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Abstract

The past decade has seen a technological revolution in human genetics that has empowered 

population-level investigations into genetic associations with phenotypes. Although these 

discoveries rely on genetic variation across individuals, association studies have overwhelmingly 

been performed in populations of European descent. In this review, we describe limitations faced 

by single-population studies and provide an overview of strategies to improve global 

representation in existing data sets and future human genomics research via diversity-focused, 

multiethnic studies. We highlight the successes of individual studies and meta-analysis consortia 

that have provided unique knowledge. Additionally, we outline the approach taken by the 

Population Architecture Using Genomics and Epidemiology (PAGE) study to develop best 

practices for performing genetic epidemiology in multiethnic contexts. Finally, we discuss how 

limiting investigations to single populations impairs findings in the clinical domain for both rare-

variant identification and genetic risk prediction.
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1. INTRODUCTION

1.1. Foundations of Large-Scale Genomic Studies

We are now entering the second decade of large-scale genome-to-phenome studies of 

complex human traits and diseases. Each new genetic finding can shed light on the 

underlying mechanisms of disease and ultimately inform targeted prevention and treatment 

strategies. Tremendous progress has been made in cataloging thousands of variants 

associated with numerous complex phenotypes through genome-wide association studies 

(GWASs). This work was enabled by large-scale investments in the early 2000s that became 

the foundation for subsequent discoveries. First, the International HapMap Project (61) 

created a common reference panel for mapping globally shared common genetic variation 

and revealed population-specific patterns of correlated variants, known as linkage 

disequilibrium (LD). These data were used to design the first set of genotyping platforms 

that assayed hundreds of thousands to millions of single-nucleotide polymorphisms (SNPs), 

thereby enabling cost-effective measurement of common genetic variation in thousands of 

participants. Strategies that leverage SNPs on genotyping arrays to infer unobserved variants 

at other positions by imputing LD structures in reference sequencing panels empowered an 

even broader exploration of variants with relatively cheap technology (21, 122).However, 

because allele frequencies and LD patterns differ across ancestries, the accuracy of 

imputation depends on how representative the genotyping markers and available reference 

sequencing panels are of the study population (21, 122).

Another logistical feat was powering GWAS discoveries through the assembly of massive 

consortia to bring together the hundreds of thousands of participants necessary for robust 

identification of genetic variants of complex disease. It is now abundantly clear that most 

common human diseases have highly complex genetic architectures, with hundreds or even 

thousands of genetic variants contributing to risk (17, 108, 126). The polygenicity of 

common complex traits means that most individual associated variants contribute a subtle 

effect and explain only a small proportion of the overall phenotype heritability. 

Consequently, achieving the necessary statistical power to detect the remaining variant–

phenotype associations requires very large sample sizes (77). Given that GWASs mainly 

evaluate common variants, it is likely that much of the missing heritability is explained by a 

combination of rare variants [minor allele frequency (MAF) < 0.01], weak effects that 

require massive studies to uncover, and structural variants that are often poorly tagged by 

genotyping platforms. Thus, fully understanding the genetic architecture of complex 

diseases will require large-scale whole-genome sequencing studies to investigate all types of 

genetic variation in globally inclusive populations (detailed in Section 1.3).

1.2. European Bias in Large-Scale Genomic Research

Despite impressive achievements in identifying genetic associations, the vast majority of 

results have been reported in populations of European ancestry, a limitation acknowledged 
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by researchers a decade ago (19, 89). This Euro-centric bias has persisted, with more than 

80% of GWAS participants being of European descent (94) and the largest studies 

performed in Europeans (Figure 1). Over the past decade, the mean and median sample sizes 

of published GWASs have skyrocketed for European-descent populations, driven mainly by 

cheaper technology and large-scale biobanking efforts such as the UK Biobank. However, 

the sample sizes of non-European descent studies have stagnated, resulting in limited 

statistical power for genomic discovery. There are myriad historical, technical, and logistical 

reasons for this lack of global diversity in genomic research. The first decade of GWASs 

focused predominantly on cohorts sampled in Europe or ongoing prospective US cohorts, 

and in 2001 federal guidelines were implemented that required the inclusion of women and 

minorities in clinical research, recognizing this gap in diversity. Consequently, many of 

today’s ongoing cohorts comprise predominantly European-descent participants, and even 

the participants of the more recent Genotype-Tissue Expression (GTEx) project are 85.2% 

of European origin (49). Several factors contributing to this bias have been detailed in other 

reviews and are briefly summarized here. Past mistreatment of marginalized communities 

has resulted in the documented mistrust of biomedical research and difficulty in recruiting 

more diverse populations (2). Other reports have cited logistical issues, such as the difficulty 

of recruiting underrepresented communities (118). Importantly, there is also a persistent lack 

of diversity among biomedical researchers leading, designing, and informing genomic 

studies (26, 84). Other recent reviews provide more complete perspectives on various 

strategies for increasing resources, improving the research culture, and modifying 

infrastructure to incorporate diversity into research (16, 56, 57, 99). Here, we focus on 

exemplars that highlight the scientific and clinical importance of diversifying genomic 

research.

