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SUMMARY
The Mixed Lineage Leukemia (MLL1, KMT2A) gene is critical for development and maintenance of hematopoietic stem cells

(HSCs), however, whether this protein is limiting for HSC development is unknown due to lack of physiologic model

systems. Here, we develop an MLL1-inducible embryonic stem cell (ESC) system and show that induction of wild-type MLL1 during

ESC differentiation selectively increases hematopoietic potential from a transitional c-Kit+/Cd41+ population in the embryoid

body and also at sites of hematopoiesis in embryos. Single-cell sequencing analysis illustrates inherent heterogeneity of the

c-Kit+/Cd41+ population and demonstrates that MLL1 induction shifts its composition toward multilineage hematopoietic identi-

ties. Surprisingly, this does not occur through increasing Hox or other canonical MLL1 targets but through an enhanced Rac/Rho/

integrin signaling state, which increases responsiveness to Vla4 ligands and enhances hematopoietic commitment. Together, our

data implicate a Rac/Rho/integrin signaling axis in the endothelial to hematopoietic transition and demonstrate that MLL1 actives

this axis.
INTRODUCTION

Studying embryonic stem cell (ESC) differentiation in vitro

has contributed to understanding early developmental

processes while identifying methods to direct differentia-

tion of specific cell types potentially useful to treat a vari-

ety of pathophysiologic conditions (Keller, 2005). Despite

remarkable progress made over two decades, it is not yet

feasible to produce hematopoietic stem and progenitor

cells (HSPCs) from ESCs that engraft and persist in recipi-

ents (Ditadi et al., 2017; Rowe et al., 2016). In vertebrates,

hematopoiesis occurs in successive waves, producing

diverse progenitors with specific potentials (Dzierzak

and Bigas, 2018; Dzierzak and Speck, 2008). The first

wave is initiated in the yolk sac (YS) blood islands and

gives rise to a transient population of primitive red blood

cells, diploidmegakaryocytes, and primitive macrophages

(Bertrand et al., 2005; Palis et al., 1999; Tober et al., 2007).

A second wave initiating in the YS gives rise to definitive

erythroid and myeloid progenitors (EMPs) (Lux et al.,

2008; McGrath et al., 2015; Palis et al., 1999). A third

wave occurs at embryonic (E) day 10.5 in the major

arteries: the dorsal aorta, vitelline artery, and umbilical

artery of the aorta-gonad-mesonephros (AGM) region

(Dzierzak and Speck, 2008); this is the first site at which
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transplantable hematopoietic stem cells (HSCs) are pro-

duced. These HSCs and the earlier multipotent progeni-

tors are thought to arise from specialized endothelium

(hemogenic endothelium [HE]) through an endothelial

to hematopoietic transition (EHT) (Bertrand et al., 2010;

Boisset et al., 2010; Eilken et al., 2009; Frame et al.,

2016; Lancrin et al., 2009). In vitro differentiation of

ESCs from embryoid bodies (EBs) generally recapitulates

YS hematopoiesis, and efforts have been made to direct

differentiation to produce transplantable HSCs by manip-

ulating intrinsic or extrinsic signals (Ditadi et al., 2017).

Although not all types of progenitor cells can be produced

from ESCs in vitro, the fact that developmental processes

including EHT can be manipulated pharmacologically

and genetically makes this system a valuable model to

study how hematopoietic commitment occurs and can

be influenced (Lancrin et al., 2009).

Mll1 (Kmt2a) loss-of-function murine models implicated

this gene as a major regulator of HSPC development and

homeostasis including in EBs and embryos (Ernst et al.,

2004a; Jude et al., 2007; McMahon et al., 2007; Yang and

Ernst, 2017). Our prior findings that MLL1 regulates an

HSC-specific target gene repertoire led us to wonder

whether increasing MLL1 levels could have an impact on

hematopoietic development during the early waves of
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hematopoiesis. This question, however, has been difficult

to address due to the absence of appropriatemodel systems.

The human MLL1/KMT2A gene is a frequent target of

chromosomal translocations that cause acute leukemias

(Krivtsov and Armstrong, 2007). Most translocations pro-

duce fusions that exhibit ectopic transactivation capacity.

