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Abstract

The NHANES study contains objectively measured physical activity data collected using hip-worn 

accelerometers from multiple cohorts. However, using the accelerometry data has proven daunting 

because: 1) currently, there are no agreed upon standard protocols for data storage and analysis; 2) 

data exhibit heterogeneous patterns of missingness due to varying degrees of adherence to wear-

time protocols; 3) sampling weights need to be carefully adjusted and accounted for in individual 

analyses; 4) there is a lack of reproducible software that transforms the data from its published 

format into analytic form; and 5) the high dimensional nature of accelerometry data complicates 

analyses. Here, we provide a framework for processing, storing, and analyzing the NHANES 

accelerometry data for the 2003–2004 and 2005–2006 surveys. We also provide an NHANES data 

package in R, to help disseminate high quality, processed activity data combined with mortality 

and demographic information. Thus, we provide the tools to transition from “available data 

online” to “easily accessible and usable data”, which substantially reduces the large upfront costs 

of initiating studies of association between physical activity and human health outcomes using 

NHANES. We apply these tools in an analysis showing that accelerometry features have the 

potential to predict 5-year all cause mortality better than known risk factors such as age, cigarette 

smoking, and various comorbidities.
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1 Introduction

The National Health and Nutrition Examination Survey (NHANES) is a large, stratified, 

multistage survey conducted by the Centers for Disease Control (CDC) which collects health 
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and nutrition data on the US population. According to the NHANES website, this data is 

collected with the intent that it will be analyzed to “help develop sound public health policy, 

direct and design health programs and services, and expand the health knowledge for the 

Nation” [2]. NHANES is one of the largest and most important studies in terms of size, 

scope, diversity, and accessibility of the data. Moreover, NHANES was the first study to 

make public a large dataset containing activity information measured using accelerometers 

when they released accelerometry data from the 2003–2004 and 2005–2006 samples. 

Recently, the UK Biobank has made public accelerometry data on approximately 100, 000 

individuals from the UK, who will be followed up for up to 20 years [27]. This is another 

extraordinary resource, but our focus for this paper is the NHANES. As NHANES is 

representative for the non-institutionalized US population, results are generalizable to well-

defined sub-populations of the US by using survey re-weighting techniques. Moreover, 

NHANES over-samples underrepresented groups (racial minorities, elderly, etc.) and can be 

linked to US national mortality data. This allows for the study of cross-sectional associations 

between individual characteristics and health outcomes as well as their association with 

future mortality. In this paper we are especially interested in the prediction of mortality, 

ranking of the most predictive covariates, the relative effects of accelerometry-derived 

predictors of mortality, and building of parsimonious prediction models based on the 

NHANES data.

The association between activity and health outcomes and mortality is an area of active 

research in a wide range of scientific applications including sleep, mood disorders, 

neurodegenerative diseases, diabetes, obesity, and aging [3,9,11,10,23,24,26]. In addition to 

providing objective measures of overall physical activity (PA), the minute-level resolution of 

most accelerometry data is sufficiently high to identify daily patterns of PA and their 

potential association with health and mortality. NHANES collected objectively measured PA 

data using hip-worn accelerometers in the 2003–2004 and 2005–2006 waves. More recently, 

NHANES has transitioned to wrist-worn accelerometers, but that data is not currently 

publicly available.

While the NHANES data is publicly available, actually analyzing the data requires a non-

trivial amount of background information, data processing and linking, as well as knowledge 

of survey weighting and accelerometry data. Since there is currently no comprehensive 

reference for how to begin working with this data, each working group undergoes a lengthy 

learning process. This process is highly inefficient because it: 1) deters interested researchers 

from using the data; 2) requires considerable time and resources to go through the learning 

process; and 3) increases the chances that errors are made by independently repeating the 

same complex process with different research groups. We address these problems by 

providing reference datasets via the R [21] data package rnhanesdata [13] and provide 

detailed information about the data processing steps. Our hope is that the package will be 

used by multiple research groups, which could improve reproducibility and generalizability 

of results.

This document is organized as follows. In Section 2, we describe the NHANES study, 

accelerometry data transformation procedure, and how to begin working quickly with the 

NHANES data. In Section 3.1, we present two approaches for identifying interpretable 
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features of accelerometry data which can be used as predictors in regression analyses. In 

Section 3.3, we identify key predictors of mortality in the NHANES study. Finally, we 

conclude with a discussion in Section 4.

2 Data

The NHANES data is publicly available from the Center for Disease Control at https://

www.cdc.gov/nchs/nhanes/index.htm and is broadly categorized into six areas: 

demographics, dietary, examination, laboratory, questionnaire, and limited access. The 

accelerometry data for a particular NHANES cohort can be downloaded from the “Physical 

Activity Monitor” subcategory under the “Examination Data” tab. The NHANES uses an 

alphabetic naming convention to differentiate data for various waves, starting with the 1999–

2000 wave. For example, data file names from the 2003–2004 wave end in “_C.ext” 

where .ext is the file extension (.csv, .xpt, etc.). Similarly, data file names for the 2005–2006 

wave end in “_D.ext”. Currently, only the 2003–2004 (“PAXRAW_C.XPT”) and 2005–2006 

(“PAXRAW_D.XPT”) waves of accelerometry data have been released, but data for 

subsequent waves will be released on a semi-regular schedule.

2.1 Accelerometry Data

The NHANES accelerometry data is initially provided as zipped .xpt files (SAS XPORT), 

which, once unzipped, can be loaded into most statistical software packages. The unzipped 

files are large at approximately 2.5Gb per wave, which makes them difficult to use. The size 

of the NHANES files is due to the long data storage format, with one row per subject-

minute. The columns of the long format data correspond to: 1) SEQN - a unique subject 

identifier; 2) PAXSTAT - data reliability flag; 3) PAXCAL - device calibration flag; 4) 

PAXDAY - day of the week; 5) PAXN - sequential observation number; 6) PAXHOUR - 

hour of the day; 7) PAXMINUT - minute of the hour; 8) PAXINTEN - intensity value 

(activity count); and 9) PAXSTEP - device step count (not available for the 2003–2004 

wave). See Figure 1 for an illustration of the data format. Here, subject 31128 does not have 

data quality issues and has observed activity counts of 166, 27, and 0 for the first three 

minutes on the day the device was activated (00:00–00:01, 00:01–00:02, and 00:02–00:03). 

This data storage structure results in a data matrix of dimension 72, 250,027 × 9 for the 

2005–2006 wave; we call this the long format of the data.

The long format makes even simple analyses challenging and computationally expensive. 

For example, even calculating the average activity between 10:00AM and 11:00AM for all 

subjects is not straightforward since subjects have a varying number of observed minutes 

due to missing patterns. Keeping track of missing minutes would require careful coding 

(indexing) and even adding columns to the data which would substantially increase the 

memory footprint of the data. Moreover, identifying wear-time is a prominent concern and a 

key methodologic challenge in analyzing the NHANES accelerometry data. Using the long 

format of the data makes calculating the amount of wear-time within a day more complex 

and less intuitive than our proposed alternative, which we call the 1440+ format.