1.3. Global Perspectives on Human Variation

Differences in disease burden across ancestrally diverse populations are a major cause of 

health disparities. In the United States, African Americans experience the highest prevalence 

of hypertension and cardiovascular conditions and suffer the highest mortality rates for 

cardiovascular disease and renal failure (22, 25, 102). Mexican Americans in particular, but 

also African Americans, have a greater risk of developing liver disease than non-Hispanic 

European Americans (64, 101, 104). Non-Hispanic European American women have the 

highest incidence of breast cancer, but African American women are more likely to die from 

the disease, as their breast tumors are typically more aggressive and less responsive to 

treatments (90, 116). While lifestyle, cultural norms, health-care access, and socioeconomic 

status are undeniably important contributors to the disproportionate disease burden across 

racial/ethnic groups, many of the health disparities persist even after accounting for 

differences in social and environmental risk factors. This suggests that population-specific 

disease susceptibility also has innate biological, and thus genetic, causes that interact in a 

complex way with environmental factors.

Although most genetic studies have focused on common genetic variants, population 

genomics theory and empirical evidence from large, diverse sequencing efforts indicate that 

the vast majority of human genetic variation is rare and is expected to be population specific 

(48). This was affirmed by both the US National Heart, Lung, and Blood Institute’s Exome 
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Sequencing Project study of European American and African American exomes (42) and the 

1000 Genomes Project (1). As such, addressing European bias in genetic research is a major 

imperative, as we are currently unable to fully discover the genetic underpinnings of disease 

and the proportion that contributes to disparity.

The examples above highlight the importance of characterizing genetic variation among 

individuals of diverse ancestral backgrounds to gain a better understanding of differential 

susceptibility to disease, or variability in therapeutic response. While the focus of this review 

has thus far been on perspectives within the United States, it is important to acknowledge 

that global genetic variation is not well captured by populations in America. In fact, there is 

more genetic diversity across the more than 2,000 ethnolinguistic groups in Africa than 

anywhere else in the world because of population demographic history (e.g., population 

bottlenecks, short- and long-range migrations, and admixture) and dramatic variations in 

climate, diet, and exposures to infectious disease (20). However, much of what is currently 

known about genetic diversity and its contribution to disease comes from only a few 

ethnolinguistic groups (mostly from western Africa), severely limiting our understanding.

Resistance to malaria is a well-established example of strong selective pressure that has 

influenced genetic diversity in African populations. This disease is a major cause of 

mortality in sub-Saharan Africa, resulting in more than 1 million deaths (primarily children) 

each year (73). Genetic adaptations resulting in malaria resistance have become established 

in endemic regions, frequently accompanied by consequences in the homozygous state. For 

instance, the HbS mutation in the β-globin gene, which causes sickle cell disease in 

homozygous individuals, also confers protection against malarial infection in heterozygous 

carriers (50, 73). Similarly, variations in the G6PD gene are found in high frequency in 

African as well as Mediterranean and Asiatic populations, with patterns of variation 

consistent with recent positive selection. Even though deleterious mutations in G6PD cause 

diseases such as chronic hemolysis, high levels of frequency for such mutations are believed 

to be maintained in certain populations in response to selective pressure caused by malaria 

(85). This hypothesis is consistent with observations of high correlations between low-

activity G6PD alleles and a decreased prevalence of malaria (100, 103, 114).

Importantly, for the benefits of precision medicine to be realized on a global scale, genetic 

epidemiological and pharmacogenetic studies must be more inclusive. Many examples 

demonstrating this necessity have already been identified. For example, human 

immunodeficiency virus (HIV) infection remains a major global health burden; nearly 37 

million people are living with this disease, 53% of whom are in eastern and southern Africa. 

Even with the remarkable advancements in combination antiretroviral therapy, nearly a 

million people die every year from acquired immune deficiency syndrome (AIDS)–related 

illnesses worldwide 117). Although central to first-line antiretroviral therapy, efavirenz is 

associated with a high frequency of side effects and adverse drug reactions, including 

dizziness, insomnia, rash, hepatotoxicity, lipodystrophy, and several neuropsychiatric 

symptoms (including suicidal thoughts). Most of the variability in drug response is due to 

genetic variation in the metabolizing enzyme CYP2B6 (29). The c.516G>T and c.983T>C 

variants are predictive of reduced enzyme activity and remain the most prominent predictors 

of plasma concentrations (113). The CYP2B6*6 allele is more frequent and relevant in 
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African populations, where it was reported at frequencies of 32.8% and 46.9% in African 

Americans and a Ghanaian population, respectively. This same allele was found to be 

present in 25.6% of European populations and in 15.9–18.0% of Asians (69). Importantly, 

many genetic variants have also been identified in African populations that confer resistance 

to this devastating disease, including those in killer immunoglobin-like receptors (KIRs) 

(62), interferon regulatory factor 1 (IRF-1) (8),and tripartite motif-containing protein 5α 
(TRIM5α) (74). Such findings can provide important insights for the development of new 

drugs.