However, partial tandem duplications within the MLL1

gene (MLL-PTD) and occasional cases of MLL1 amplifica-

tion have been reported in myelodysplastic syndrome

and acute myeloid leukemia (AML), often concomitant

with upregulation of MLL1 target genes such as

HOXA7, HOXA9, and MEIS1 (Dorrance et al., 2006; Poppe

et al., 2004; Tang et al., 2015). Attempts to determine the

impact of these non-fusion events or to test the latent

oncogenic potential of wild-type (WT) MLL1 protein

have been hampered by the challenges of expressing the

large MLL1 cDNA and the fact that MLL1 overexpression

arrests cell growth (Joh et al., 1996; Liu et al., 2007).

Thus, having a model that enables increasing MLL1 levels

would be of great significance for multiple mechanistic av-

enues of investigation. In the current study, we developed a

system in which WT MLL1 can be induced within physio-

logically tolerated ranges. This system revealed that

increasing MLL1 protein level only by �2-fold enhanced

hematopoietic potential. These data also highlight the

role of Rac/Rho/integrin signaling during the EHT.
RESULTS

Generation and Validation of WT hMLL1-Inducible

ESCs

To achieve consistent and reversible induction of MLL1

in vitro and in vivo, we generated a doxycycline-inducible

MLL1 human (hMLL1i) transgene by integrating amodified

cDNA into the murine Col1a1 locus (Beard et al., 2006) (Fig-

ures S1A and S1B). Human and mouse MLL1 proteins are

93% similar, and human fusion oncoproteins function in

murine cells.Maximal induction of hMLL1 occurred at addi-

tion of 2 mg/mL doxycycline, which corresponded to an

approximately 2-fold increase in totalMLL1protein (Figures

1A, 1B, and S1C–S1E). To determine whether H3K4 methyl-

ation levels were altered by this increase,we performedwest-

ern blots on extracted histones (Figure S1F). Consistent with

prior results indicating that MLL1 is not a dominant H3K4

methyltransferase (Denissov et al., 2014; Mishra et al.,

2014), we found that H3K4me1/2/3 levels were not altered,

despite significant changes in gene expression.Co-immuno-

precipitation of Menin and Wdr5 demonstrated that

induced MLL1 is functional and associates with known

complex components (Figures S1G–S1I). Thus, we have

developed a system in which physiologically tolerated in-

duction of WT MLL1 can be achieved.
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hMLL1 Induction Does Not Grossly Alter ESC

Differentiation

To first determine whether increasing MLL1 protein influ-

enced germ layer specification and differentiation, several

regimensof inductionwere tested (Figure S1J). EBs generated

fromdifferentiatedESCs±hMLL1 induction throughout the

time course exhibited similar morphology and cell accumu-

lation during differentiation (Figures 1C and 1D). This was

true whether hMLL1 induction was performed throughout

differentiation or during brief phases of differentiation (Fig-

ure 1D). Genes characteristic of each of the three germ layers

were expressed normally in all regimens (Figures 1E–1G).

Thus,maximal hMLL1 inductiondoesnot grossly alter over-

all EB differentiation, cell survival, or proliferation.

Induction of hMLL1 Does Not Significantly Alter

Mesoderm Differentiation

The productionof hematopoietic cells in EBs occurs through

developmental steps paralleling hematopoiesis in the YS of

the embryo (Rowe et al., 2016). Flk-1 expression encom-

passesmesodermal cells committed to hematopoietic, endo-

thelial, cardiogenic, and muscle fates (Kattman et al., 2006;

Lugus et al., 2009; Shalaby et al., 1997). In our system,

Flk-1+ cells peak at day 4 of EB differentiation, and this is

not altered by hMLL1 induction (Figure 2A). Flk-1+ cells

encompass both Pdgfra+ and Pdgfraneg; Flk1+/Pdgfra+ cells

are cardiogenic, whereas Flk-1+/Pdgfraneg cells contain pre-

cursors of endothelial and hematopoietic lineages (Kataoka

et al., 2011). Flk-1+/Pdgfraneg cells give rise to a small popula-

tionofHE cells that areCd41low/VE-cadherin+/Tie-2+,which

in turndifferentiate intoCd41hi/Cd45+ cells that includehe-

matopoietic progenitor cells (Choi et al., 1998; Eilken et al.,

2009; Kennedy et al., 2007; Lancrin et al., 2009; Robertson

et al., 2000). To test the impact of hMLL1 induction on this

developmental progression, we induced hMLL1 during

days 2–4or days4–7 anddeterminedpopulation frequencies

by flow cytometry. hMLL1 induction did not alter Flk-1+/

Pdgfraneg cell generation (Figure 2B). HE cells (c-Kit+/Tie-2+)

