B cell responses and microglial expression of
proinflammatory genes [11, 67, 68]. IRF3 also plays a role
in the differentiation of T cells by influencing the produc-
tion of IFN by antigen-presenting cells and the induction of
Th1 and Th17 cells, and by suppressing the production of
IL-17, granzyme B and IFN-g and inhibiting the establish-
ment of T cell memory [66, 69, 70]. These effects on T cell
function have been implicated in persistent signs of neuro-
logical impairment after TMEV infection associated with
failure to clear viral RNA [66]. However, IFN-g responses
are robust (Fig. 4a-c) and SINV persistence is not greater in
IRF3�/� than WT mice (Fig. 3b). Nevertheless, Th17 cells
can play an immunopathogenic role in SINV infection of
the CNS [71], so an in-depth functional characterization of
the inflammatory cells in IRF3�/� mice early and late after
infection will be of interest.

A function of IRF3, in addition to its role as a transcription
factor for the induction of IFNa/b and ISGs, is as a pro-
apoptotic factor [72]. IRF3 has a BH3 domain and can be
activated by a distinct ubiquitination pathway to interact
with the proapoptotic protein Bax, translocate to mitochon-
dria and trigger apoptotic cell death, thus inhibiting virus
replication and preventing persistence [65, 73–75]. When
ubiquitinated, IRF3 can also induce the death of virus-
infected cells through the RIG-I-like receptor-induced apo-
ptosis pathway [65]. The importance of these mechanisms
in the CNS is not clear. Previous studies have shown that,

Fig. 7. Effect of IRF3 or IRF7 deficiency on brain and spinal cord

pathology and inflammation after SINV infection. WT, IRF3�/� and

IRF7�/� mice were infected intracranially with 103p.f.u. SINV TE. Rep-

resentative H and E-stained sections of brain (a) and spinal cord (b)

from uninfected (d0) and SINV-infected WT, IRF3�/� and IRF7�/�

mice at 5 and 7 days after infection. Two hundred� magnification; the

scale bar represents 100 µm. The yellow arrowheads denote the peri-

vascular cuffs of inflammatory cells and the black asterisks denote

inflammatory cells infiltrating the parenchyma. For quantification,

slides were coded and scored for inflammation using a 3 (4) point

scale for brain (c) and a 2 (3) point scale for spinal cord (d). The data

represent the results of two independent experiments, totalling four

mice per strain per time point. *P<0.05, **P<0.01, Tukey’s multiple

comparison test. Identification by flow cytometry of cells infiltrating

the brain 6 days after infection (e). Numbers of CD45+ cells/brain and

the percentages of CD45+ cells that were CD3+CD4+ T cells, CD3+CD8+

T cells or CD3-CD19+ B cells. The data are presented as the mean+/-

SEM from three independent experiments with the cells pooled from

four to six mice. *P<0.05.

Schultz et al., Journal of General Virology 2019;100:46–62

55



independent of type I IFN, IRF3 protects neurons from
damage induced by infection with western equine encepha-
litis virus [76] and both cell death and virus clearance in the
CNS of IRF3�/� mice infected with SINV were similar to
those observed in WT mice (Figs 3 and 8).

IRF7 is a multifunctional regulator that can be both a tran-
scriptional activator and repressor. In the cytoplasm IRF7 is
associated with MyD88, TRAF6 and IKK and can be acti-
vated through both TLR engagement and MyD88-indepen-
dent viral signalling pathways [29]. IRF7 is not only
important for the induction of a subset of IFNa genes [15],
but also for the expression of several mitochondrial and
DNA repair genes and the generation of the anti-viral effec-
tor CD8+ T cell repertoire [77, 78]. Importantly, IRF7 also
negatively regulates NF-kB signalling by binding IkBb
[79, 80]. Genes (e.g. Ccl2, Tnf, Cxcl13) with continued
increases during the late response to infection are NF-kB-
induced genes [81], suggesting that an important conse-
quence of the lack of IRF7 may be failure to control NF-kB
signalling in the CNS.

