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Genetic mechanisms of salt stress responses in halophytes
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ABSTRACT
Abiotic stress is a major threat to plant growth and development, resulting in extensive crop loss
worldwide. Plants react to abiotic stresses through physiological, biochemical, molecular, and genetic
adaptations that promote survival. Exploring the molecular mechanisms involved in abiotic stress
responses across various plant species is essential for improving crop yields in unfavorable environ-
ments. Halophytes are characterized as plants that survive to reproduce in soils containing high salt
concentrations, and thus act as an ideal model to comprehend complicated genetic and physiological
mechanisms of salinity stress tolerance. Plant ecologists classify halophytes into three main groups:
euhalophytes, recretohalophytes, and pseudo-halophytes. Recent genetic and molecular research has
showed complicated regulatory networks by which halophytes coordinate stress adaptation and toler-
ance. Furthermore, investigation of natural variations in these stress responses has supplied new
perspectives on the evolution of mechanisms that regulate tolerance and adaptation. This review
discusses the current understanding of the genetic mechanisms that contribute to salt-stress tolerance
among different classes of halophytes.
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Introduction

Abiotic stress is characterized as the adverse effects of non-living
factors on living organisms.1,2 Plants must survive under ever-
changing environmental conditions characterized by variations
in a lot of abiotic stresses, such as salt,3,4 cold,5–7 flooding,8 and
drought.9–11 In some environmental niches, plants must respond
to multiple abiotic stresses.12–14 As a result, they have evolved
mechanisms to respond to abiotic stress, including changes in
growth and development resulting from altered metabolism, as
well as modifications in morphology (Figure 1). Among abiotic
stress, soil salinity has become a serious problem in many parts
of the word, especially in arid and semi-arid areas.15,16 As
reported, over 800 million ha of land worldwide is salt-
affected, which accounts for about 6% of the world’s total land
area.17,18 Soil salinity has an enormous effect on the agricultural
yield all over the world, for it affects the establishment, develop-
ment, and growth of plants, which finally lead to crop yield
loss.19–21

Salt stress decreases the yield of a number of crops, includ-
ing wheat,22–24 maize,25–27 and rice,28,29 presenting a challenge
for feeding the increasing global population.30 To elucidate
mechanisms that contribute to stress adaptation and toler-
ance, it becomes more and more useful to characterize the
physiological and genomic characteristics of individual crop
plants that thrive in unfavorable environments.31,32 Although
many researchers have performed a number of relevant stu-
dies in Arabidopsis and other crop model systems,33,34 halo-
phytes could offer valuable resources to help us uncover the
mystery of salt-related signaling pathway.35,36 The study of

how halophytes tolerate salt could offer biologists' clues to
increase salt tolerance in conventional crops.

Halophytes could not only grow well in environments
where the salt concentration is around 200 mM NaCl or
more, but survive in other harsh environments, including
drought, cold or flooding.37 Therefore, they act as an ideal
model to understand complicated genetic and physiological
mechanisms of abiotic stress tolerance. Plant ecologists clas-
sify halophytes into three main groups: euhalophytes, recre-
tohalophytes, and pseudo-halophytes.38,39 Euhalophytes can
dilute salt within their stems or leaves and have a strong
ability to tolerate salt.40,41 Recretohalophytes can secrete salt
from their leaves, and grows widely around the world, inland
saline lands and inhabiting seawater.42,43 Salt glands and
bladders are salt-secreting structures, which can directly
secrete ions out of the plants. Pseudo-halophytes could not
only hold up ions in roots but also minimize its transport to
the shoot parts, so as to protect itself from metabolic
tissue.44,45

Suaeda salsa and Salicornia europaea are typical euhalo-
phytes, which can dilute salt within their stems or leaves and
have a strong ability to tolerate salt. S. salsa could survive well
in 200mM NaCl concentration,46,47 and also grow in the
environments where salt stress and drought stress coexist.
S. europae have much broader salinity tolerance. Researchers
have performed a lot of studies in S. salsa and S. europae, and
cloned a series of genes involved in abiotic tolerance and
tested their functions. These studies have indicated that euha-
lophytes play an essential role in agricultural production.48,49