were produced in EBs with similar kinetics and in similar

proportions except for a small reduction at day 7 in

hMLL1-induced cultures (Figures 2C, S2A, and S2B). Acquisi-

tion of hematopoietic markers (Cd41hi/Cd45+) (Gritz and

Hirschi, 2016) proceeded similarly regardless of hMLL1

induction (Figure2D).Thesedata showthatoverall specifica-

tion of hemogenic endothelial precursors, as defined immu-

nophenotypically, occurs independent of MLL1 levels.

Induction of hMLL1 Selectively Affects c-Kit+/Cd41+

Hematopoietic Progenitor Function

To determine whether the emergence of hematopoietic po-

tential was influenced by hMLL1 induction, we deter-

mined c-Kit+/Cd41+ cell frequencies, which represent the

first population enriched in multilineage hematopoietic
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Figure 1. Induction of Physiologic Levels
of WT hMLL1 Does Not Perturb Normal EB
Differentiation
(A) Quantitative RT-PCR showing total mu-
rine + human transcript. WT (KH2) or hMLL1-
inducible ESCs were harvested 48 h after
doxycycline (Dox) treatment. Phosphate
buffered saline (PBS) is the solvent control.
Bar graph represents average expression
(relative to Gapdh) of total Mll1/MLL1 tran-
script from three independent experiments±
SEM.
(B) Western blot showing induced MLL1
protein. Nuclear protein was extracted from
hMLL1-inducible ESCs ± Dox. Nucleolin
represents the loading control. The dash
shows the MLL1 C terminal peptide (p180);
the asterisk marks the degradation product.
Quantification reflects western blots from
three independent experiments.
(C) Images showing morphology of EBs from
day 2 to day 6 at 403 magnification. Scale
bar for inset, 22.6 mm. Scale bar for bigger
picture, 48.9 mm.
(D) EB accumulation in different induction
schemes. One representative from three in-
dependent experiments is shown. Data
represent average cell numbers ± SEM, n =
quadruplicate cultures. Experiments were
performed with hMLL1-inducible ESCs. Dox
0–6 = doxycycline added to differentiation
medium from day 0 to day 6; Dox 2-4, doxy-
cycline added to differentiation medium
from day 2 to day 4; Dox 4-6 = doxycycline
added to differentiation medium from day 4
to day 6.
(E–G) Representative gene expression of
(E) mesoderm (Brachyury and Flk1), (F)

ectoderm (Sox1 and Pax6), and (G) endoderm (Sox17 and Gata6) during EB differentiation. Experiments were performed with hMLL1-
inducible ESCs. PBS was the solvent control and Dox was added to differentiation medium from day 0 to 6. Data represent average
expression (relative to Gapdh) ± SEM, n = 3 independent experiments.
colony forming units (CFU) in EBs (McKinney-Freeman

et al., 2008). None of the induction regimens altered the

peak frequency or kinetics of c-Kit+/Cd41+ cell differentia-

tion (Figures 3A and S3A). However, c-Kit+/Cd41+ cells

sorted from hMLL1-induced EBs consistently produced

2-fold more CFU compared with controls (Figure 3B),

which reflected a general increase in all colony types (Fig-

ures S3B and S3C). This observation was consistent across

two additional, independently targeted hMLL1-inducible

clones (Figure S3D). Cells harvested at day 7 of the CFU

assay exhibited similar surface phenotypes and morphol-

ogies (Figures 3C and S3E). The analogous embryo YS-der-

ived EMPs lack B cell potential and are largely Cd16/32+

(Lacaud and Kouskoff, 2017; McGrath et al., 2015), which
are also features of our EB-derived EMP-like population

(Figure 3C andW.Y., unpublished data). Collectively, these

data demonstrate that increasing MLL1 does not influence

the production of EMP-like progenitors but selectively in-

creases the hematopoietic potential of the population on

a per cell basis.