Some successful initiatives have promoted genomic research in diverse global populations, 

including the 1000 Genomes Project (1), the Human Heredity and Health in Africa 

(H3Africa; http://h3africa.org) initiative (52), and the Mexico National Institute of Genomic 

Medicine (INMEGEN) (86). This list is by no means exhaustive, but it does demonstrate the 

importance of discovery of genetic variation across human populations to enable advances in 

precision medicine.

The 1000 Genomes Project was developed to provide a comprehensive description of 

common human genetic variation by applying whole-genome sequencing to a diverse set of 

individuals from multiple populations (1). Distinguished scientists from institutes at 

countries around the world, including China, Italy, Japan, Kenya, Nigeria, Peru, the United 

Kingdom, and the United States, reconstructed the genomes of 2,504 individuals from 26 

populations using a combination of low-coverage whole-genome sequencing, deep exome 

sequencing, and dense microarray genotyping. They described a variable distribution of 

genetic variation across the global sample, with data freely available to the public and 

research community on various platforms, including through the project website and through 

Amazon Web Services, a cloud-computing system hosted by online retailer Amazon.com.

The INMEGEN project studied genomic variation within Mexico from more than 1,000 

individuals representing 20 indigenous and 11 mestizo populations and described striking 

genetic variability (86). Indeed, several populations within Mexico displayed more 

differentiation than was observed between Europeans and East Asian reference populations.

The H3 Africa initiative was created to address the lack of large-scale genomic studies in 

Africa (52). Such work will contribute to large-scale pharmacogenomic studies in Africa that 

can provide a deeper understanding of variation in drug response. Although precision 

medicine may be most effective and beneficial to regions with high genetic diversity, such as 

Africa, many additional challenges exist in resource-poor environments. Implementation of 

pharmacogenomic practices is therefore unlikely to result in a sustainable health program in 

Africa without substantial new efforts. The African Pharmacogenomics Consortium aims to 

coordinate and to be the main driver in establishing pharmacogenomics guidelines in Africa.
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2. MULTIETHNIC POPULATIONS MUST BE CONSIDERED AT EVERY 

STAGE OF A STUDY, FROM RECRUITMENT TO DATA MANAGEMENT AND 

ANALYSES

2.1. Increasing Diversity in Study Populations

For reasons outlined above, an intentional paradigm shift in genomic research is necessary to 

capture and leverage all aspects of diversity in the study of common and rare diseases. So 

far, studies aimed at being more inclusive have done so via two common approaches: (a) 

creating a new cohort or case–control study with recruitment in more diverse communities 

or geographic locations, and (b) performing a transethnic meta-analysis that gathers results 

from multiethnic participants in existing studies. We provide examples of these approaches 

and discuss study design specifics for researchers interested in conducting multiethnic 

studies and using algorithms that address greater genetic diversity.

Long-standing studies such as the Women’s Health Initiative (124) and the Multiethnic 

Cohort Study (72) have recruited hundreds of thousands of participants. Recruiting such 

large study populations in cosmopolitan settings in racially/ethnically diverse regions of the 

United States helps to ensure that many diverse groups are represented. Several smaller 

multiethnic studies have employed targeted recruitment strategies to increase representation 

of non-European groups, including the Multi-Ethnic Study of Atherosclerosis (15), the 

Atherosclerosis Risk in Communities Study (3), and the Consortium on Asthma Among 

African-Ancestry Populations in the Americas (82). Additionally, studies such as the 

Jackson Heart Study and the Hispanic Community Health Study/Study of Latinos have 

recruited participants from specific understudied ethnic groups (105, 110). In each context, 

and in each community, it is important to develop trust and address concerns to ensure that 

historically disadvantaged communities do not suffer incidental harm and that work is 

performed collaboratively with the community and all stakeholders.

In parallel, there has been interest in moving beyond single-study discoveries to combining 

numerous smaller studies in a meta-analysis framework, which combines summary statistics 

to gain power. The first major multiethnic meta-analysis, with comparable sample sizes 

across multiple ethnic groups, was performed by the EVE Consortium in a genetic 

susceptibility study of asthma that involved 10 studies from three ethnic groups in the 

Americas (European Americans, African Americans, and Latin Americans) (115). This 

study found both improved power at shared loci (e.g., 17q21, with strong shared signals 

across groups) and new population-specific associations (e.g., PYHIN1 in populations of 

African descent). There are numerous similar ongoing efforts with type 2 diabetes within the 

Diabetes Genetics Replication and Meta-Analysis Consortium (87), various psychiatric 

traits, and many other disease domains.

A new opportunity has been presented by the recent growth of biobanks linked with 

electronic health records. Covering the breadth of the patient base in multiple health systems 

provides a way to recruit relatively quickly and increase communication with communities 

that may be less likely to volunteer for a traditional cohort study. Similarly, as recruitment 

can be less labor intensive in this approach than in traditional epidemiological contexts, it is 
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possible to develop sizable studies relatively quickly, as can be seen in the large repositories 

of national-level initiatives (such as the UK Biobank and Million Veteran Program) as well 

as the large and diverse patient bases at cosmopolitan academic medical centers [such as the 

Icahn School of Medicine at Mount Sinai (BioMe); the University of California, Los 

Angeles; the University of Colorado; and Vanderbilt University (BioVU)], which have 

genotyped tens to hundreds of thousands of patients. The UK Biobank includes more than 

500,000 UK participants, and more than 35,000 individuals are of nonwhite British descent, 

providing a reasonably large sample size for transethnic analyses. Despite access to a diverse 

study population, UK Biobank studies to date have continued to focus primarily on 

individuals with mostly European ancestry, so there remain many opportunities for 

discovery.