Recretohalophytes possess unique salt-secreting structures,
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namely salt glands and bladders, which can directly secrete
these ions out of the plants.50 Therefore, salt bladders and salt
glands play essential roles for the recretohalophytes to secrete
excess salt.51 Limonium bicolor is a good example of recreto-
halophyte, which can desalinate saline-alkali soil and preserve
high rates of photosynthesis under the treatment of
200–300 mM NaCl.52 Reaumuria trigyna is an endangered
recretohalophyte and has salt excretion glands to respond to
salt stress.53 Pseudo-halophytes could intercept ions in roots
and minimize its transport to the shoot parts. Eutrema salsu-
gineum (previously Thellungiella salsuginea, salt cress) is
a representative pseudo-halophyte, which could not only sur-
vive well under more than 300 mM NaCl but grow well in
cold regions.54,55 Different categories of halophytes have

distinct abilities to address high salt concentrations or other
stresses, finally finish their life cycle.

Halophytes have evolved diverse responses to environmen-
tal variations.56,57 Natural variation studies have provided
novel views for the evolutionary processes that shape stress
responses, also showed previously undiscovered loci related to
these mechanisms.58–61 Studies are performed on natural var-
iation in stress response traits, providing essential sources of
genetic variation.62–64 These important sources can help us
understand the coordinated regulation of stress responses and
play a role in improving agronomic crops.65 In plants, it
becomes a complex process to understand and identify the
crucial regulatory factors that are related to multiple stress
responses. However, it is essential to identify traits that can

Figure 1. Model of dispersed stress sensing by organelles.
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protect plants from environmental stresses, and genomic stu-
dies across a wide variety of species are needed to address this
aim.66 Advances in functional genomics will help us identify
and understand potential stress-tolerant traits.67–71 Therefore,
this review focuses on the role of functional genomics and
system biology approaches in discovering the mechanisms
that underlie stress-tolerance traits in halophytes.

The mechanism of euhalophytes in salt stress

S. salsa, a typical euhalophyte, is a good example to under-
stand the molecular mechanisms in abiotic stress. S. salsa is an
annual herbaceous C-3 euhalophyte that belongs to the
Chenopodiaceae family,72,73 a group of plants that produce
dimorphic seeds on the same plant under standard
conditions.74–76 Recent studies have shown that NaCl concen-
tration plays a key role in seed vitality in S. salsa by regulating
the levels of stored compounds, such as proteins, starch, and
fatty acids.77,78 S. salsa could tolerate high salt concentration
and offers good sources for salt-related genes.79 A series of
salt-tolerant genes from S. salsa have been cloned and their
functions were tested. One important feature of halophytes is
highly efficient vacuolar sequestration of cytotoxic Na+, which
requires that Na+ could be pumped into the vacuole against
the electrochemical gradient and that Na+ in the vacuole
could be prevented from leaking back into the cytosol. Na+/
H+ antiporters make a contribution to the vacuolar compart-
mentalization of Na+.80,81 One study showed that the expres-
sion of SsNHX1 was up-regulated in S. salsa leaves under
500 mM NaCl treatment. The product of SsNHX1 might be
an Na+/H+ antiporter, which plays essential roles in S. salsa
salt tolerance. Treatment of S. salsa with increasing concen-
trations of NaCl increased the activity of the plasma mem-
brane (PM) H+-ATPase to promote salt tolerance.82 Later
study illustrated that this increase in PM H+-ATPase activity
attribute to both an increase in PM H+-ATPase protein levels
and transcriptional levels. Also, Na+ efflux across the plasma
membrane is due to Salt-Overly-Sensitive1(SOS1) Na+/H+

antiporter, and researchers have demonstrated that SsSOS1
may be involved in Na+ efflux both in leaves and in roots.
Besides these genes, the expression of SsHKT1 increases under
salt stress, suggesting that SsHKT1 is essential for K+ uptake
under high salinity.83 Further research confirmed that trans-
genic Arabidopsis, which SsHKT1 was overexpressed, revealed
increased salt tolerance. Ca2+ plays an essential role in main-
taining K+ and Na+ homeostasis under salt stress, while
SsCAX1 is important to lower cytosolic Ca2+ burst under
salt stress.84,85 Overexpression S-adenosylmethionine synthe-
tase gene from S. salsa could promote salt tolerance in
tobacco, suggesting that this pathway also contributes to salt
tolerance.86

S. salsa could also grow in saline inland soils of arid zone,
characterized by both high salinity and drought. Compared to
salt stress, drought problem is much more pervasive and
negatively affects crop yields seriously. Dehydration-
responsive element-binding (DREB) transcription factor
(TF) is involved in abiotic stress tolerance in plants.
Researchers have cloned DREB from succulent halophyte
S. salsa (SsDREB) and tested its functions in tobacco.