To determine how hMLL1 induction increases hemato-

poietic potential, we first considered whether hMLL1 in-

duction affected survival or proliferation of the newly

generated EMP-like cells. Sorted day 6 c-Kit+/Cd41+ cells

were briefly incubated with 5-bromo-2-deoxyuridine

(BrdU) in liquid culture to quantify proliferation in

control versus hMLL1-induced populations. No differences

were observed in BrdU incorporation, cell-cycle phase
Stem Cell Reports j Vol. 14 j 285–299 j February 11, 2020 287



A

Days

Flk-1+

1 2 3 4 5
0

10

20

30

40

50

PBS

Dox 2-4
Dox 4-6

Dox 0-6

Pe
rc

en
t

Pe
rc

en
t

c-Kit+/Tie-2+

D5 D6 D7

0

20

40

60

Cd41+/Cd45+

D5 D6 D7

PBS
Dox

C

0

2

4

6

8

10

*

B

Pe
rc

en
t

Pe
rc

en
t

PE
/C

y7
 P

dg
frα

PE Flk-1

PBS Dox
D3

PBS Dox
D4

APC Tie-2

PE
 c

-K
it

APC/Cy7 Cd45

FI
TC

 C
d4

1

PBS Dox
D5

PBS Dox
D6

PBS Dox
D7

Flk-1+/Pdgfrαneg

D
PBS Dox

D5
PBS Dox

D6
PBS Dox

D7

PBS
Dox

0

5

10

15

20

25 PBS
Dox

D3 D4

Figure 2. Acquisition of Endothelial and Hematopoietic Markers Occurs Normally upon hMLL1 Induction
(A) Flk-1 surface expression during differentiation of EBs. One representative of three independent experiments is shown as average live-
gated, Flk-1+ cells ± SEM of quadruplicate cultures. hMLL1-inducible EBs were treated with vehicle (PBS) or 2 mg/mL doxycycline for
indicated days.
(B) Generation of hemangioblast-enriched cells shown by flow cytometry. hMLL1i EBs were treated with solvent (PBS) or doxycycline from
day 2 to 4. Quadrant gating is based on single stained controls and the hemangioblast-enriched Flk-1+/Pdgfraneg population is indicated in
red and quantified in the bar graphs (right). Data are representative of two independent experiments and are shown as the average ± SEM
of triplicate cultures.
(C and D) (C) Hemogenic endothelium c-Kit+/Tie-2+ and (D) hematopoietic Cd41+/Cd45+ were determined and quantified in the bar graphs.
hMLL1i EBs were treated with solvent (PBS) or doxycycline from day 4 to 7. Data are representative of three independent experiments and
are shown as averages ± SEM of triplicate cultures.
distribution (Figure 3D), or cells exhibiting sub-2N DNA

content (Figure 3E). To investigate whether hMLL1 induc-

tion had an impact on self-renewal of this EMP-like

population, we determined the serial replating capacity of

c-Kit+/Cd41+ hematopoietic progenitors. The initial in-

crease in CFU observed from the induced c-Kit+/Cd41+

population was not sustained upon serial replating (Fig-

ure 3F), suggesting the MLL1-dependent increase in CFU

occurred during the production of these EMP-like progeni-

tors, rather than within the differentiating population in

the CFU assay. Together, these data show that the MLL1-

responsive increase in CFU within the c-Kit+/Cd41+ was

not explained by selective survival, proliferation, or in-

crease in self-renewal.
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To test the impact of MLL1 induction on hematopoietic

development in vivo, we induced expression of hMLL1

in utero from conception (Figure S3F). At E9.5, the percent-

age of c-Kit+/Cd41+ progenitors in the YS was not affected

by hMLL1 induction. However, these cells also produced

more CFU on a per cell basis (Figure 3G), similar to the EB

observation. We also enumerated hematopoietic cluster

cells in the AGM using a whole-mount confocal micro-

scopy technique (Yokomizo et al., 2012). At E10.5, the

appearance of c-Kit+/Cd31+/Runx1+ clusters in the ventral

wall of the dorsal aorta in the AGM region reflects the emer-

gence of HSCs with definitive potential, whereas c-Kitneg/

Cd31+/Runx1+ cells in the same region reflect HE (Jaffredo

et al., 1998; North et al., 1999; Yokomizo and Dzierzak,
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2010). In embryos developed with whole-body hMLL1-in-

duction, we observed a significant increase in c-Kit+/Cd31+

cluster cells within five somites of the vitelline artery (Fig-

ure 3H), suggesting an enhanced EHT process.