2.2. Genotyping Ascertainment

Combining results across ethnic groups can be challenging given genetic, environmental, 

sociocultural, and study-based heterogeneity. Therefore, the field must develop and test new 

tools specifically designed for these contexts. The Population Architecture Using Genomics 

and Epidemiology (PAGE; http://pagestudy.org) study was formed with the goal of 

developing best practices for transethnic studies. This study has been continuously funded 

by the National Institutes of Health since 2008 to study genomic variation in order to 

advance our understanding of the population architecture of genetic traits and disease in the 

presence of ancestral diversity. The first phase of the study, which ran from 2008 to 2013 

and was funded by the National Human Genome Research Institute and the National 

Institute of Mental Health, examined putative causal genetic variants across approximately 

100,000 African Americans, Asian Americans, Native Americans, Hispanics/Latinos, and 

Native Hawaiians from four centers representing nine large United States–based cohorts. 

Two genotyping approaches were employed: targeted genotyping of selected SNPs identified 

in GWASs of common disease, and a large-scale array-based effort using the Metabochip to 

facilitate transethnic fine mapping of several diseases of public health importance. The 

Metabochip array is a custom genotyping array designed for replication and fine mapping of 

cardiometabolic traits (121).Early PAGE work demonstrated that, while most risk loci 

identified from GWASs and populations of primarily European ancestry are shared across 

one or more ethnic groups, the underlying causal variants and their effects vary across 

populations (21).

The second phase of PAGE, from 2013 to 2019, was funded by the National Human 

Genome Research Institute and the National Institute on Minority Health and Health 

Disparities and focused on how ancestry-specific differences in allele frequencies and LD 

could explain differences in risks of common traits and conditions. However, in 2013 there 

was only limited availability of genotyping arrays that could comprehensively capture 

variation across multiple genetic ancestries simultaneously. The majority of arrays for 

diverse populations were developed for a single group at a time, not a multiethnic sample. To 

address this issue, PAGE investigators partnered with the Consortium on Asthma Among 

African-Ancestry Populations in the Americas, Illumina, and other academic centers to 

develop the Multi-Ethnic Genotyping Array (MEGA). This platform utilized data from 

phase 3 of the 1000 Genomes Project with equal representation of non-European ancestries 

Bien et al. Page 7

Annu Rev Genomics Hum Genet. Author manuscript; available in PMC 2020 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pagestudy.org/


and was designed to have comparable imputation accuracy across all major populations, 

regardless of a given population’s level of admixture (14, 63, 122). To augment the capture 

of low-frequency variants, enhanced exome content was selected from available non-

European exome sequencing studies (specifically, studies of Hispanic/Latino and African-

American populations). MEGA is now commercially available for the wider research 

community (https://www.pagestudy.org/mega).

The current generation of genotyping arrays encompasses both population-specific and 

multiethnic products. To address a growing interest in biobank study design, especially with 

a diverse catchment area, an assortment of arrays have been developed to capture variation 

across multiple populations at once, including Illumina’s MEGA, Genome Screening Array, 

and upcoming Global Diversity Array as well as Affymetrix’s Precision Medicine Research 

Array. For homogeneous study designs, population-specific arrays have also been developed 

over the past several years to cover both continental and country-level populations, such as 

Illumina’s H3Africa Consortium Array (60) and Infinium OmniZhongHua arrays, as well as 

Affymetrix’s Biobank Genotyping and Axiom World arrays. It should be noted that, despite 

this progress, the development of these arrays is dependent upon available reference panels, 

and therefore many regions of the world are underrepresented. For example, the African 

variation present on MEGA is largely representative of western Africa and therefore does 

not offer equal coverage in eastern African populations.

2.3. Imputation

Imputation of genotyped samples to improve resolution and capture variation is now 

standard practice for many genomic studies, facilitated by the availability of large-scale, 

publicly available reference data and the development of faster, improved imputation 

methods (33). However, the accuracy of imputation is highly dependent on the selection and 

availability of reference data representative of the study population of interest (119). After 

the International HapMap Project, the 1000 Genomes Project aimed to provide a 

comprehensive description of common human genetic variation by applying whole-genome 

sequencing to 2,504 individuals from 26 populations. These efforts revealed that, in order to 

study rarer genetic variants, international efforts would be necessary to aggregate and 

harmonize whole-exome and whole-genome sequencing data. Indeed, these efforts have 

already begun with the Haplotype Reference Consortium (HRC) and Genome Aggregation 

Database (gnomAD) projects. Following the 1000 Genomes Project, the HRC created a 

large reference imputation panel by combining sequences from multiple cohorts with the 

aim of improving genotype imputation in other GWAS cohorts. In comparison with past 

panels, this resource improves imputation accuracy—particularly for low-frequency variants

—and has led to several new discoveries.