Transgenic tobacco plants transformed with SsDREB showed
improved drought and salt tolerance, compared with wild-
type controls.87 Also, researchers have cloned a vacuolar H+-
pyrophosphatase gene from the halophyte S. salsa (SsVP) and
identified its function in Arabidopsis. Transgenic Arabidopsis
plants transformed with SsVP showed higher V-ATPase and
the V-PPase activities, and increased drought tolerance in
comparison with wild-type plants.88 Another study showed
that transgenic Arabidopsis, transformed with ssNHX1, grew
well under 200Mm NaCl treatment and drought stress.89 Later
study demonstrated that transgenic plants showed higher
photosynthesis activity and reduced toxic effects of Na+ accu-
mulation in the cytosol. These studies testified euhalophytes
S. salsa have evolved many mechanisms to drought stress.

Almost all the halophytes must face the challenge of osmo-
tic adjustment in reaction to lower external water supply,
including organic and inorganic solutes.90 Glycinebetaine
and proline are related to osmotic adjustment in certain
halophytes. The concentration of glycinebetaine exceeded
25 mM kg−1 of fresh weight in S. salsa under 400 mM NaCl
treatment, which was deduced to be important in S. salsa
osmotic adjustment. While the contribution rate of proline
to osmotic potential was <0.5% in S. salsa under salt stress,
therefore the cytoplasmic glycinebetaine might act a more
essential role in osmotic adjustment compared with
proline.91 Researchers have discovered two genes related to
glycinebetaine synthesis, including glycinebetaine aldehyde
dehydrogenase (BADH) and choline monooxygenase (CMO),
which catalyze glycinebetaine synthesis.92 Researchers have
cloned SsCMO and SsBADH from S. salsa and identified
their functions. Transgenic tobacco overexpressing SsCMO
showed higher tolerance to salt stress. Furthermore, research-
ers have cloned several important genes involved in this
function in S. salsa, of which SsINPS is related to myo-
inositol synthesis and SsP5CS is related to proline synthesis.
In addition, S. salsa expressed more SsP5CS and SsINPS
under salt treatment.

Halophytes are famous for their ability to endure and
quench toxic reactive oxygen species (ROS), for they possess
powerful antioxidant system.93,94 Researchers have detected
Mn-SOD and several isoforms of CuZn-SOD and Fe-SOD
in S. salsa leaf extracts, also cloned several genes related to
oxidative stress tolerance in S. salsa, including Ss.sAPX,
SsCAT2, SsPrxQ, SsGST, SsCAT1, SsAPX, and SsTypA1.95,96

Later study displayed that transgenic Arabidopsis plants over-
expressing Ss.sAPX improved the germination rate, cotyledon
growth, survival rate, and salt tolerance. In addition, trans-
genic plants showed higher total chlorophyll content, longer
roots, higher total APX activity and less cell membrane
damage than wild-type. These results demonstrated that Ss.
sAPX may be essential to protect higher plants against salt-
induced oxidative stress.97,98

S. europaea is another annual succulent euhalophytes and
belongs to Chenopodiaceae family. Under seawater irrigation,
S. europaea seeds have 28% oil content and 30.2% protein
content, also unsaturated fatty acid account for high level in
the seed oil, which makes S. europaea act as a potential
competitive oilseed crop.99 Recent studies have shown that
salinity treatment increased significantly the contents of
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proline, reducing saccharide, soluble saccharide and oligosac-
charide in S. europaea. And MDA contents increased in
S. europaea under high salt concentrations exceeding
300mM. Also, proteins' and polysaccharides' contents reduced
under salt stress in S. europaea. In addition, salinity treatment
decreased the K+ contents as well as carotenoids and chlor-
ophylls in seedlings of S. europaea. S. europaea could tolerate
high salt concentration and offers good sources for salt-
related genes.100 Researchers have cloned phytoene synthase
from S. europaea (SePSY) and tested its function in
Arabidopsis. The study showed that SePSY overexpression
enhanced the growth of the transgenic line. Under 100mM
NaCl treatment, transgenic Arabidopsis displayed higher
photosystem II activity and photosynthesis rate, as well as
SOD and POD activity, and showed lower MDA and H2O2