Single-Cell Sequencing Demonstrates that MLL1

Influences the Heterogeneity of the c-Kit+/Cd41+

Population

Despite being the most enriched for hematopoietic poten-

tial, the EB day 6 c-Kit+/Cd41+ population is likely not ho-

mogeneously committed to the hematopoietic lineage. We

hypothesized that MLL1 expression may influence cells

within this population that respond to hematopoietic con-

ditions of the CFU assay. We therefore analyzed day 6

c-Kit+/Cd41+ progenitors using single-cell RNA sequencing

to determine (1) the heterogeneity of this EMP-like popula-

tion and (2) whether MLL1 induction changes the compo-

sition of this population. Representative pools of sorted

c-Kit+/Cd41+ cells from WT or hMLL1-induced day 6 EBs

were subjected to single-cell sequencing (Figure S4A). Un-

supervised clustering analysis using both WT and hMLL1-

induced progenitors suggested three unique populations

within the c-Kit+/Cd41+ population (Figures 4A, 4B, S4B,

and S4C; the full gene list defining each cluster is shown

in Table S1). Cluster 1 (green) was enriched in myeloid

and innate immune cell-associated genes such as Ly6e,

Ccl3, Fcer1g, Tyrobp, and Cd52 (Figure S4D and Table S1)

and enriched the terms ‘‘immune system process’’ and

‘‘myeloid leukocyte differentiation’’ (Figure S4E and Table

S1). Cluster 2 (red) was defined by erythroid specific genes
Figure 3. hMLL1 Induction Selectively Affects c-Kit+/Cd41 + Hem
(A) Flow cytometry showing the development of c-Kit+/Cd41+ cells.
right panel as the average ± SEM.
(B) CFU assays with 1,000 sorted c-Kit+/Cd41+ cells and colonies sco
pendent experiments and presented as averages of triplicate cultures
GM, granulocyte-macrophage; E, erythroid.
(C) Flow cytometry showing similar phenotype of expanded hematop
(D) Cell-cycle status of sorted c-Kit+/Cd41+ cells as determined by
tion is shown in the right panel. Data show one representative e
cultures.
(E) Quantification of 7-AAD low (Sub-2N) cells in the above analyses. D
average ± SEM of triplicate cultures.
(F) Serial replating of sorted c-Kit+/Cd41+ progenitors. First round p
scored, harvested, and replated using 5,000 cells per dish. Data are no
four independent experiments representing triplicate cultures ± SEM.
(G) Flow cytometry showing E9.5 YS c-Kit+/Cd41+ EMPs (top) and quan
E9.5 YS cells and colonies were scored 7 days later. Control embryo
notype = hMLL1/+; rtTA/+, n = 5.
(H) Image and quantification of hematopoietic clusters in E10.5 embry
(green), and Cd31 (red) expression in the mouse dorsal aorta and vit
(c-Kit+/Cd31+) cells per millimeter of the dorsal aorta. Clusters within
two somites below, and the somite where the vitelline artery connec
SEM, n = 4–8 animals.
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such as Klf1,Gata1,Hbb-bh1 and enriched the term ‘‘eryth-

rocyte differentiation’’ (Figures S4D and S4E and Table S1).

Interestingly, cluster 3 (blue, ‘‘HE-like’’) retained the expres-

sion of many endothelial genes, suggesting recent emer-

gence from HE (e.g. Esam, Cdh5, Tie1, Kdr) and enriched

the terms ‘‘vasculature development’’ and ‘‘regulation of

angiogenesis’’ (Figures S4D and S4E and Table S1). In silico

cell-cycle analysis showed a similar distribution and per-

centage of S/G2/M cells within all populations, corrobo-

rating our proliferation studies (Figure S4F). This cellular

heterogeneity is very similar to that observed in the

parallel E9.5 embryo YS c-Kit+/Cd41+/Cd16/32+ popula-

tion (Kathleen McGrath, Jacquelyn Lillis, and James Palis,

personal communication).