The Michigan Imputation Server and Sanger Imputation Server have further advanced the 

feasibility of using imputation to increase coverage, providing user-friendly computational 

servers for imputation using a wide range of reference panels. These servers now include 

panels from International HapMap Project phase 2 (N = 60), 1000 Genomes Project phase 1 

(N = 1,092) and phase 3 (N = 2,504), the Consortium on Asthma Among African-Ancestry 

Populations in the Americas (N = 883), and the HRC (N = 32,470) (61, 83). Despite these 
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achievements, the reference panels remain biased toward European populations, with the 

majority of the largest panel (HRC) being of European descent. Therefore, studies of 

populations of non-European descent must rely on much smaller reference panels, which 

hinders the imputation of low-frequency and rare variation. The development of large-scale 

multiethnic panels is vital to addressing this source of ascertainment bias. The African 

Genome Variation Project (50) demonstrates the need for representative reference panels to 

not only capture population-specific variation but also reflect the shorter LD blocks found in 

African genomes compared with non-African groups. Future releases of sequence data as 

reference panels from such multicenter efforts as the Trans-Omics for Precision Medicine 

(TOPMed) program of the National Heart, Lung, and Blood Institute; H3Africa; Genome 

Asia 100K (http://www.genomeasia100k.com); the Singapore Sequencing Malay Project 

(http://phg.nus.edu.sg/StatGen/public_html/SSMP/SSMP_index.html); and the Genome 

Sequencing Program of the National Human Genome Research Institute will help address 

this issue by increasing multiethnic representation.

2.4. Association Methods

In studies of associations between genetic variants and a trait of interest, nonhomogeneous 

populations are a classic source of concern for false-positive associations. More specifically, 

because allelic variation differs across ancestral population groups, even slight differences in 

ancestral composition between cases and controls can result in a false-positive association 

between a variant and disease. Identification of this source of confounding, known as 

population stratification, resulted in a focus on populations that were presumed to be more 

ancestrally homogeneous, and statistical methods were modeled under this assumption (97). 

However, methods have since been developed to explicitly account for population 

substructure, allowing for the pooling of multiethnic samples. The most commonly used 

method is principal component analysis, as estimated in Plink or EIGENSTRAT (96). 

Including all of the samples in the analysis enables the resulting eigenvectors to estimate 

broad population structure as orthogonal linear variables, which can then be included in 

regression models to address possible confounding. More recent methods, as detailed below, 

directly estimate the genetic relationship between samples, allowing the model to assess 

phenotypic differences between genotypes beyond what may be expected from correlated 

genomes.

The PAGE studies were characterized by varying levels of known and cryptic relatedness 

and used distinct strategies of participant recruitment. Specifically, the Women’s Health 

Initiative, the Multiethnic Cohort Study, and BioMe used population- or clinic-based 

recruitment, and the Hispanic Community Health Study/Study of Latinos used a household 

sampling study design. These differences may have led to heterogeneity in covariate and 

phenotype associations with variants. PAGE evaluated potential heterogeneity in association 

analyses using the Genetic Estimation and Inference in Structured Samples (GENESIS) 

package (30–32), which uses a linear mixed model and accounts for the correlation among 

genetically similar samples through a kinship matrix that estimates the known and cryptic 

relatedness in the presence of population structure, admixture, and population-associated 

heterogeneity. This approach was compared with SUGEN (76), which uses a modified 

version of generalized estimating equations, creates extended families by connecting the 
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households who share first-degree relatives, and allows for heterogeneity in both phenotypes 

and covariates across racial/ethnic and study groups. Both methods were able to 

appropriately account for population stratification and relatedness while ensuring adequate 

statistical power for the detection of novel association.

Beyond the standard SNP-level associations, looking at haplotype associations can be 

informative, including examination of identity-by-descent or local ancestry segments. 

Instead of examining a cross section across two chromosomes on a base-pair level, these 

methods examine segments of shared haplotypes along the chromosome to identify tracts 

with a common origin that result in a shared phenotype. Identity-by-descent methods are 

best applied in founder populations with a more recent common ancestor, such as the 

characterization of Steel syndrome in Puerto Rico (12). Admixture mapping relies on recent 

ancestry from two or more distinct populations, such as African American or Hispanic/

Latino populations (18, 54). Methods such as RFMix (79) and Local Ancestry in Admixed 

Populations Using Linkage Disequilibrium (LAMP-LD) (9) estimate local ancestry, 

assigning haplotypes along the genome to their ancestral populations. Once local ancestry is 

estimated, admixture mapping tests the enrichment of a particular ancestral haplotype in 

cases versus controls (107).A cases-only study approach can also be used in which 

enrichment is tested against the overall genome-wide average for that ancestry. These 

methods have been successful at identifying regions associated with asthma (46), blood 

pressure (109), end-stage renal disease (65), and obesity (27), among others. Admixture and 

identity-by-descent mapping offer an alternative to a traditional GWAS framework, 

explicitly leveraging the unique haplotypes of admixed or founder populations.