To address the problems associated with the long data format, we propose to store the data 

as one row per subject-day. That is, for each NHANES wave with Nw participants with 
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accelerometry data, the accelerometry data will be stored as an (7 * Nw) × 1440 data matrix, 

where 7 refers to the number of days each subject was instructed to wear the accelerometer 

device and 1440 corresponds to the number of minutes in a day. To the accelerometry data 

we add columns for subject identifier, day of the week, the two data quality flags, and 

NHANES wave identifier. This results in a data matrix of size (7* Nw) × 1445, with rows 

ordered first by subject, and then by chronological, descending order within subjects. See 

Figure 2 for an example of this data format. We call this the 1440+ format and we suggest it 

as the standard format for analyzing aggregated accelerometry data at the minute level. 

Some studies have recorded the data at other fractions of the minute level (e.g. half a minute 

or two minutes); the same format can easily be used for such studies. Storing the data in the 

1440+ format reduces the file size by nearly 80% and streamlines the process of identifying 

non-wear time.

In NHANES, participants were asked to wear the device 7 consecutive days during waking 

hours with the exception of swimming and bathing. Using established criteria for identifying 

periods of non-wear, it can be seen that non-compliance is highly prevalent among subjects. 

That is, many subjects either forgot to take off the device when they slept, forgot to put the 

device on upon waking, or generally forgot/refused to wear the device for one or more days. 

As a result, there are many subjects with less/more than the expected amount of wear-time in 

an given day, as well as subjects with fewer than 7 days of data. To account for the non-wear 

time, we create a data matrix of non-wear flags separately for each wave. The processed 

non-wear flags in the rnhanesdata package are derived using an algorithm implemented in 

the accelerometry package [29], which is a slight modification of [28]. This algorithm 

requires the specification of several parameters which control how aggressively the 

algorithm detects non-wear flags. Users are able to create their own matrix of non-wear flags 

using different algorithm parameters via the process_flags() function.

Once the activity data has been transformed and non-wear flags have been calculated, the 

data is ready to be merged with covariate and survey weight data. In NHANES, 

demographic data are generally straightforward to use (e.g. race, gender), however several 

covariates need additional processing to be expressed in the expected format (e.g. alcohol 

consumption, smoking).

NHANES does not have a simple random sample from the US population, instead it has a 

complex survey design. Features of the sampling strategy include oversampling, adjustment 

for non-response, and post-stratification. Taking all these design aspects into consideration, 

NHANES assigns a sample weight to each participant. That sample weight indicates the 

number of people in the population who are “represented” by that particular individual. 

Survey weights need to be addressed in order to obtain results that are generalizable to the 

US population. Even simple plots such as histograms can be misleading without 

incorporating survey weight information. The survey [16] package in the statistical software 

R [21] has many tools to perform survey weighted analyses and create survey weighted 

exploratory plots. However, an issue arises in the context of missing data. More specifically, 

if an analysis requires subsetting NHANES participants based on missing data, unless the 

data is missing completely at random, the analysis sample is potentially no longer 

representative of the non institutionalized US population, even accounting for survey 
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weights. This can result in biased estimates for model parameters, the degree of which can 

grow substantially as rates of missingness increase. Fundamentally, addressing the problem 

of missing data while retaining generalizability involves either: 1) re-weighting individuals 

in the data; or 2) imputing the missing data. While a full discussion of approaches for 

handling missing data is beyond the scope of this paper, one approach that is implemented in 

the rnhanesdata package is to assume that within certain age, sex, and ethnicity categories, 

individuals for whom data is completely observed are representative of those for whom data 

is missing. Although this re-weighting procedure is used in other applications and packages 

[30,18], we believe the issue of re-weighting will need to be revisited in the future. We 

discuss our approach to this issue further in Section 2.4.

We aim to provide a template for processing and analyzing accelerometry data in the context 

of the NHANES study, though the standards and methods apply more generally. In addition 

to the processed data, the supplemental material contains all code necessary to replicate our 

results. Our hope is to enhance reproducibility of future analyses using the NHANES 

accelerometry data, reduce substantially the learning time for new users, and reduce the 

number of potential errors associated with multiple research group specific pre-processing 

pipelines. The data package (rnhanesdata) can be downloaded from GitHub at https://

github.com/andrew-leroux/rnhanesdata. Figure 3 describes the contents and structure of the 

data package. With this data package, getting started with NHANES is simple. Even though 

we have been working with accelerometry data for years, the time investment required to 

understand the NHANES accelerometry data structure, derive non-wear flags, understand 

the survey structure of NHANES, design a processing pipeline, and create a data package 

was substantial. With this data package and tutorial paper we would have saved an immense 

amount of productive time across multiple individuals in our working group.

2.2 Covariate Data

Demographic and personal information collected by NHANES is reported in questionnaire 

format. Some questions are fairly straightforward, such as those inquiring about individuals’ 

age and education. However, producing other variables of interest requires merging 

information from multiple questions. For example, creating the variable indicator of whether 

or not an individual smokes cigarettes requires information from two separate questions. 

Similarly, creating a variable associated with alcohol consumption which categorizes 

individuals into ‘non-drinker’, ‘moderate drinker’, or ‘heavy drinker’, requires information 

from 4 different questions. Thus, the creation of both variables contains a set of decisions 

and choices regarding the definition of said variables that would be hard to reproduce and 

communicate without associated software. The code in the rnhanesdata package provides 

these details to ensure reproducibility of the covariate building process. In particular, we 

provide a vignette that walks through the creation of each of the processed demographic and 

lifestyle variables included in the package. An additional complexity is that NHANES 

covariate data is stored across multiple .xpt files. The rnhanesdata package contains several 

of these files which include demographic information (including survey weights). In 

addition, the function process_covar() will search all .xpt files in a directory (locally, or in 

the package datasets) for variables either by name or return all variables in a data matrix 
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format. This can be used to easily access and merge variables across many different 

NHANES data files and waves, including those waves without accelerometry data.

2.3 Mortality Data

The National Center for Health Statistics provides a mechanism for linking NHANES waves 

with death certificate records from the National Death Index (NDI) [19]. The particular 

records used are publicly available and can be downloaded directly from ftp://

ftp.cdc.gov/pub/Health_Statistics/NCHS/datalinkage/linked_mortality/ and are updated 

semi-regularly. The raw mortality data is not in an analysis ready format. To facilitate use of 

this mortality data, the rnhanesdata package provides both processed and raw versions of 

this data, as well as the code used to process it via the function process_mort(). The current 

mortality data in the package was released in 2011, however we intend to update the package 

with future data releases. We use the naming convention ”Mortality_**_*” where ** 

indicates the mortality data release year and * denotes NHANES wave. In the interest of 

reproducibility, moving forward we will retain mortality data from previous releases in the 

data package.

2.4 Survey Weights

The survey weight in NHANES for one individual correspond to the number of individuals 

in the US population that “are represented by” that particular individual. Each individual 

may have several survey weights depending on whether they participated in sub-studies 

within NHANES. As a general rule, an analysis should use the survey weight associated 

with the “innermost” sub-study among variables included in the analysis. For example, if 

one is interested in modelling mortality as a function of household income (collected at the 

household interview) and the accelerometry data, the analysis should use the “examination 

weights” (WTMEC2YR) as the accelerometry data is collected on a sub-sample of the 

interview portion of the study. An additional step is required when combining data from 

multiple waves. In the case of the 2003–2004 and 2005–2006 waves, this adjustment 

corresponds to dividing the survey weights by a factor of 2.

In addition to adjustments required for combining data across waves, it may be desirable to 

adjust survey weights when there is missing data in order to retain the generalizability of 

results. There are many ways this re-weighting can be done and each analysis should involve 

careful consideration of whether and how to re-weight. In the rnhanesdata package we take a 

very general approach that uses three variables which are recorded for all participants and is 

similar to the procedure implemented in the SAS routine reweight.pam [18,31]. More 

specifically, we stratify individuals by age, gender, and ethnicity, then re-weight each 

individual with complete data within each strata to be representative of the “total” strata size.