To examine the impact of hMLL1 on the distribution of

cell types within the c-Kit+/Cd41+ population, we plotted

the percentage of each of the three defined clusters in WT

versus hMLL1-induced populations (Figure 4C). This anal-

ysis showed an increase in myeloid and erythroid popula-

tions at the expense of the HE-like population (Figure 4C).

We also examined the developmental trajectories of WT

and hMLL1-induced samples. Pseudotime analysis with

either WT or hMLL1-induced EB progenitors placed the

HE-like cluster as a precursor for both erythroid and

myeloid/innate immune clusters (Figures 4D and S4G).

Collectively, these results suggest that hMLL1 induction re-

shapes the composition of the c-Kit+/Cd41+ progenitor

pool to contain a greater proportion of erythroid- and

myeloid-oriented progenitors that may be primed for

generating hematopoietic colonies in the CFU assay.
atopoietic Progenitor Function
Quantification of representative triplicate cultures is shown in the

red 7 days later. The bar graph shows data pooled from five inde-
± SEM. GEMM, granulocyte-erythrocyte-monocyte-megakaryocyte;

oietic colonies grown on methylcellulose after 7 days.
BrdU and 7-aminoactinomycin D (7-AAD) staining, quantifica-

xperiment of two, bars indicate the average ± SEM of triplicate

ata show one representative experiment of two. Error bar shows the

lating was initiated with 1,000 cells. After 7 days, colonies were
rmalized to 1,000 input cells. The bar graph shows data pooled from

tification (lower left). CFU assays were performed with dissociated
genotype = rtTA/+ or hMLL1/+, n = 6; hMLL1-induced embryo ge-

o (34 somite pairs). Left, confocal images show c-Kit (blue), Runx1
elline artery region. Right, quantification of hematopoietic cluster
five somites centered on the vitelline artery (two somites above,

ts to the dorsal aorta) were counted. Data represent the average ±
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(legend continued on next page)
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Enhanced Rac/Rho/Integrin Signaling Is a Major

Feature of hMLL1-Induced c-Kit+/Cd41+ Progenitors

To understand the mechanisms by which MLL1 induction

altered cell fate during hematopoietic progenitor develop-

ment, we focused on the ‘‘HE-like’’ (cluster 3) cells, since

they likely represented the earliest stage of differentiation

affected by hMLL1 induction (Figure 4D). Differentially

expressed genes comparing WT versus hMLL1-induced

cluster 3 cells were identified and subjected to ingenuity

pathway analysis (IPA). This approach showed induction

of several canonical signaling pathways in the hMLL1-

induced samples, for example ‘‘Rac signaling,’’ ‘‘integrin

signaling,’’ and ‘‘RhoGDI signaling’’ (Figure S5A). To

confirm and extend these analyses, we performed bulk

RNA sequencing using three independently sorted c-Kit+/

Cd41+ populations from WT or hMLL1-induced EBs. Prin-

cipal component analysis indicated that the hMLL1-

induced samples cluster by genotype (Figure S5B). Again,

IPA analysis using differentially expressed genes from the

entire c-Kit+/Cd41+ population recapitulated the results

from the single-cell HE-like cluster analysis, showing

most significant enrichment of the canonical pathways

‘‘Rac signaling,’’ ‘‘Rho GTPase signaling,’’ ‘‘integrin

signaling,’’ and ‘‘actin cytoskeleton signaling’’ (Figures 5A

and S5C). These signaling annotations share many genes

in common (Lie et al., 2014) (Figure 5B). We confirmed

and extended these results using independently sorted

samples, including integrins (Itgb2, Itgal, Itga4), Rac/Rho

small GTPases (Rac1, Rac2, Rhoa), kinases (Akt1, Pi3kcd),

regulatory subunits or cytoskeleton proteins (Myl12a/b,

Actb, Arp3) (Figures 5C and S5D). Immunofluorescence

staining of F-actin showed increased spontaneous cell

spreading in hMLL1-induced Cd41-enriched progenitors

when incubated on fibronectin, suggesting enhanced pro-

pensity for re-organization of actin filaments upon adhe-

sion (Figure 5D). Together, these results demonstrate that

hMLL1 induction activates a Rac/Rho/integrin cellular

signaling state and enhances integrin-mediated adhesion

and cytoskeletal rearrangement.