It is not clear why IRF7 is required for the survival of mice
with SINV CNS infection, as well as other neurotropic virus
infections, including WNV, encephalomyocarditis virus and
HSV, but not for systemic infection with murine norovirus,
lymphocytic choriomeningitis virus (LCMV), human meta-
pneumovirus, Oropouche virus or CHIKV [27, 29, 32, 61,
63, 64, 77, 82, 83]. In WT mice infected with SINV by intra-
cerebral inoculation, IFN is induced in the CNS, but not in
peripheral tissue, which is consistent with limited replica-
tion outside the CNS. In IRF7-deficient mice, the levels of
IFNa, but not IFNb, were decreased in brain and spinal
cord, and, as previously observed after CNS infection with
LCMV [84], the induction of ISGs was the same or higher
compared to that for WT mice, and initial control of virus
replication was similar. Furthermore, previous studies have
shown that the inhibition of SINV clearance alone does not
lead to neuronal death or fatal outcome [45, 85–87], indicat-
ing a role for IRF7 in regulating neuronal cell death by
autonomous or non-cell autonomous processes. Although
neurons do not produce IFN in response to alphavirus
infection in vitro, the expression of functionally mature
IRF7 increases with neuronal maturation [88]. Knock down
of IRF7 expression in EBV-transformed B cells increases
apoptosis, so IRF7 deficiency may increase the likelihood of
SINV-induced neuronal cell death [89]. IRF7 deficiency
may also increase susceptibility to neurotoxic factors such
as TNFa produced by glial cells or inflammatory cells infil-
trating the CNS from the periphery. TNFa-deficient mice
have improved survival after infection with a virulent neu-
roadapted SINV (NSV), [90] suggesting a role for this cyto-
kine in determining outcome.

TNFa can be produced by astrocytes, microglia and neu-
rons, in addition to infiltrating immune cells, and produc-
tion is highly regulated [91–93]. TNFa protein levels were
substantially higher in both the brain and particularly the
spinal cord of SINV-infected IRF7�/� mice compared to
WT or IRF3�/� mice, without evidence of downregulation
of mRNA production (Fig. 6). TNFa can lead to neuronal
cell death both directly and indirectly, with multiple levels
of regulation [94–97]. TNFa signals through either of two
receptors, TNFR1 and TNFR2, both of which can lead to

Fig. 8. Effect of IRF3 or IRF7 deficiency on SINV-induced cell death in

brain and spinal cord. WT, IRF3�/� and IRF7�/� mice were infected

intracranially with 103p.f.u. SINV TE. Representative TUNEL-stained

sections of brain (a) and spinal cord (b) from uninfected (d0) and SINV-

infected WT, IRF3�/� and IRF7�/� mice at 5 and 7 days p.i. Two

hundred� magnification; the scale bar represents 100µm. TUNEL-

positive cells have dark brown nuclear staining. The numbers of

TUNEL-positive cells were quantified on coded slides from brains (c)

and spinal cords (d). The data represent the results of two indepen-

dent experiments, totalling four mice per strain per time point.

**P<0.01, ***P<0.001, Tukey’s multiple comparison test.
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NF-kB activation to promote inflammation [98]. TNFR1 is
ubiquitously expressed, while TNFR2 is restricted to
immune cells, endothelial cells and some neurons, including
motor neurons [99]. Shut off of host protein synthesis in
SINV-infected neurons may increase susceptibility to
TNFa-mediated cell death by decreasing levels of c-FLIP,
an inhibitor of caspase-8 activation [100, 101]. TNFa also
decreases astrocyte production of the glutamate transporter
GLT-1 necessary for preventing toxic increases in parenchy-
mal glutamate after synaptic release [90]. IFIT1, which is
also highly expressed by IRF7�/� mice (Fig. 5a), can
inhibit TNFa-mediated apoptosis in the liver and the induc-
tion of TNFa in macrophages [102, 103], but its role in the
CNS is unknown. Failure to control TNFa production in
the spinal cord, where it is directly neurotoxic and also
potentiates glutamate excitotoxicity for motor neurons [97],
may lead to the rapidly progressive paralysis observed in
IRF7�/� mice, despite the production of IFIT1, and it is a
focus of future investigation.