The stratification approach described above implicitly assumes that within these age, gender, 

and ethnicity strata, individuals with complete data are representative of the corresponding 

strata in the general population. Care needs to be taken when using this approach such that 

the age strata used for re-weighting are appropriate given any exclusion criteria. For 

example, it would not make sense to set one of the age strata to be [50, 60) but exclude any 

subjects under 59. This would result in those aged [59, 60) being highly up-weighted in 
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order to make them representative of everyone age [50, 60) in the larger population. In 

addition, any subsetting based on age should be done using the age that corresponds to the 

survey weight of interest. That is, individuals’ age at the interview (RIDAGEMN) is 

generally not the same as their age at the exam (RIDAGEEX).

Finally, normalizing the survey weights helps with numerical stability for the estimation 

procedures employed by statistical software packages and is in fact necessary for obtaining 

accurate point estimates and standard errors outside of specialized survey software. The 

rnhanesdata package contains the function reweight_accel() which will automatically re-

calculate a suite of the survey weights and normalized survey weights for a subset of the 

2003–2004 and 2005–2006 waves, either separately or combined using the re-weighting 

procedure described above. The default age strata used in the re-weighting procedure 

correspond to the age categories targeted in the NHANES 2003–2004 and 2005–2006 waves 

for white Americans [4], though this can be specified by a user.

3 Data Application - Mortality in NHANES

We apply our data package to identify features of activity associated with mortality in the 

NHANES study, and assess their predictive value in combination with major demographic 

and health predictors. Specifically, we are interested in predicting 5-year mortality. If Yi 

denotes the outcome Dead/Alive after 5 years and Wi denotes a column vector of covariates 

then we fit logistic regressions of the form

Y i  Bernoulli  pi ;

log 
pi

1 − pi
= Wi

tβ
(1)

Throughout this paper we use bold font to indicate data vectors and matrices and regular 

font to indicate data scalars. To conduct the analysis we exclude individuals based on age, 

missing data, and number of days of accelerometry data. In total, the NHANES 2003–2004 

and 2005–2006 waves has 14, 631 participants with some accelerometry data. We excluded 

individuals who were: 1) younger than 50 or 85 and older at the time they wore the 

accelerometer; 2) missing any demographic predictor variables we adjust for; 3) had fewer 

than 3 days of data with at least 10 hours of estimated wear time; 4) missing mortality 

information; 5) alive with follow up less than 5 years. This set of exclusion criteria yielded a 

sample size of 3,198 participants. The vast majority of individuals were excluded based on 

the age criteria (10, 859 participants). Of the 3, 772 individuals who met our age criteria, the 

majority of individuals excluded were removed for accelerometer calibration/data quality 

issues (239) or too few days of “good” accelerometer data (278). The remaining 57 

individuals excluded were removed for missing mortality or predictor data. As a final note, 

there were an additional 335 individuals who participated in the examination portion of the 

study who meet our age criteria but who have no accelerometry data.

Table 1 presents summary statistics comparing participants who had accelerometry data 

stratified by exclusion from our study. Both unadjusted and survey weight adjusted results 

are reported. Survey weighting was performed using the tableone package [35] in R which 
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interfaces with the survey package [16]. The survey weighted results indicate that 

individuals who were excluded tend to be less educated (p = 0.002), more likely to have 

missing alcohol data (p < 0.001), be current smokers (p = 0.002), have a body mass index 

that qualifies as obese (p = 0.002), higher rates of Diabetes (p = 0.013), Stroke (p = 0.046), 

and self reported mobility problems (p = 0.001). In addition, although not statistically 

significant for a type-I error rate of 0.05, mortality is higher in the excluded group (15.2% vs 

11.4%). Taken together, these results suggests that individuals who were excluded from our 

study were in general less healthy than those who were included, which does not support a 

missing completely at random hypothesis. However, it is not clear to what extent the re-

weighting procedure described in Section 2.4 will address any differential missingness as the 

two groups appear to be fairly similar in terms of racial, gender, and age composition. We 

acknowledge this potential limitation of our analyses and proceed forward using the adjusted 

(re-weighted) survey weights.

An additional observation from Table 1 is that while unadjusted and survey weighted 

summary statistics are frequently similar, they can also be quite different for specific 

characteristics. For example, because NHANES over-samples black and Mexican 

Americans, the ethnicity estimates vary dramatically between the unweighted and survey 

weighted results. This highlights the important risk of obtaining biased results when 

analyses do not adjust for survey weights [15,14].

After applying our exclusion criteria, there is one individual who has 501 minutes of missing 

activity count data on a day which qualifies as “good” using the 10 hour wear-time criteria. 

We impute these minutes as 0 activity counts. We do not attempt to impute activity counts 

for periods identified as non-wear. However, there are some minutes which are identified as 

non-wear which have non-zero activity counts, though none with activity counts greater than 

99. Any periods identified as non-wear are replaced with 0 activity counts. This highlights 

an important point of working with the 2003–2006 NHANES accelerometry data: we are 

unable to disentangle non-wear, sleep, and sedentary behaviors. However, the hope is that by 

applying a 10 hour minimum wear time criteria for days of accelerometry data we are able 

to capture the majority of waking activities. Thus, we hope that the majority of non-wear 

time corresponds to either sleep or sedentary behaviors, though this assumption is untestable 

in practice.

3.1 Accelerometry Feature Extraction

One challenging aspect of working with accelerometry data is addressing the dimensionality 

of the data. Indeed, there are 1, 440 observations per subject, per day, which makes both 

visualization and analyses difficult. To reduce complexity and improve translation of results, 

many analyses use simple summary statistics, including but not limited to: 1) mean or total 

activity count (TAC); 2) mean or total log transformed activity count (TLAC); 3) total 

sedentary time; and 4) total minutes of moderate/vigorous physical activity (MVPA). This is 

an effective strategy, but could result in loss of information due to the extreme reduction in 

dimensionality.

It is our experience that often, additional features of the data are associated with an outcome 

of interest. One method for identifying these features is to apply dimensionality reduction 
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tools from functional data analysis (FDA) [22]. Here we focus on Functional Principal 

Component Analysis (FPCA) and functional regression to select features that are strongly 

associated with 5-year mortality. After the accelerometry data features are identified, we 

construct accelerometry measures that are interpretable from a scientific/public health 

perspective. The feature extraction procedures described subsequently do not directly 

account for the NHANES survey weights. Accounting for survey weights in dimensionality 

reduction is an entirely new topic, which is beyond the scope of the current paper. However, 

we account for survey weights in identifying variables that are predictive of 5-year mortality 

in Section 3.3. In addition to not accounting for survey weights, the feature extraction 

methods discussed below do not account for non-wear time in the sense that we can not 

differentiate between sleep, non-wear time, or sedentary behaviors. However, the hope is 

that by having excluded all days of data with fewer than 10 hours of wear time, we only use 

those days where individuals were largely compliant with study protocol and we capture the 

majority of individuals’ waking activity patterns, though this is an untestable assumption on 

our part.