contents in comparison with non-transformed line.101 This
study demonstrated that the SePSY gene could enhance salt
tolerance in Arabidopsis. Another study showed choline
monooxygenase from S. europaea (SeCMO) could increase
salt tolerance. CMO catalyzes the synthesis of
Glycinebetaine, which is an osmoprotectant accumulated by
stresses in plants. SeCMO transgenic tobacco could survive
under 300mM NaCl treatment and displayed vigorous condi-
tions in comparison with the wild-type control. Also, trans-
genic tobacco showed higher betaine accumulation and
chlorophyll content, lower electrical conductivity. These
studies demonstrate that SeCMO could effectively improve
salt-tolerance in tobacco.102 Another study showed that
researchers have cloned β-lycopene cyclase gene from
S. europaea (SeLCY) and tested its functions. SeLCY trans-
genic Arabidopsis showed increased oxidative stress tolerance
and salt-stress tolerance. Also, transgenic Arabidopsis grew
better, displayed higher photosystem activity and less H2O2

accumulation, and retained higher carotenoid contents. All
these studies demonstrated that euhalophytes S. europaea
have evolved complex mechanism to resist salt stress.

The mechanism of recretohalophytes in salt stress

Recretohalophytes, typical halophytes, can excrete excessive
salt to the environment through epidermal salt bladders or

salt glands (Figure 2).103,104 Therefore, salt bladders and salt
glands play essential roles for the recretohalophytes to secrete
excess salt.105 L. bicolor, which possess salt glands that secrete
excess salt, is extensively studied to understand the high
molecular mechanism of recretohalophytes.106,107 The
L. bicolor salt gland is comprised of 16 cells and is regulated
by levels of specific cations.108 The divalent cation Ca2+ has
been demonstrated to function crucially in plant growth,
development, and salt tolerance. And increases in Ca2+ levels
not only markedly enhance its development, but also promote
salt-secretion rates in L. bicolor leaves.109 In addition, under
conditions of elevated salinity, K+ accumulation in salt gland
cells may play a part in salt secretion in L. bicolor.110 Despite
the important roles of Ca2+ and K+ levels, environmental
scanning electron microscopy has shown that the chemical
composition of secretions from the secretory pores is primar-
ily composed of NaCl.

Many studies are performed to screen candidate genes
involved in salt stress in L. bicolor. Researchers used the
fluorescence method to screen ~10,000 seedlings in which
seeds were gamma-irradiated, and obtained 15 mutants with
increased salt gland density and 4 mutants with reduced salt
gland density.111 These two group mutants will be helpful to
isolate genes related to salt secretion and salt gland develop-
ment in L. bicolor. Also, high-throughput RNA-sequencing
analysis was performed to screen genes related to salt secre-
tion in L. bicolor. This study showed that 2040 genes were
differentially expressed among 27311 total genes of database,
of which 1260 genes were down-regulated and 744 were up-
regulated with the NaCl versus the control treatment. Further
analysis showed that 102 of these genes might be related to
salt secretion, including NHX genes, vesicle-associated mem-
brane protein (VAMP) and so on.112 This study identifies the
candidate genes that are related to salt secretion in the
L. bicolor salt glands.113

Apart from salt stress, L. bicolor could also survive in
a wide range of harsh environments, implying that it has
evolved physiological and molecular systems to adjust to
harmful stress conditions. Plant glutathione S-transferases
(GSTs) play essential roles in protecting plants against diverse
abiotic and biotic stresses. A novel GST gene was cloned from