hMLL1 Induction Specifically Promotes Integrin-

Mediated Cell Adhesion, Increasing Hematopoietic

Potential

To test the functional impact of enhanced Rac/Rho/integ-

rin signaling pathways, we first tested cell-surface expres-

sion of candidate integrins. Among all MLL1-induced can-

didates from RNA sequencing analysis, we only observed a
(B) T-distributed stochastic neighbor embedding (t-SNE) plot of WT
according to (A).
(C) Proportion of cells within each cluster is shown in the bar graph.
(D) WT or hMLL1-induced cells are arranged by pseudotime axis (see Su
according to (A).
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significant increase in the percentage of Cd49d+ (encoded

by Itga4, a subunit of Vla4) cells within the c-Kit+/Cd41+

day 6 EB cell population (Figure 6A). Surface expression

of the other subunit of Vla4, Cd29 (encoded by Itgb1)

and other expressed integrins (Cd11a, encoded by ItgaL;

Cd18, encoded by Itgb2) did not change upon hMLL1 in-

duction (Figure S6A). To test whether hMLL1-induced pro-

genitors exhibited an increase in an integrin-mediated

function, we allowed cells to adhere to the integrin

ligand-coated surfaces and tested baseline adhesion and

the effect on hematopoietic potential (Figure 6B). hMLL1-

induced progenitors consistently exhibited increased adhe-

sion to the Vla4 ligands fibronectin and Vcam1 relative to

control progenitors (Figure 6C). This observation was re-

produced with additional independent hMLL1-inducible

ESC clones (Figure S6B). To investigate the functional

outcome of engaging Vla4, we cultured Cd41-enriched

progenitors on fibronectin-coated wells for 24 h then trans-

ferred all cells to the CFU assay (Figure 6D). Although fibro-

nectin binding did not influence the CFU of WT cells, it

further increased CFUs from hMLL1-induced cells (Figures

6D and S6C). To test if this MLL1-dependent CFU increase

occurs through Rac-mediated signaling, we treated hMLL1-

induced cells briefly with a Rac1 specific inhibitor

(NSC23766) and then performed CFU assays. While WT

cells did not exhibit changes in CFU frequency, use of the

Rac inhibitor on hMLL1-induced cells significantly

decreased CFU frequencies, bringing them back to levels

observed inWTuntreated cells (Figures 6D and S6D). These

data collectively suggest that the enhanced signaling

state produced by hMLL1 induction is Rac1-dependent

and increases responsiveness to Vla4 ligands, resulting in

enhanced hematopoietic commitment from the transi-

tional c-Kit+/Cd41+ population.
DISCUSSION

Here, we present amodel system inwhich increasingMLL1

protein levels within a physiologically reasonable range

can be achieved and show that this perturbation selectively

increases hematopoietic potential during a transition

from endothelial to hematopoietic fate. The approach

used here has been very useful for testing the effect of

consistent and physiologic overexpression of several tran-

scription factors including Scl, Cdx4, Hoxb4, Mix1, and

Notch1 (Ismailoglu et al., 2008; Kubo et al., 2005; Kyba
(KH2) and hMLL1-induced c-Kit+/Cd41+ cells colored by clusters

pplemental Experimental Procedures) with cells colored by clusters
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et al., 2002; McKinney-Freeman et al., 2008; Meier-Stiegen

et al., 2010; Wang et al., 2005; Willey et al., 2006). In

contrast to the effect of hMLL1 induction, Cdx4 or

Hoxb4 overexpression increases c-Kit+/Cd41+ hematopoi-

etic progenitors at an earlier stage, promoting formation

of HE and subsequently, hematopoietic potential (Teich-

weyde et al., 2018; Wang et al., 2005). While inducing

hMLL1 apparently does not numerically affect HE or

increase c-Kit+/Cd41+ progenitors, it reshapes the composi-

tion of this population, resulting in enhanced hematopoi-

etic potential. Interestingly, we also observe an increase in

hematopoietic clusters from HE in the dorsa aorta of

hMLL1-induced E10.5 embryos, suggesting that hMLL1

plays a parallel role in a distinct hemogenic endothelial

site in vivo. The specific impact of MLL1 induction may

be due to the regulation of a yet undefined network regu-

lating Rac1 activity, integrin-mediated adhesion, and cyto-

skeletal rearrangement during the EHT process.