3.1.1 Functional Principal Component Analysis—To reduce the high degree of 

skewness in the activity count data we first transform the data at each minute using the 

transformation x = log(1 + a), where a denotes the activity count. This transformation has 

the added benefit that it transforms 0 counts to 0 [24]. We conduct Functional principal 

component analysis (FPCA) on the transformed matrix. FPCA is a technique analogous to 

principal component analysis, but with additional steps for smoothing the data [22]. Let Ji be 

the number of days of accelerometry data for subject i = 1, …, N and J = ∑i = 1
N Ji be the 

total number of days of data. The log transformed “activity count” data matrix, X, is J × 

1440 dimensional. To perform FPCA, we use the fast covariance estimation (FACE) 

approach [34], which can be used in this high dimensional context. FACE is implemented in 

the fpca.face() function of the refund [8] package in R [21]. Even for this high dimensional 

data fpca.face() ran in under ten seconds on a standard laptop.

The FPCA approach presented here does not account for the within-person correlation when 

calculating the principal components (PCs). Two alternatives for recovering this variability 

are to either: 1) use average activity profiles across days within an individual and perform 

FPCA on average activity profiles; or 2) use multilevel FPCA [5,36,25]. The first option 

calculates the PCs and recovers the day-to-day variability by projecting day-specific data on 

the resulting PCs. This can be problematic when the within-person patterns of variability are 

different from between-persons patterns of variability. The second approach is a viable 

option for analyzing day-to-day variability but beyond the scope of this tutorial paper. For 

simplicity of presentation we also ignore issues associated with non-wear time in terms of 

estimating the principal components.

Although we are not aware of any software which can estimate survey weighted FPCA, we 

compared our results to survey weighted non-functional PCA estimated via the svyprcomp() 
function from the survey package and obtained nearly identical shapes (up to a sign) for the 

first 16 principal components, though the proportion of variability explained by each 
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component varied. While we don’t present these results here, the supplemental material 

contains code which performs both PCA methods and plots the results.

The first 6 PCs estimated using FPCA explain approximately 57% of the observed 

variability in the log transformed activity counts and are presented in Figure 4. Given how 

noisy the data is, 57% variability explained is substantial. For each subject and day we 

obtain a score on each PC and calculate the mean and standard deviation of these subject-

specific scores. More specifically, let zijk be the score for subject i, on day j and PC k. Then 

we construct the additional 2K variables (2 for each of the first K = 6 PCs)

mik = zik = 1
Ji

∑
j = 1

Ji
zik j, sik =  sd  zik =

∑ j = 1
Ji zi jk − zik

2

Ji − 1 i = 1, …, N k = 1, …, K = 6

The subject- and component-specific mean and standard deviations, mik and sik, are then 

used as predictors in regression models. We denote by mi = (mi1, …, miK)t and si = (si1, …, 

siK)t the K × 1 dimensional vectors of score means and standard deviations. We fit a logistic 

regression of the form

logit pi Wi, mi, si = α + Wi
tβ + mi

tγ + siδ, (2)

where p denotes the probability of death in 5 years, Wi contains the standard demographics, 

behavioral and comorbidity covariates used in published NHANES mortality papers. The 

demographic covariates include age, gender, body mass index (BMI), race, and education 

level. The behavioral covariates include smoking status and alcohol consumption. The 

comorbidity covariates include self reported presence of a mobility problem, diabetes, 

coronary heart disease (CHD), congestive heart failure (CHF), cancer, and stroke. The 

precise definitions for each of these variables can be found in the data documentation for the 

rnhanesdata package. We used backward selection to identify the mik and sik covariates that 

are associated with survival time while always keeping the covariates Wi in the model. The 

backward selection was performed using complex survey Akaike’s Information Criteria 

(AIC) [17]. Using this procedure we find that the average scores for the first PC (mi1) as 

well as the standard deviation of the first PC (si1), fifth PC (si5), and the sixth PC (si6) are 

retained at the end of the backward selection procedure. To interpret these results, we refer 

back to the shapes of principal components in Figure 4. Potential interpretations and 

possible surrogate measures calculated on the raw count data are proposed in Table 2 below.

With the interpretations presented in Table 2, we explored a number of potential surrogate 

measures that are interpretable on the original scale of the data and can easily be derived 

directly from the count data at the minute level without conducting FPCA. Although ratios 

comparing relative activity during key periods seem appealing, they are challenging to use in 

practice due to the large number of 0 activity counts present in the data. To avoid this 

problem we propose using differences in average log transformed activity counts between 

said key periods of time. The precise measures considered are presented in Table 3.
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To justify a particular surrogate measure, we considered the correlation between our 

surrogate measure and the results of FPCA. In general, correlations of at least 0.75 were 

considered sufficiently high to warrant inclusion in subsequent prediction models. For 

example, the correlation of our proposed surrogate measure for mi1, total log activity counts 

(TLAC), has an observed correlation of 0.88 with mi1. This procedure involved substantial 

amount of “guess and check”, and, correspondingly, the results of Section 3.3 should be 

interpreted as exploratory and not confirmatory.

3.2 Scalar on Function Regression

An alternative to signal extraction via FPCA followed by regression is to conduct functional 

regression directly on the patterns of activity. While some papers on functional regression in 

the context of survival data exist [7,12,33], this is a relatively new area of research. In order 

to keep results comparable with those in other sections and for simplicity of presentation, we 

continue to focus on the binary outcome Dead/Alive at 5 years.

3.2.1 Functional regression model—Denote the smoothed log transformed activity 

count data obtained from the FPCA performed in Section 3.1.1 as Xi j(s) for subject i on day j 

at time s. Our logistic functional regression model is then a slight modification of Model (2)

logit  pi Wi, Xi = α + Wi
tβ + ∫

0

1 1
Ji

∑
j = 1

Ji
Xi, j(s) − X(s) γ(s)ds, (3)

where Wi contains the same predictors as the logistic regression in Section 3.1.1 and X(s)
denotes the population average activity count at time s. That is, our functional predictor is 

the average of the smoothed activity profiles at each time point across days, centered at each 

time point. The centering is done to prevent confounding of the functional coefficient with 

the intercept term α and aid in interpretation. This model ignores potential effects of day-of-

the-week, week-end, or day-to-day variability on 5-year survival. The functional parameter, 

γ(s), can be thought of as a weight function that expresses the relative contribution of an 

individual’s average daily activity profile as compared to the population average, 

1
Ji

∑ j = 1
Ji Xi s − X(s), at each minute s towards the log odds ratio of 5-year mortality. The 

functional regression parameter can be approximated as

γ(s) = ∑
k = 1

kb
bkϕk(s),

where ϕ(s) = ϕ1(s), …, ϕkb
(s)

t
 is a spline basis over s. Our primary interest in this section is 

to estimate and interpret the functional coefficient γ(s). We estimate γ(s) using cyclic 

penalized B-splines of dimension 30 to account for the natural periodicity in the data. 

Indeed, we expect the effect to be smooth around 12:00AM with very similar values at 

11:59PM and 00:01AM across days. Because we do not account for differential non-wear, 
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either within or across individuals, our model, and the resulting functional coefficient γ(s), 

may be combining the effect of 0 activity counts with periods of non-wear if non-wear time 

is associated with 5-year mortality. The additional predictors in the model, Wi, are the same 

demographic, lifestyle, and comorbidity variables described in Section 3.1.1.

The model fitting is performed using the refund [8] package in R which contains wrapper 

functions for the gam() function in the mgcv package to perform functional regression. 