TNFa also induces the neuronal production of chemokines,
including CCL2 [104, 105]. Ccl2 is typically upregulated
during CNS virus infections and is a potent chemoattractant
for Ly6Chi CCR2-bearing inflammatory monocytes [106–
109] that can differentiate during viral encephalomyelitis
into M1-type pro-inflammatory macrophages that express
TNFa [108, 110]. Transgenic mice expressing CCL2 in the
CNS infected with an attenuated strain of mouse hepatitis
virus develop fatal encephalomyelitis associated with
increased numbers of MI/M2-type macrophages, regulatory
T cells and delayed virus clearance [111]. Therefore,
increased production of CCL2 may contribute to the fatal
outcome in SINV-infected IRF7�/� mice by promoting a
neurotoxic glial response that includes the production of
TNFa.

CXCL13 is a lymphoid chemokine that is induced in follicu-
lar dendritic cells by TNFa and attracts B and T cells
expressing CXCR5 during the development of secondary
lymphoid tissue and the formation of germinal centres [112,
113]. CXCL13 is also expressed in multiple non-lymphoid
organs, including the CNS, where it sustains and is pro-
duced by pathogenic CD4+ T cells differentiated in the pres-
ence of transforming growth factor b during autoimmune
disease [114–116], In the CNS, CXCL13 is produced by spi-
nal cord neurons after nerve ligation and by microglial cells
and macrophages during inflammation, and can be downre-
gulated by IFN [104]. Expression during viral infection
promotes the accumulation of memory B cells and anti-
body-secreting cells [117–119], but has not been associated
with more CNS B cells or antibody production during the
acute phase of SINV infection. Increased levels of CXCL13
compared to WT mice have previously been reported in
IRF7�/� mice infected with NSV, but a direct neurotoxic
role for this chemokine was not identified and CXCL13
deficiency did not improve outcome [120].

In summary, fatal outcome in SINV-infected IRF7�/�
mice was not due to the failure to produce type I IFN or

induce an antiviral response in the CNS. Uncontrolled pro-
duction of TNFa during the inflammatory phase of infec-
tion is postulated to lead to rapidly progressive paralysis
associated with extensive cell death throughout the CNS.

METHODS

Mice, virus and infection

C57BL/6J (B6) WT mice were purchased from Jackson Lab-
oratories. IRF3�/� [16], IRF7�/� [29], IRF3/7�/� [28]
and IRF3/5/7�/� [24] mice on a B6 background were
obtained from Michael Diamond (Washington University,
St Louis, MO, USA). IFNAR�/� mice [121] on a B6 back-
ground were obtained from Howard Young (National
Cancer Institute, Frederick, MD, USA). All mice were bred
in-house in specific pathogen-free facilities.

The TE strain of SINV [122] was grown and assayed by pla-
que formation in BHK-21 cells. For infection, 4–6-week-old
male and female mice were inoculated intracranially with
103p.f.u. TE in 20 µl phosphate-buffered saline (PBS). Mice
were monitored daily for weight change, evidence of neuro-
logical disease and death. The disease scoring system used
was: 0, no signs of disease; 1, abnormal hindlimb and tail
posture, ruffled fur and/or hunched back; 2, unilateral hind-
limb paralysis; 3, bilateral hind limb or full body paralysis;
4, dead.

For tissue collection, mice were anaesthetized with isoflur-
ane, bled by cardiocentesis and perfused with ice-cold PBS.
Brains, spinal cords and cervical lymph nodes were col-
lected, snap frozen and stored at �80

�
C. Tissues were

homogenized in ice-cold PBS to make 10–20% (wt/vol)
homogenates and clarified by centrifugation. Infectious
virus was assayed by plaque formation on BHK-21 cells and
the data are presented as the mean of the log10 value of
p.f.u. g�1 of tissue ±SEM. For the purposes of graphing and
statistics, samples without detectable infectious virus were
assigned a value halfway between the limit of detection and
0. All experiments were performed according to protocols
approved by the Johns Hopkins University Institutional
Animal Care and Use Committee.