2.5. Fine Mapping After a Genome-Wide Association Study

Fine mapping generally refers to a suite of tools to narrow associated regions and identify 

potential causal variants using summary statistics from GWAS or sequencing data. While 

many complex-trait loci replicate consistently across European-ancestry populations, tag 

SNPs from genotyping arrays are not expected to be causal, and loci containing multiple 

independent signals can be difficult to distinguish within homogeneous study populations 

(59, 120). Ancestrally diverse study populations are much more conducive to narrowing 

association signals and identifying multiple independent associations within genomic 

regions, primarily because geographic isolation over the course of human evolution has led 

to different LD structures by continental ancestry (6, 7, 55). Populations with ancestral 

admixture exhibit widely differing stretches of ancestry-specific LD that, evaluated in 

combination, can be extremely beneficial for limiting the number of potential functional LD 

proxies tagged by a GWAS index variant.

Tools have been developed to incorporate combined GWAS summary statistics, LD, and 

functional annotations to identify the most likely causal variants within a genetic locus. 

Methods developed to specifically leverage the benefits of transethnic study populations 

have demonstrated success compared with meta-analysis and fine-mapping attempts in 

European-ancestry study populations. For example, Fast Probabilistic Annotation Integrator 

(fastPAINTOR) incorporates bioinformatics and epigenomic data with GWAS summary 

statistics from multiple traits to select the most likely causal variant(s) within an association 
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signal (68).Simulation studies demonstrated an improvement in credible-set reduction with 

the incorporation of functional annotations such as DNA accessibility. However, as 

discussed below, these resources are sorely lacking in data for non-European-ancestry 

populations, meaning their true benefits cannot currently be assessed in diverse study 

populations.

2.6. Examples from PAGE

Type 2 diabetes is a highly polygenic disorder for which transethnic association studies have 

been particularly meaningful. Early efforts by PAGE investigators found that causal variants 

at well-established risk loci identified in Europeans were likely shared across populations 

(53). A 2014 transethnic meta-analysis of four GWASs of ancestry-specific type 2 diabetes 

identified multiple associations unreported in European-only analyses, thereby highlighting 

opportunities for new discovery in diverse groups (34). Fine mapping of glycemic traits in 

PAGE African American and Hispanic/Latino participants utilized the Metabochip to narrow 

known associations and further demonstrated the importance of transethnic analyses via 

identification of an African-ancestry-specific independent association at the G6PC2 locus 

(13).These efforts in type 2 diabetes demonstrate that the most successful application of 

these resources will require not only multiethnic study populations but also bioinformatics 

resources built on globally representative reference populations.

In a recent flagship paper, Wojcik et al. (123) implemented single-variant genome-wide 

association testing for 26 clinical and behavioral phenotypes in SUGEN using phenotype-

specific models. This work found 27 novel loci at the genome-wide significant threshold 

(Pcond < 5 × 10−8) after conditioning on all previously identified variants, due partly to both 

the diversity of the study population and the enrichment for population-specific variants on 

the MEGA array. As an example, the newly discovered CREB3L2/7q33 locus, associated 

with total cholesterol levels (rs73729087; P= 1.52 × 10−8, N= 33, 185, MAF = 0.05), may 

not have been discovered in European-ancestry populations given its rare frequency in those 

groups (MAF = 0.005). This variant is more common in PAGE racial/ethnic groups, 

including African Americans (P = 1.77×10−6, N = 10, 137, MAF= 0.11) and Hispanics/

Latinos (P= 2.58 × 10−3 mapped independent signals (secondary variants) within known 

loci, further enriching our understanding of the genetic architecture of traits. To test for 

secondary signals, the study screened for statistical associations that remained genome-wide 

significant (Pcond < 5 × 10−8) after adjusting for all known tag SNPs (the adjusted model), 

identifying 38 new associations located within 1 Mb of a previously known variant. These 

results indicate that even in regions of known significance, novel ancestry-specific signals 

can be discovered in diverse, multiethnic study populations.

3. DOWNSTREAM ANALYSES RELY ON BIASED RESOURCES

3.1. Availability of Multiomic Resources

Despite continued success in cataloging variants associated with complex phenotypes, 

translation of GWAS findings into new biological insights has been complicated, in part 

because the most significantly associated variant is typically not the variant with the 

biological effect, but instead is in high LD with the causal variant. Additionally, most 
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associations identify a large number of correlated variants in noncoding regions of the 

genome (91). As such, it is hypothesized that most GWAS associations affect gene 

regulation and are fundamentally more difficult to interpret because gene expression is tissue 

specific and modulated by other contextual factors (98). Targeted allele-specific assays are 

necessary, but these approaches are expensive and labor intensive. Functional follow-up to 

identify causal variants, relevant genes, and the underlying biological mechanism can be 

aided by bioinformatic investigation using other sequencing-based omics data sets in 

reference samples.