Estimation is performed using the normalized survey weights. Even though we account for 

survey weights, the estimated standard errors may be inaccurate due to the multistage survey 

nature of NHANES. That is, because we only account for survey weights, and not survey 

design, our standard errors are likely underestimated. A re-sampling procedure could be 

used to estimate standard errors, but is beyond the scope of this paper as we use functional 

regression in an exploratory capacity. To the best of our knowledge, no software currently 

exists which will fit penalized functional regression models for complex survey designs. 

Note that using non-normalized survey weights with standard functional regression software 

may substantially affect both point estimates and estimated standard errors.

3.2.2 Results—Figure 5(A) depicts γ (s), the estimated functional coefficient, as a solid 

line. The dashed lines are pointwise 95% confidence intervals. Because γ (s) is a weight on 

activity levels, larger magnitudes indicate that being above the population average activity at 

a particular time is associated with increased contribution to the log odds of 5-year mortality 

for that time of day. The coefficient function is estimated to be positive only during the late 

evening and early hours of the morning (approximately 11AM to 3AM), indicating that 

increased activity relative to the population average during this time period is associated 

with higher risk of mortality, after accounting for the other covariates, though the magnitude 

of the coefficient during this period is close to 0. The coefficient function is estimated to be 

most negative around 1PM-3PM, indicating that increased activity relative to the population 

during this period is associated with lower risk of mortality given a particular level of overall 

activity during any other part of the day. The pointwise confidence intervals contain zero for 

all times except roughly between 8AM-6PM. This suggests that the effects of activity 

outside of the interval 8AM-6PM is not particularly strong if we condition on the activity in 

this interval. This may, at least in part, be due to the fact that NHANES participants were 

instructed to remove the device while sleeping.

To interpret the functional coefficient, we compare the implied contribution to log odds of 5-

year mortality for two individuals with markedly different daily activity patterns. Figure 

5(B)/(C) displays their smoothed minute-level activity for all days (grey lines), the average 

across days (the black line), and the population average, Xi j(s), 1
Ji

∑ j = 1
Ji Xi j s , and X(s), 

respectively. The first person (labeled 21009) is, on average, active in the morning, has a dip 

in activity around 12PM, is active again in the early afternoon, and then has decreasing 

activity after 2PM. The second person (labeled 21068) wakes up late, and then has below 

average activity throughout most of the day. Figure 5(D)/(E) depicts 1
Ji

∑ j = 1
Ji Xi s − X γ (s), 

which is the pointwise product of each individual’s activity data and the estimated functional 
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coefficient. The shaded area is the contribution to the log odds of the average activity profile, 

where more shaded area above 0 indicates an increased risk of 5-year mortality. This shaded 

area is equal to −0.59 for subject 21009 and 0.54 for subject 21068, indicating that subject 

21009’s average activity profile is associated with an odds of 5-year mortality that, adjusting 

for the other covariates in the model, is exp(—0.59) = 0.55 times that of an individual with 

the population average activity profile. In contrast, subject 21068’s average profile is 

associated with an odds of 5-year mortality that is exp(0.54) = 1.72 times that of a 

comparable subject with average activity profile equal to the population average. For 

reference, in this model, each year of age is associated with 0.069 higher log odds of 5-year 

mortality, which suggests the difference in these two activity profiles is roughly comparable 

to the expected change in log odds for individuals who are 16.4 years apart in age.

These results suggest that activity during the day-time reduces the risk of 5-year mortality 

and that given an overall budget of activity, allocating more activity to early afternoon may 

be most associated with reduced risk of 5-year mortality. A closer inspection of results 

suggests that they may be driven by the afternoon average activity, which is highly 

correlated with the total or average activity count. Thus, it is likely that functional regression 

is picking up on a similar signal to that captured by mi1 described in Section 3.1.1. In fact, 

the correlation between the linear predictor associated with the functional coefficient and 

mi1 is 0.95. As a result, we consider our surrogate for mi1 (TLAC) as sufficiently capturing 

the signal associated with the functional coefficient and do not add an additional candidate 

for predicting 5-year mortality based on the results of functional regression.

3.3 Prediction of Mortality in NHANES

In this section we aim to identify the best predictors of 5-year mortality among 

demographics, comorbidities, and lifestyle factors commonly used as confounding variables 

in NHANES survival analyses as well as features of activity identified as being predictive of 

mortality from Section 3.1.1 (surrogate measures for mi1, si1, si5, si6 described in Table 3). 

In these models 5-year mortality is the outcome and we consider a set of non-activity 

predictors: age, gender, ethnicity, education, body mass index (BMI), smoking status, 

drinking status, diabetes, congestive heart failure, coronary heart disease, cancer, and 

mobility limitation. With respect to accelerometry derived predictors, we consider the 

features of activity identified as being predictive of mortality from Sections 3.1.1. We also 

include average daily wear time and time spent in moderate-to-vigorous activity (MVPA), 

which are standard predictors in the accelerometry literature. The activity count threshold 

used to determe moderate-to-vigorous activity was ≥ 2020 [28]. In addition, we considered 

total activity counts (TAC) which measure volume of activity. In contrast to total log activity 

counts (TLAC) which is associated with low/light activities, TAC is more highly associated 

with moderate/vigorous activities [32].

Finally, we consider three measures which involve the estimation of sedentary behaviors: 

total time spent in engaging in sedentary behaviors, as well as two measures of sedentary-

active fragmentation: active to sedentary transition probability (ASTP) and sedentary to 

active transition probability (SATP)[6]. The standard practice is to consider sedentary 

behaviors during wake time as distinct from inactivity associated with sleep. However, as 
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mentioned in Section 3, in NHANES we can not differentiate between non-wear, sedentary 

behaviors, and sleep. Therefore, in calculating these three measures typically derived from 

sedentary behaviors, we use “sedentary, sleep, or non-wear” in place of “sedentary”, which 

we assume to consist mostly of non-wear and sleep time due to our exclusion of days with 

fewer than 10 hours of wear-time. Although our non-standard construction complicates the 

interpretation of models which include these variables as predictors, it allows us to bypass 

the complexities associated with constructing transition probabilities in the context of 

intermittent non-wear and adjusting sedentary time for non-wear time. In order to 

differentiate our measures from those discussed in [6], we denote our transition probabilities 

as ASTPsl/nw and SATPsl/nw. We use an activity count threshold of < 100 counts to identify 

sedentary behaviors.

In our prediction models we do not consider interactions between predictors or alternative 

functional forms of continuous predictors (i.e. non-linear effects). This was done to simplify 

the forward selection procedure, but will not necessarily produce the “best” prediction 

model possible using the variables considered here.

3.3.1 Model Selection—Our intent is to rank each predictor in terms of their individual 

predictive value, and identify a set of “most” predictive variables using forward selection. 

Our procedure for ranking single predictors of 5-year mortality is to quantify the relative 

importance of variables for mortality prediction using univariate logistic regression models. 

Each variable was ranked according to 10-fold cross validated area under receiver operating 

characteristic curve (AUC) and complex survey Akaike’s information criterion (AIC) [17]. 

Forward selection is performed using the cross validated AUC criterion. In order to assess 

the sensitivity of forward selection to the survey re-weighting procedure described in 

Section 2.4, we performed the forward selection separately using: 1) our re-weighted 

(“adjusted”) survey weights; 2) unadjusted survey weights; and 3) no survey weights. Cases 

(deceased) and controls (alive) were split and partitioned separately to ensure approximately 

equal numbers of events in each of the 10-folds. The same partition of the data was used for 

the entire forward selection procedure.