Figure 2. The structure and Na+ secretion pathway of a salt bladder (a) and a salt gland (b)(Yuan et al., 2016).
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L. bicolor (LbGST1), and its functions were tested in tobacco.
Transgenic tobacco plants, which LbGST1 is overexpressed,
showed both glutathione peroxidase and GST activities.
Furthermore, catalase, peroxidase (POD) and superoxide dis-
mutase showed higher activities in transgenic plants than WT
plants, especially under salt treatment.114 Similarly, transgenic
plants showed higher levels of proline than WT plants under
NaCl treatment. In addition, transgenic plants showed lower
Na+ content than WT plants under these stress conditions.
Another study showed that transgenic yeast harboring the
LbGST1 showed elevated tolerance to drought and freezing
compared with the control transformants. These studies sug-
gest that LbGST1 might be involved in many physiological
pathways that can improve stress resistance in plants. Also,
researchers have cloned a novel dehydration-responsive ele-
ment-binding (DREB) gene from L. bicolor (LbDREB) and
characterized its function in copper stress. The study showed
that transgenic tobacco plants transformed with LbDREB
revealed higher contents of soluble protein and proline, and
higher ratio of K+ to Na+ under the treatment of CuSO4.113 In
addition, some genes involved in stress are up-regulated in
LbDREB transgenic plants, including late embryogenesis
abundant (LEA), PODs, Cu/Zn SOD, and lipid transfer pro-
teins (LTP). This study demonstrates that LbDREB can
strengthen copper stress tolerance by up-regulating a series
of genes involved in stress, consequently regulating stress
tolerance-related physiological processes in plants.

R. trigyna, an endangered dicotyledonous shrub, is another
recretohalophyte belonging to Tamaricaceae family. It grows
in a salinized desert in Inner Mongolia, China, which is
characterized by high salinity, low temperature, and hyper-
drought conditions.115 Therefore, exploring the molecular
mechanisms employed by R. trigyna will offer us valuable
resources in salt-related signaling pathway. Many researches
are performed to study the mechanisms in response to salt
stress in R. trigyna. Researchers have isolated Na+/H+ anti-
porter from R. trigyna (RtNHX1) and tested its function in
Arabidopsis. Transgenic Arabidopsis, which RtNHX1 was
overexpressed, exhibited enhanced seed germination rate,
root elongation, biomass accumulation, and chlorophyll con-
tent in comparison with control lines. Further study showed
that RtNHX1 transgenic Arabidopsis showed increased activ-
ities of POD and CAT, RWC, and proline content. Also, the
leaves of transgenic Arabidopsis accumulated more K+ and
less Na+, and lower ratio of Na+/K+. In addition, RtNHX1
transgenic yeast vacuole showed increased accumulation of
Na+ and K+ and decreased Na+/K+ ratio. These studies
revealed that RtNHX1 acts as an antiporter which sequesters
Na+ and K+ in the vacuole, and could resist salt tolerance.116

Another study showed that a high-affinity potassium trans-
porter gene was isolated from R. trigyna (RtHKT1), which was
up-regulated under high Na+ or low K+ treatment in
R. trigyna. Transgenic Arabidopsis enhanced the accumulation
of K+, prevented the transport of Na+ from roots to shoots,
and increased biomass under salt stress in comparison with
wild control. This study suggests that RtHKT1could increase
salt tolerance by maintaining the homeostasis of Na+/K+.115

Recent research showed that salt stress could activate the
flavonoid biosynthesis pathway, while flavanone-

3-hydroxylase (F3H) is involved in this process. The study
showed that the transcription level of RtF3H1 and RtF3H2
was increased in R. trigyna under salt stress. Also, transgenic
RtF3H1 or RtF3H2 Escherichia coli lines showed a higher
survival rate than the control lines under salt stress. Another
study showed that the Group II WRKY transcription factor
was isolated from R. trigyna (RtWRKY23), which was induced
by salt treatment. RtWRKY23 transgenic Arabidopsis revealed
increased chlorophyll content, fresh weight, and root length.
Further study showed that RtWRKY23 transgenic Arabidopsis
had a higher content of proline and activity of peroxidase, and
lower H2O2 and MDA contents in comparison with wild-type
plants under salt stress.117 All these studies demonstrated that
recretohalophyte R. trigyna evolved many mechanisms in
response to salt stress.