Gene expression analysis using real-time PCR

RNA was isolated from frozen tissue homogenates using the
RNeasy Lipid Mini RNA Isolation kit (Qiagen) and quanti-
fied using a nanodrop spectrophotometer. Residual genomic
DNA was removed (TURBO DNA-free kit; Ambion) prior
to cDNA synthesis for analysis of Ifnb, Ifna1 and Isg15 gene
expression. For the analysis of IFN, cytokine and chemokine
gene expression cDNA was synthesized using the High
Capacity cDNA Reverse Transcription kit (Life Technolo-
gies), 0.5–2.5 µg RNA and random primers according to the
manufacturer’s instructions. Quantitative real-time PCR
was performed using 2.5 µl cDNA, PrimeTime gene expres-
sion assays (Integrated DNA Technologies) and 2� Eagle-
Taq PCR Mix (Roche). Gapdh mRNA levels were
determined using the rodent primer and probe set (Applied
Biosystems). All reactions were run on an Applied
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Biosystems 7500 real-time PCR machine with the following
conditions: 50

�
C for 2min, 95

�
C for 10min, 95

�
C for 15 s

and 60
�
C for 1min for 50 cycles. The target gene Ct value

was normalized to the Ct value of Gapdh. This normalized
value was used to calculate the gene expression level relative
to the average of the uninfected WTB6 control value.

SINV RNA copies were measured by qRT-PCR using Taq-
Man Universal PCR Master Mix (Roche), TaqMan probe
[5¢–6-carboxyfluorescein (FAM)-CGCATACAGACTTCCGC
CCAGT–6-carboxytetramethylrhodamine (TAMRA)-3¢]
(Applied Biosystems) and primers to the SINV E2 gene (for-
ward, 5¢-TGGGACGAAGCGGACGATAA-3¢; reverse, 5¢-C
TGCTCCGCTTTGGTCGTAT-3¢) on a 7500 Fast Real-Time
PCR System for 50 cycles. The results were analysed using
Sequence Detector software, version 1.4 using a standard
curve made from 10-fold dilutions of the SINV subgenomic
region RNA derived from a pGEM-3Z plasmid and normal-
ized to endogenous mouse Gapdh.

Enzyme immunoassays (EIAs)

Commercial EIAs were used to measure IFNa and IFNb
(Verikine ELISA kits, PBL Interferon Source, Piscataway,
NJ, USA) and TNFa and IFNg (Mouse Ready-SET-Go!
kits, Ebioscience, San Diego, CA, USA) following the manu-
facturers’ instructions. Sera and tissue homogenates were
tested undiluted (IFNa, IFNb and TNFa) or at 1 : 2 dilution
(IFNg) in duplicate. The sensitivity was 125–4000 pg g�1

for IFNa, 156–10 000 pg g�1 for IFNb, 313–20 000 pg g�1

for IFNg and 39–5000 pg g�1 for TNFa.

An in-house EIA for SINV-specific IgM and IgG was per-
formed as previously described [33]. Briefly, Maxisorp
(Nunc) 96-well plates were coated with 106p.f.u. PEG-con-
centrated TE in 50 µl coating buffer (50mM NaHCO3 pH
9.6) at 4

�
C overnight, washed and blocked with 10% FBS in

PBS with 0.05% Tween20. Samples diluted in blocking
buffer (serum, 1 : 100; brain homogenate, 1 : 8; spinal cord
homogenate, 1 : 4) were incubated for 2 h and developed
with horseradish peroxidase-conjugated anti-mouse IgG or
IgM (1 : 1000; Southern Biotech) and TMB substrate (BD
Biosciences). The optical density (OD) was read at 450 nm
on a Multiskan MCC (Thermo Scientific).