3.4 Results

Table 4 shows individual predictors ranked using univariate logistic regression models based 

on AUC for each of the three sets of survey weights discussed in Section 3.3.1. These 

models are univariate in that all models have just one covariate. Regardless of which set of 

survey weights is used, eight of the top ten predictors are accelerometry-based measures, 

which may explain the explosive interest in objective measures of activity using wearable 

devices. TAC, MVPA, and Age provide best discrimination (AUC of 0.783, 0.756, and 

0.747, respectively using the adjusted survey weights) among the 24 predictors. However, 

due to the relatively high correlation between some of these variables (TAC and MVPA or 

ASTPsl/nw and SATPsl/nw, for example), it is not terribly surprising that they would perform 

similarly. Still, the predictive performance of measures of vigorous activity (TAC, MVPA), 

overall low/light activity (TLAC), inactivity (Sedentary, sleep, or non-wear time) and the 

fragmentation measures (ASTPsl/nw, SATPsl/nw) as stand-alone variables is exceptional 

given that so many other well-known strong predictors of mortality have a much lower AUC.

Leroux et al. Page 14

Stat Biosci. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moving from univariate logistic regressions to multiple logistic regression, Table 5 presents 

the results from forward selection. The variables are presented in order of selection. Cells 

with a gray background indicate the AIC stopping criteria was met (i.e. AIC increases with 

the next variable included), while a black text box surrounding a variable communicates that 

the cross-validated AUC criteria was met (AUC decreases when another variable is added). 

AUC tended to be more optimistic than AIC in forward selection. Both the adjusted survey 

weights and unweighted procedure identified 11 and 14 variables using the AIC and AUC 

criteria, respectively, though the exact variables selected and their ordering differed slightly. 

The unadjusted weights identified 10 variables using both the AIC and AUC criteria. Overall 

there was perfect overlap between the weighting methods for the first 7 variables, and a high 

degree of overlap for the next several variables when comparing the two survey weighting 

methods.

Even though AIC was more conservative than 10-fold cross-validated AUC in selecting 

variables, any observed increases in AUC associated with adding additional variables 

beyond the first 7 are marginal, suggesting that even the AIC criteria may be overly 

optimistic. Recognizing this issue, we present the point estimates and 95% Wald confidence 

intervals obtained from the “Adjusted Weights” model using the first 7, 11, and 14 

predictors obtained from forward selection in Table 6. In Table 6 all continuous predictors 

except age have been standardizes such that the odds ratios presented represent the expected 

change in odds of 5-year mortality for a one standard deviation increase in the predictor. 

Estimates and confidence intervals are obtained using the svyglm() function, accounting for 

both the survey weights and complex survey design of NHANES.

Interpreting the results shown in Table 6, we see the odds of experiencing 5-year mortality 

increase with age, presence of a mobility problem, and self reported comorbidities. 

Interestingly, adjusting for the other variables in the model, individuals with an BMI 

considered overweight or obese have a lower risk compared to those with normal BMI. 

Although this seems counterintuitive, this “obesity paradox” has been seen many times in 

the epidemiologic literature, including in analyses of NHANES data. Other studies have 

found that conditioning on health status eliminates the protective effect of being overweight 

on survival among healthy individuals [1]. For example, [20] found that conditioning 

smoking status eliminates the protective effect of being overweight among never-smokers, 

and indeed we see this same phenomena in our data (results not shown). As investigating 

any potential underlying causal mechanisms and addressing the issues of reverse-causality 

are beyond the scope of this paper, we simply acknowledge this emergent phenomena. 

Regarding lifestyle factors, former/current smokers have significantly higher mortality risk 

relative to non smokers. Individuals who consume alcohol moderately have lower risk of 

mortality compared to non-drinkers, a well known result that may be confounded by 

socioeconomic status and by individuals who do not drink alcohol as a result of a pre-

existing health condition.

Interpreting the observed associations of activity summary measures with mortality is 

complicated by the dependencies among them. Consider the association of total volume of 

activity (TAC) with 5-year mortality. Although the direction of the association consistently 

indicates that increased volume of activity is associated with lower risk of 5-year mortality, 
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adding the transition probabilities (ASTPsl/nw/SATPsl/nw) and sedentary, sleep, or non-wear 

time to the model markedly influences both the point estimate and variability associated 

with the coefficient for TAC. Despite the presence of dependencies among these predictors, 

the direction of effects is generally consistent with our expectations. That is, increased 

activity (TAC) or probability of transitioning to activity from sedentary, sleep, or non-wear 

(SATPsl/nw) is associated with lower risk. In contrast, increased probability of transitioning 

from active to sedentary, sleep, or non-wear is associated with higher risk. Additionally, the 

observed protective association of our surrogate measure for si6 is consistent with the results 

from Section 3.1. The one association that does not seem to fit our expectations is the 

protective effect of increased sleep, sedentary time, or non-wear time. However, we need to 

remember that the protective effect is “adjusting for” total volume of activity as well as 

transition probabilities of sedentary to active and vice versa. We caution against looking too 

much into this particular result as forward selection does not necessarily produce models 

which “make sense” from an interpretation perspective.

4 Discussion

Here, we have provided a data package that is intended to considerably reduce the upfront 

time investment needed to begin working with NHANES accelerometry data. Assuming no 

changes to the format of future NHANES data releases, all code provided for the pipeline 

naturally extends to future NHANES data, including accelerometry and mortality data. In 

addition, we provide a framework for structuring accelerometry data that is in line with 

current best practices and is compatible with existing R code for accelerometry data. 

Moreover, through the use of three analytic examples, we provide users with a step-by-step 

guide for working with the NHANES accelerometry data, including adjusting for survey 

weights. All code, figures, and results in this manuscript are fully reproducible using code 

available in the supplemental material. This analysis will be added to the rnhanesdata 
package as a vignette in the near future.

Our results should be considered exploratory and not confirmatory given the extensive 

exploratory analysis performed to identify accelerometry derived predictors of mortality. 

However, we think that providing a list of highly predictive accelerometry metrics will be 

extremely useful in future confirmatory studies. A limitation of our approach is that we do 

not consider non-linear associations between continuous predictors and survival, nor do we 

consider interactions between predictors. Such models should be considered in future studies 

using the variables identified here as being predictive of 5-year mortality.

Ultimately, our package contains the content, the tools, and the context needed to empower 

users to begin working with NHANES data quickly (accelerometry, or otherwise). Most 

importantly, we integrate these features in a concise and well documented fashion that is 

accessible to users with varying degrees of statistical sophistication and is fully 

reproducible. Our hope is that this paper will result in increased utilization of this extremely 

rich, public resource.
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Fig. 1: 
First 3 rows of the ‘PAXRAW_D.XPT’ file, the 2005–2006 accelerometry data file available 

for download from the CDC website
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Fig. 2: 
Several rows from the processed 2005–2006 wave accelerometry data with various 

combinations of data quality indicators and missing data patterns. Specifically, (a) 

corresponds to a subject with 7 full days of activity data, no data quality flag indicators, and 

no missing data; (b) shows a subject where the device was marked as uncalibrated upon 

return to NHANES; (c) presents a subject with both an uncalibrated device and data 

reliability issue; and (d) illustrates a subject with their last two days of data missing (other 

missing day not shown).
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Fig. 3: 
Data package structure and contents. Note that all “.rda” files referenced in the Processed 
data section are in matrix format and can be readily written to .csv or other standard 

formats. Although the long format accelerometry data is not available in the data package 

due to file sizes, the original data can be downloaded directly from the CDC and processed 

using the process-accel() function.
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Fig. 4: 
First 6 principal components calculated on the population, minute level NHANES 

accelerometry data using functional principal component analysis. Solid lines represent the 

population average curve, +, — lines denote the effect of being 2 standard deviations from a 

score of 0 on the particular principal component.
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Fig. 5: 
(A) Estimated Functional Coefficient For Daily Activity Patterns γ(s) with 95% pointwise 

confidence intervals presented as thin dashed lines. (B)/(C) Smoothed activity counts for one 

day of data for two different NHANES participants. The grey lines denote individual daily 

smoothed profiles. The black line denotes the average profile, 1
Ji

∑ j = 1
Ji Xi j s . The dashed red 

line is the population average profile X(s). The difference between the solid black line and 

the red dashed line is the functional predictor in model 3. (D)/(E) Contribution to the log 

odds for these example days of accelerometry data.
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Table 1:

Unadjusted and survey-weighted population characteristics of individuals excluded from the analysis for a 

reason other than age. Note that adjusting for survey weights can result in non-integer estimates for categorical 

variables (i.e. 444.7 individuals with Diabetes included in the analysis). We rounded the survey weighted 

categorical variables to the nearest integer. P-values associated with continuous variables were calculated 

using t-tests, while chi-squared tests were used for categorical variables.

Unadjusted Survey weighted

Included
(n = 3,198)

Excluded
(n = 574) p-value Included

(n = 3,243)
Excluded
(n = 529) p-value

Age (mean (sd)) 65.97 (9.68) 65.78 (9.94) 0.674 62.97 (9.48) 63.21 (9.74) 0.723

Gender (% Female) 1587 (49.6) 283 (49.3) 0.923 1733.1 (53.4) 277.0 (52.4) 0.718

Race (%) 0.175 0.183

 White 1862 (58.2) 310 (54.0) 2609.2 (80.5) 405.1 (76.6)

 Mexican American 572 (17.9) 101 (17.6) 128.7 (4.0) 26.6 (5.0)

 Other Hispanic 61 (1.9) 10 (1.7) 78.3 (2.4) 11.8 (2.2)

 Black 601 (18.8) 132 (23.0) 288.8 (8.9) 63.0 (11.9)

 Other 102 (3.2) 21 (3.7) 138.2 (4.3) 22.3 (4.2)

Education (%) 0.001 <0.001

 Less than high school 1021 (31.9) 216 (38.0) 603.2 (18.6) 131.8 (25.2)

 High school 792 (24.8) 152 (26.8) 875.1 (27.0) 165.5 (31.6)

 More than high school 1385 (43.3) 200 (35.2) 1764.9 (54.4) 226.3 (43.2)

Cigarette smoking (%) 0.001 0.002

 Never 1430 (44.7) 236 (41.4) 1479.2 (45.6) 210.9 (40.0)

 Former 1229 (38.4) 202 (35.4) 1209.8 (37.3) 193.4 (36.7)

 Current 539 (16.9) 132 (23.2) 554.2 (17.1) 122.5 (23.3)

Alcohol consumption (%) <0.001 <0.001

 Moderate Drinker 1512 (47.3) 230 (40.1) 1680.1 (51.8) 251.3 (47.5)

 Non-Drinker 1362 (42.6) 256 (44.6) 1191.9 (36.8) 196.7 (37.2)

 Heavy Drinker 188 (5.9) 26 (4.5) 233.7 (7.2) 27.4 (5.2)

 Missing alcohol 136 (4.3) 62 (10.8) 137.6 (4.2) 53.4 (10.1)

Body mass index (%) <0.001 0.002

 Underweight 30 (0.9) 12 (2.2) 34.8 (1.1) 10.6 (2.1)

 Normal 827 (25.9) 125 (23.2) 875.8 (27.0) 120.2 (24.0)

 Overweight 1218 (38.1) 174 (32.3) 1219.9 (37.6) 146.8 (29.3)

 Obese 1123 (35.1) 228 (42.3) 1112.7 (34.3) 223.9 (44.6)

Diabetes (% Yes) 570 (17.8) 137 (23.9) 0.001 444.7 (13.7) 101.1 (19.1) 0.014

Congestive heart failure (% Yes) 189 (5.9) 46 (8.0) 0.068 161.1 (5.0) 32.2 (6.1) 0.312

Coronary heart disease (% Yes) 265 (8.3) 54 (9.4) 0.419 244.0 (7.5) 48.0 (9.1) 0.360

Stroke (% Yes) 192 (6.0) 48 (8.4) 0.041 151.0 (4.7) 32.9 (6.2) 0.055

Cancer (% Yes) 503 (15.7) 69 (12.0) 0.027 527.3 (16.3) 74.9 (14.2) 0.328

Mobility problem (% Any Difficulty) 1035 (32.4) 242 (42.2) <0.001 876.9 (27.0) 195.1 (36.9) 0.001

Months mortality follow-up (mean (sd)) 77.27 (20.90) 70.91 (23.60) <0.001 77.63 (18.96) 71.38 (21.64) <0.001

Mortality at follow-up (% Dead) 500 (15.6) 113 (19.9) 0.013 360.8 (11.1) 76.8 (14.7) 0.074
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Table 2:

Interpretation of the results of FPCA plus suggestions for possible surrogate measures which can be calculated 

directly on the activity count data. The “Result” column (−)/(+) indicates a negative/positive association of the 

predictor with 5-year mortality in a model adjusting for demographics, lifestyle factors, and the other 

predictors in this table.

Result Possible Interpretation Possible Surrogate Measure(s)

(−) association: 
mi1

Higher overall levels of low/light activity during the day, and 
increased early afternoon activity relative to early AM is 
associated with lower risk of 5-year mortality.

• Average total log activity counts (TLAC)

• Average difference of early AM versus 
early PM activity

(+) association: si1
Increased variability in overall levels of low/light activity is 
associated with higher risk of 5-year mortality.

• Standard deviation of total log activity 
counts (TLAC)

(−) association: si5
Increased variability in the timing of peak activity is 
associated with lower risk of 5-year mortality.

• Standard deviation of “wake up” time

• Standard deviation of “winding down” 
time

(−) association: si6

Increased variability in the start time of daily activity is 
associated with lower risk of 5-year mortality. This could be 
an employment
effect.

• standard deviation of the difference in 
average activity during the peaks/troughs 
highlighted by PC6
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Table 3:

Actual surrogate measures identified for use in prediction models. All standard deviations are day-to-day 

standard deviations calculated for each participant.

Result Quantity Measured Calculation

(−) association: mi1 Average total log activity count (TLAC)
1
Ji

∑ j = 1
Ji ∑t = 1

1440 Xi j(t)

(+) association: si1 Standard deviation of total log activity counts sd ∑t = 1
1440 Xi j(t)

(−) association: si5
Standard deviation of difference in average log transformed activity 
counts comparing 10AM-3PM to 4PM-7PM sd

∑t = 661
900 Xi j t

240 −
∑t = 961

1140 Xi j t

180

(−) association: si6

Standard deviation of difference in average log transformed activity 
counts comparing {8AM-10AM, 3PM-5PM, 10PM-12AM} to 
{5AM-7AM, 11AM-1PM, 6PM-8PM }

sd
∑t ∈ ta

Xi j t

ta
−

∑t ∈ tb
Xi j t

tb
ta = {481,…, 600, 901,…, 1020, 1321,…, 1440}
tb = {301,…, 420, 661,…, 780, 1081,…, 1200}
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Table 4:

Ranking of individual mortality predictors importance based on AUC criteria in from univariate logistic 

regressions.