To aid in the characterization of candidate functional variants, integrative multiomic 

resources are now emerging, accompanied by the development of new analytical methods 

(10, 91, 98). For instance, GTEx, an ongoing effort to build a resource of tissue-specific 

gene expression and regulation, has collected 1,641 postmortem samples covering 54 body 

sites from 175 individuals (49). Approaches that leverage reference data to develop 

transcriptome imputation models of genetically regulated expression have been developed to 

utilize bioinformatics data, including a variety of machine-learning approaches to estimate 

combined-variant effects on gene expression. These trained models are then used to impute 

genetically regulated gene expression in GWAS data sets with genotypes and phenotypes 

(43, 51, 112). Because transcriptome measurement with RNA sequencing remains 

prohibitively expensive for GWAS-scale sample sizes, these innovative approaches have 

opened the door for better characterization of GWAS associations and have even led to novel 

discoveries. However, while GTEx is the most comprehensive transcriptome data set to date, 

the tissue donors were predominantly white (85.2%), and evidence suggests that this is 

likely to significantly hinder the performance of models developed in other ethnic groups 

(66). Diverse resources such as TOPMed may begin to address this issue, but models will be 

restricted to transcriptome measurements in blood, leaving the majority of publicly available 

expression data not globally representative.

3.2. Clinical Databases and Frequencies

In clinical-annotation pipelines, allele frequency estimates offer the most powerful filter 

available, by removing or down-prioritizing variants with a nonnegligible population 

frequency. The value of these data has been improved significantly by efforts driven by the 

scientific community to make these allele frequency resources publicly available, from the 

1000 Genomes Project (N = 2,535) to the Exome Sequencing Project (N = 6,503) and now 

to the larger Bravo (N = 62,784), Exome Aggregation Consortium (N = 60,706), and 

gnomAD (N = 123,136) data sets. As clinical sequencing becomes routine, medical 

professionals face a new challenge in that patients with non-European ancestry have a 

significantly longer list of candidate variants for a suspected genetic disorder. Determining 

the pathogenicity of a rare variant is compounded by clinical laboratories labeling putatively 

deleterious nonsynonymous calls as variants of unknown significance, which occurs at 

higher rates for individuals of non-European descent (24). Accordingly, a review of genetic 

variants reported as pathogenic and causal for hypertrophic cardiomyopathy showed that 

these variants were overrepresented in African Americans, and further examination 

determined that many of them were benign (78). Such misclassification could be avoided 

with the inclusion of even a small number of individuals of African descent. Therefore, it is 
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imperative that geneticists sequence and investigate a much broader ensemble of populations 

that are representative of the rich diversity of patients both in the United States and globally. 

If we do not, a biased picture will emerge of which variants are important, widening existing 

disparities and diminishing the benefits of genomic medicine for underserved populations.

To address misclassification, MEGA includes a curation of clinically relevant variants from 

numerous publicly available databases, such as ClinVar (http://www.ncbi.nlm.nih.gov/

clinvar), Online Mendelian Inheritance in Man (OMIM; https://omim.org), and PharmGKB 

(14). Gignoux and colleagues (45, 88) estimated the allele frequencies of these variants in 11 

region-level and 99 population-level groups, and these data are now available as a public 

resource through the University of Chicago’s Geography of Genetic Variants browser (80; 

https://popgen.uchicago.edu/ggv).

Variable allele frequencies across populations can strongly influence the discovery of 

clinically relevant variants. One example is the association of population-specific APOL1 
variants with chronic kidney disease. Specifically, these variants are present only in 

populations of African ancestry, members of which are also twice as likely as European 

Americans to develop end-stage renal disease (41, 44). Discovery in an African American 

cohort was enabled by higher allele frequencies in that population, thus yielding adequate 

statistical power to detect the association. Risk variants for chronic kidney disease in 

APOL1 likely rose in frequency as an adaptation against trypanosomiasis (sleeping disease) 

in sub-Saharan Africa (70). These variants were later found to associate with higher rates 

and faster progression of kidney disease in other groups with African ancestry, including 

Hispanics/Latinos (41, 44, 70, 88, 93). However, Hispanic/Latino populations exhibit highly 

diverse genetic ancestry, and therefore APOL1 associations replicated in some groups (e.g., 

Dominicans, who have a substantial proportion of African ancestry) but not others (e.g., 

Mexicans, who do not). Thus, even ancestry-specific findings can have broad implications 

for populations who are outside of the discovery group but have shared ancestry (88). These 

results highlight the importance of moving beyond self-identified racial/ethnic 

categorizations and the need to model fine-scale genetic ancestry to carry out the next 

generation of complex- and Mendelian-disease studies (11).

3.3. Genetic Risk Scores

Another frequent translation use for GWASs of complex traits is the development of risk 

scores that can be utilized in both clinical prognosis and treatment plans. Genetic variation is 

incorporated into traditional risk score calculations or used to calculate a genetic risk score 

(GRS) that does not incorporate environmental or demographic risk factors, often with 

potential clinical benefits (67). Below, we briefly explore two issues at the forefront of GRS 

research: which variants to include, and the portability of a GRS from the discovery 

population (nearly always of European ancestry) to nationally or globally representative 

populations.