Histology

Uninfected (day 0) and TE-infected mice at 5 and 7 d after
infection were perfused with ice-cold PBS followed by 4%
(wt/vol) paraformaldehyde (PFA). Brains were removed, cut
into 2mm coronal slices with an adult Mouse Brain Slicer
(Zivic Instruments) and postfixed in 4% PFA for 18–24 h at
4
�
C. Spinal columns were trimmed of excess soft tissue,

fixed overnight in 4% PFA at 4
�
C, and then decalcified on a

rotator for 24 to 36 h in a 10% sodium citrate/22% formic
acid solution. Spinal columns were washed in ice-cold PBS
and cut to isolate the L4–L6 regions. Tissues were embedded
in paraffin for sectioning and staining.

H and E-stained sections (10 µm) of brain and spinal cord
were coded and scored for inflammation. Brain sections

were scored using a 0–3/4 scale as previously described [46]:
0, no detectable inflammation; 1, one to two small inflam-
matory foci per slide; 2, moderate inflammatory foci in
�50% of 10� fields; and 3, moderate to large inflammatory
foci in >50% of 10� fields. An additional point was given
for excessive parenchymal cellularity, allowing for a maxi-
mum score of 4. Spinal cord sections were scored using a
modified 0–2/3 scale as previously described [45]: 0, no
detectable inflammation; 1, one to two small inflammatory
foci; 2, greater than two inflammatory foci per spinal cord
or moderate to marked inflammatory foci. An additional
point was given for excessive parenchymal cellularity, allow-
ing for a maximum score of 3.

For TUNEL staining, sections (10 µm) were rehydrated and
treated with 1mgml�1 proteinase K for 30min for antigen
retrieval. Endogenous peroxidases were quenched in metha-
nol+3% H2O2 for 5min, and after immersion in TdT Label-
ing Buffer for 5min, sections were stained with TdT
Labeling Reaction mix for 60min at 37

�
C. To stop the reac-

tion, slides were immersed in TdT Stop Buffer for 5min and
incubated with streptavidin–HRP for 10min (TACS 2 TdT
kit, Trevigen, Inc). Tissues were developed with 3,3¢-diami-
nobenzidine (Vector Labs) for 8min, counterstained with
haematoxylin, dehydrated and mounted with Permount
(Fisher Scientific). Slides were coded, and the whole visible
hippocampus on one brain section per mouse or the entire
spinal cord cross section was outlined to determine the
tissue area using a Nikon Eclipse E600 microscope and Ster-
eoInvestigator software (MBF Bioscience). All TUNEL-posi-
tive cells were counted within the outlined area to
determine TUNEL-positive cells per mm2 tissue.

Flow cytometry

Single-cell suspensions were made from brain and spinal
cord tissue homogenized in RPMI+1%FBS, 1mgml�1 col-
lagenase (Roche) and 0.1mgml�1 DNase (Roche) using the
GentleMACS system (Miltenyi) and isolated on a percoll
gradient as previously described [71]. Then 1�2�106 cells
were stained with the violet Live/Dead Fixable Cell Stain kit
(Invitrogen) in PBS+2mM EDTA, blocked with rat anti-
mouse CD16/CD32 (BD Pharmingen), diluted in PBS
+2mM EDTA, surface-stained for 30min on ice and resus-
pended in 200 µl PBS+2mM EDTA +0.5%BSA. All anti-
bodies were from BD Pharmingen or eBioscience and were
specific for: CD45 (clone 30-F11), CD3 (clone 17A2), CD4
(clone RM4-5), CD8 (clone 53–6.7), and CD19 (clone 1D3).
Data were acquired with a BD FACS Canto II using FACS
Diva software (version 6.0) and analysed using FlowJo 8.8.7
(TreeStar, Inc.).

Statistics

Statistical analyses were performed using GraphPad Prism 6
software. Time-course studies were analysed by two-way
analysis of variance (ANOVA) with Tukey’s multiple com-
parison post-test comparing WT, IRF3�/� and IRF7�/�
mice 0–7 days p.i. For time points later than 7 days p.i., data
were analysed by two-way ANOVA with Bonferroni’s post-
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test, comparing WT and IRF3�/� mice. Survival was
assessed using Kaplan–Meier curves and a log-rank test. A
P value of <0.05 was considered significant for all analyses.
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