The mechanism of pseudo-halophytes in salt stress

Pseudo-halophytes could not only tolerate strong salinity but
escape from it by locating the active part of the root system in
less saline soil levels.50,118 E. salsugineum is a representative
pseudo-halophyte and could survive well under more than
300 mM NaCl.119 According to high sequence similarity
between E. salsugineum and Arabidopsis, researchers have
cloned several E. salsugineum genes involved in salt stress
and characterized its functions, including TsVP which
encodes vacuolar pyrophosphatase, ThCBL9 which encodes
a calcineurin-B-like protein, ThHSC70 which encodes a heat-
shock protein, ThCYP1 which encodes a cyclophilin,
ThZF1which encodes a Cys-2/His-2-type transcription factor,
TsnsLTP4 which encodes nonspecific lipid transfer proteins,
TsGOLS2 which encodes galactinol synthase, TsLEA1 and so
on.120–124 TsVP-transformed transgenic cotton and maize
showed improved salt and drought tolerance, which is related
to the higher activity of vacuolar H+-PPase. Also, the leaves of
TsVP-transformed tobacco accumulated more Na+, owing to
efficient vacuolar Na+ compartmentalization. Overexpression
of ThCBL9 enhanced its tolerance to salt and osmotic stress in
A. thaliana, and overexpression of ThHSC70 in A. thaliana
improved tolerance to chilling and high temperature.
ThCYP1-transformed fission yeast and tobacco cells showed
increased salt tolerance, indicating that ThCYP1 might med-
iate the correct folding of certain stress-related proteins. Also,
ectopic expression of ThZF1 in Arabidopsis mutant azf2
showed that ThZF1 might function similarly as Arabidopsis
AZF2 in regulating downstream gene expression and plant
development. Overexpression of TsGOLS2, a galactinol
synthase, in Arabidopsis thaliana increased its tolerance to
high salinity and osmotic stresses.122 In addition, TsLEA1
maintained salt tolerance in yeast as well as in plants, suggest-
ing that TsLEA1 may be involved in protection plant and
yeast cells under stress conditions. Apart from salt-related
genes, E. salsugineum small RNA libraries were constructed
and sequenced, and the study showed that T. salsuginea
diverse set of miRNAs could respond to salt stress and act
an important role in response to salt stress.125 Clearly, more
researches are needed to perform to identify the detailed
molecular mechanisms of E. salsugineum in abiotic stress.
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E. salsugineum commonly grows in extreme environments,
characterized by both high salinity and low temperature.125

Freezing is another major environmental stress, which ser-
iously affects plant growth and development, contributing to
the decrease of crop yield and quality.126 The TsFtsH8 gene is
related to cold tolerance in E. salsugineum, and TsFtsH8-RNAi
lines exhibit severe chlorophyll decomposition and organelle
deterioration, also reveal the reductions of the rates of open
photosystem II reaction centers.127 Five aquaporin genes
involved in cold stress have been identified through RNA-
sequencing experiments, including three TIPs, one PIPs, and
one NIPs. In addition, in response to low temperatures,
expression of DREB1/CBF-cold signaling pathway genes are
altered, including COR47, ICE1, and CBF1 (Figure 3). KEGG

pathway analysis was performed, showing that cold-regulated
genes were also involved in photosynthesis, circadian rhythm,
metabolism, and transcriptional regulation.126

Aquaporin (AQP) membrane channels play essential roles
in high salt tolerance and drought tolerance in E. salsugineum.
Researchers have cloned a tonoplast AQP gene (TsTIP1;2)
from the E. salsugineum and identified its functions.
TsTIP1;2-transformed Arabidopsis showed strikingly strength-
ened tolerance to oxidative, drought, and salt stresses. And
TsTIP1;2-expressed in Xenopus oocytes revealed water chan-
nel activity. Also, TsTIP1;2 could conduct H2O2 molecules
into yeast cells under oxidative stress.44 This study showed
that TsTIP1;2 played multifunctional roles in the survival of
E. salsugineum.

Future perspective

Herein, we have described the complicated regulatory pro-
cesses that coordinate tolerance and responses to abiotic
stresses in halophytes. We anticipate several major future
areas of active investigation in plant responses to abiotic
stresses. First, emerging sequencing techniques and platforms
will help researchers characterize individual regulatory com-
ponents in detail.128–131 Second, genomic-scale experimental
data, coupled with computational biology modeling, will serve
as clues to discover stress response regulatory genes.132–135 In
future, we will see a much clearer picture of the abiotic stress
signaling pathway among various species.
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