Adjusted Weights Unadjusted Weights Unweighted

Rank Variable AUC Variable AUC Variable AUC

1 TAC 0.783 TAC 0.784 TAC 0.753

2 MVPA 0.756 MVPA 0.757 Age 0.735

3 Age 0.747 Age 0.746 MVPA 0.729

4 ASTPsl/nw 0.745 Sedentary, Sleep, or Non-wear 0.745 ASTPsl/nw 0.727

5 Sedentary, Sleep, or Non-wear 0.744 ASTPsl/nw 0.745 Sedentary, Sleep, or Non-wear 0.724

6 TLAC 0.736 TLAC 0.738 TLAC 0.714

7 Mobility problem 0.679 Mobility problem 0.679 SATPsl/nw 0.654

8 SATPsl/nw 0.673 SATPsl/nw 0.675 Surrogate for si6 0.654

9 Surrogate for si6 0.662 Surrogate for si6 0.661 Mobility problem 0.651

10 Alcohol consumption 0.612 Alcohol consumption 0.609 Gender 0.582

11 Education 0.596 Education 0.597 Alcohol consumption 0.578

12 Cigarette smoking 0.594 Cigarette smoking 0.596 Surrogate for si1 0.573

13 Cancer 0.585 Cancer 0.585 Cigarette smoking 0.570

14 Surrogate for si1 0.580 Surrogate for si1 0.582 Cancer 0.568

15 Congestive heart failure 0.566 Congestive heart failure 0.567 Education 0.566

16 Gender 0.561 Gender 0.565 Congestive heart failure 0.558

17 Body mass index 0.559 Body mass index 0.560 Race 0.551

18 Diabetes 0.555 Diabetes 0.555 Body mass index 0.549

19 Coronary heart disease 0.548 Coronary heart disease 0.550 Diabetes 0.540

20 Stroke 0.540 Stroke 0.539 Coronary heart disease 0.540

21 Race 0.518 Race 0.518 Stroke 0.540

22 Wear time 0.444 Wear time 0.440 Wear time 0.493
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Table 5:

Results from forward selection procedure using each of the three weighting procedures. For each weighting 

procedure, variables are presented in descending order by their inclusion. Variables are added to the model 

using cross-validated AUC criteria. Cells with a gray background indicate that the forward selection 

procedure would have stopped based on improvement in complex survey AIC. Cells with which are boxed 
indicate the forward selection procedure would have stopped based on improvement in cross-validated AUC.

Adjusted Weights Unadjusted Weights Unweighted

Rank Variable AUC Variable AUC Variable AUC

1 TAC 0.783 TAC 0.784 TAC 0.753

2 Age 0.799 Age 0.799 Age 0.778

3 Gender 0.810 Gender 0.810 Gender 0.791

4 Mobility problem 0.816 Mobility problem 0.817 Mobility problem 0.801

5 Alcohol consumption 0.824 Alcohol consumption 0.825 Cigarette smoking 0.807

6 Cigarette smoking 0.830 Cigarette smoking 0.831 Alcohol consumption 0.812

7 Surrogate for si6 0.834 Surrogate for si6 0.834 Surrogate for si6 0.816

8 Congestive heart failure 0.835 Congestive heart failure 0.836 ASTPsl/nw 0.819

9 Body mass index 0.836 Body mass index 0.836 Cancer 0.821

10 Cancer 0.837 Cancer 0.838 Congestive heart failure 0.822

11 ASTPsl/nw 0.838 Stroke 0.838 Body mass index 0.823

12 Sedentary, Sleep, or Non-wear 0.838 Education 0.837 Sedentary, Sleep, or Non-wear 0.824

13 SATPsl/nw 0.841 Surrogate for si1 0.837 SATPsl/nw 0.826

14 Diabetes 0.841 Diabetes 0.838 TLAC 0.826

15 Education 0.841 Coronary heart disease 0.837 Diabetes 0.826

16 TLAC 0.841 ASTPsl/nw 0.836 Coronary heart disease 0.826

17 Surrogate for si1 0.840 Sedentary, Sleep, or Non-wear 0.836 MVPA 0.825

18 Stroke 0.840 SATPsl/nw 0.838 Education 0.824

19 Coronary heart disease 0.839 TLAC 0.838 Surrogate for si1 0.823

20 Wear time 0.838 Wear time 0.837 Wear time 0.823

21 MVPA 0.837 MVPA 0.835 Stroke 0.822

22 Race 0.832 Race 0.830 Race 0.818
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Table 6:

Estimated odds ratios and 95% confidence intervals from three different logistic regression models fit using 

adjusted survey weights. In each model 5-year mortality is the outcome. The order of variables is presented in 

order of their inclusion based on the forward selection AUC criteria, and models are nested in order from left 

to right. The 7 variable model corresponds to the first 7 variables identified by the forward selection 

procedure. Similarly, the AIC model and AUC model contain the variables selected using the AIC and AUC 

stopping criteria, respectively. Variables which are derived from accelerometry are highlighted in gray. The 

intercept for each model is not presented here as variables are not centered and the resulting value is not 

particularly interpretable.

Variable 7 Variable Model AIC Model AUC Model

TAC 0.562 (0.324, 0.977) 0.845 (0.439, 1.627) 0.656 (0.303, 1.420)

Age 1.071 (1.052, 1.090) 1.066 (1.046, 1.087) 1.066 (1.045, 1.087)

Female 0.475 (0.341, 0.661) 0.467 (0.329, 0.663) 0.449 (0.318, 0.636)

Mobility problem 2.112 (1.375, 3.244) 2.040 (1.349, 3.086) 1.979 (1.299, 3.013)

Alcohol consumption

Non-Drinker 1.992 (1.454, 2.730) 1.978 (1.425, 2.745) 1.929 (1.377, 2.701)

Heavy Drinker 2.122 (1.002, 4.496) 2.088 (0.985, 4.429) 2.142 (0.998, 4.597)

Missing alcohol 2.493 (1.286, 4.832) 2.389 (1.169, 4.883) 2.382 (1.153, 4.923)

Cigarette smoking

Former 1.615 (1.045, 2.495) 1.577 (1.014, 2.451) 1.570 (0.995, 2.475)

Current 2.611 (1.900, 3.590) 2.217 (1.656, 2.969) 2.238 (1.670, 2.999)

Surrogate for si6 0.735 (0.626, 0.862) 0.792 (0.669, 0.937) 0.791 (0.674, 0.929)

Congestive heart failure 2.137 (1.416, 3.223) 2.058 (1.348, 3.142)

Body mass index

Underweight 2.029 (0.738, 5.576) 2.091 (0.714, 6.122)

Overweight 0.539 (0.374, 0.777) 0.532 (0.366, 0.773)

Obese 0.614 (0.431, 0.875) 0.593 (0.415, 0.845)

Cancer 1.578 (1.122, 2.219) 1.614 (1.161, 2.245)

ASTPsl/nw 1.458 (1.090, 1.949) 1.979 (1.308, 2.995)

Sedentary, Sleep, or Non-wear 0.401 (0.193, 0.832)

SATPsl/nw 0.611 (0.436, 0.858)

Diabetes 1.270 (0.853, 1.889)
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