Developing a successful GRS depends on the proportion of variance for a particular 

phenotype that is explained by identified genetic variants. In research, it has become 

accepted practice to incorporate all measured variants (regardless of correlation structure) to 

calculate the proportion of variance explained, as this technique tends to improve prediction 
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accuracy in complex traits (67, 126). Across many disease domains, this technique is 

becoming an accepted downstream application of GWASs; with large studies, the effect 

sizes become precise enough for accurate assessment of risk. Given sufficiently large study 

samples, European-ancestry GWAS tag SNPs can be used for GRS construction for global 

populations. However, this does not guarantee equally good performance across populations. 

Within a relevant association signal, a European tag SNP will differentially capture other 

SNPs (any of which could be the true causal variant) when compared with other ancestral 

populations. Biased SNP selection can lead to a model that provides different risk estimates 

based on ancestry, which can in turn exacerbate health inequities by impairing risk 

prediction for populations already underserved in the American health-care system.

However, the problem is far more pernicious than just hampered prediction accuracy. Martin 

et al. (81) recently demonstrated that—simply due to the effects of genetic drift on allele 

frequencies and LD patterns across populations—a GRS ascertained using standard methods 

in one population can yield unpredictable biases in the distributions of scores in other 

groups, and the distributions can therefore fluctuate dramatically across traits. In a research 

context, such biases can be accounted for by standard normalization or ranking of GRS 

scores by population when recruitment has been performed in a genetically clustered 

fashion. However, in a medical context, there is no guarantee that the ancestry of the patient 

will perfectly match the study used for GRS generation, and bias can easily result in either 

misclassification or a GRS that benefits only specific individuals. The only acceptable 

method for developing a clinically applicable GRS is to ensure that scores can be calculated 

accurately for everyone, meaning that the genomic data used must be globally 

representative, and any genetically informed personalized medicine approach that fails to 

take this issue into account is at risk of major misinterpretation of the underlying data.

4. CLOSING REMARKS

As demonstrated by the work of the PAGE study and other investigators, the inclusion of 

ancestrally diverse study populations in all aspects of genomic research and methods 

development is not only a scientific imperative but also essential for the equitable 

application of results (95). With support from the National Human Genome Research 

Institute and the National Institute on Minority Health and Health Disparities, PAGE has 

focused specifically on addressing the well-documented underrepresentation of US minority 

populations in genomic research by fostering productive collaboration with existing cohorts 

(56). The studies have attempted to address some of the noted historical biases throughout 

the research pipeline, including measurement and analysis of population-level genetic data. 

To address historical bias in genotyping platforms toward European variation, PAGE 

investigators and collaborators (the Consortium on Asthma Among African-Ancestry 

Populations in the Americas, Illumina, and other academic centers) designed a new array 

with comparable efficiencies in detecting genetic variation across all major continental 

populations, a tool that is now available to the scientific community (https://

www.pagestudy.org/mega).The application of this platform to ancestrally diverse PAGE 

study participants has aided in the discovery of ancestry-specific disease-associated variation 

and improved understanding of the underlying biology of known genomic regions associated 

with risk. To date, PAGE has more than 80 published papers, many of which describe novel 
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discoveries and fine mapping, generalization, and replication of previous findings for 

complex traits—for example, for lipids (35, 127), type 2 diabetes (53), adiposity (36, 38, 

47), kidney function (40), coronary heart disease (125), blood pressure (39), 

electrocardiogram traits (4, 5), several cancers (28, 75, 92, 106), glucose and insulin levels 

(13, 37), inflammation (58, 71), and menopause/menarche (23, 111). PAGE has 

demonstrated the importance of multiethnic genomic studies in conjunction with careful 

consideration of recruitment, genotyping, and statistical methods development, leading to 

the discovery and refinement of disease-related loci and a better understanding of these 

complex traits in diverse populations.

Study population inclusivity will also help to ensure that, when included in clinical practice, 

the instruments developed using genetic findings will be more informative for the entire 

population, both within the United States and globally. Since the majority of human genome 

variation is rare and population specific, and an appreciable fraction of this rare variation is 

likely to have functional consequences, a consensus has emerged that properly powered 

multifactorial disease studies will require genetic analysis of individual-level genome-wide 

data from hundreds of thousands to millions of individuals across diverse ethnic groups. 

Consideration is needed of multiethnic groups throughout the research process, from 

recruitment to translation of findings. The current use of genetics to inform prevention and 

therapeutic strategies without these considerations will likely further exacerbate health 

disparities. At this pivotal time in medical history, PAGE advocates for increased 

representation of underrepresented populations and the continued development of tools to 

maximize the accurate measurement of global genetic variation.
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Figure 1. 
Cumulative mean and median sample sizes by racial/ethnic group across all traits in 

published genome-wide association studies from 2005 to 2018, as curated by the National 

Human Genome Research Institute–European Bioinformatics Institute GWAS Catalog. 

While the mean and median sample sizes of European-descent studies have grown over the 

past 13 years, all other groups have remained relatively stagnant. This is especially true for 

mega-scale biobanking efforts, such as the UK Biobank, which significantly raises the mean 

sample size. This limits statistical power for discovery and contributes to the resulting 

information bias in the published literature.
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