The application of single-cell RNA sequencing in this

setting enabled us to investigate the heterogeneity of amu-

rine EB-derived EMP-like hematopoietic progenitor pool,

which has not yet been addressed. Comparative analysis

of our in vitro day 6 c-Kit+/Cd41+ EMP-like progenitor

with the E9.5 in vivo YS EMP (McGrath et al., 2015) sin-

gle-cell sequencing data showed a very similar composi-

tion, including a residual HE-like population, an erythroid

and a myeloid/innate immune population (Kathleen

McGrath, Jacquelyn Lillis, and James Palis, personal

communication). The similarities in transcriptome-defined

populations in vivo and in vitro underscore the relevance of

the ESC system for dissecting sequential developmental

stages of hematopoiesis. The presence of a residual HE-like

gene expression signature is consistent with the observa-

tion that the onset of hematopoietic potential commences

with Cd41 expression within a hemogenic endothelial

population (Lancrin et al., 2009; McGrath et al., 2015),

thus the c-Kit+/Cd41+ population likely represents an asyn-

chronous pool of cells with varying degrees of ‘‘memory’’

of hemogenic endothelial identity. We interpret the

single-cell transcriptome data to suggest that hMLL1 in-

duction alters the composition of the EMP-like progenitor

pool, resulting in either more efficient commitment to

the hematopoietic lineages at the expense of the HE-like

population, or that hMLL1 induction accelerated kinetics

of departure from an HE-like state toward the myeloid-

and erythroid-primed progenitors. Given our observations

that hMLL1 induction does not increase the c-Kit+/Cd41+

population, as well as the similarity of the kinetics devel-
fragment and then followed by CFU assay. One representative experim
Right: quantification of CFU fold changes with Dox, fibronectin frag
pooled from 3 to 4 independent experiments (n = 3 for WT; n = 4 for h
cultures) representing the overall average ± SEM.
oping hemogenic populations, it seems more likely that

hMLL1 induction promotes hematopoiesis by driving

more efficient commitment to multilineage hematopoietic

fates.

A very surprising finding was the fact that hMLL1 induc-

tion did not affect Hox cluster gene expression. The gener-

ally low expression levels of Hoxa-d clusters in EB-derived

hematopoietic progenitors has been noted by others

(Dou et al., 2016; Ng et al., 2016). This feature of EB-derived

and YS-derived progenitors may underlie their inability to

generate definitive HSCs since the parallel or immunophe-

notypically similar fetal liver progenitors can expressmuch

higher Hox levels (Dou et al., 2016). We speculate that the

acquisition of a Hoxa signature may need additional

sequence-specific transcriptional inputs (e.g., retinoic acid

signaling) (Dou et al., 2016), while MLL1 itself is not

capable of such induction, consistent with the role of Tri-

thorax as a maintenance factor rather than inducer of

gene expression (Schuettengruber et al., 2011). In fact, pre-

liminary data suggest that Hoxa induction by retinoic acid

receptor agonists is sustained more efficiently in the pres-

ence of induced hMLL1 (W.Y., unpublished data).

Interestingly, induction of hMLL1 does not lead to

leukemic transformation as with MLL fusion oncoproteins

in other cellular settings. Recent work by Bueno et al.

demonstrates that ectopic expression of MLL-AF4 is not

sufficient to induce leukemic transformation in human

ESC-derived hematopoietic cells (Bueno et al., 2012,

2019), consistent with our observation that inducing

MLL-ENL does not transform ES-derived hematopoietic

progenitors (W.Y. and D.B., unpublished data). These find-

ings raise questions about the responsiveness of EMP-like

populations to transformation, specifically by oncogenes

that may require induction of a Hox program. The lack of

or limited Hox induction in hMLL1-induced cultures or

the distinct dynamic pattern (Spencer et al., 2015; Zeisig

et al., 2004) in MLL fusion transduced EBs may represent

a hurdle that restrains cell growth or transformation. Over-

coming this hurdle may require developmental context

and Hox regulators in addition to MLL1. Defining exact

window of development and mechanisms of Hox locus

responsiveness may shed light on the cell of origin and

pediatric association of MLL1 translocations (Barrett

et al., 2016).

In this study, we identified Rac/Rho/integrin signaling as a

major axis activated by hMLL1 induction within the EMP-

like population of developing EBs. hMLL1 induction re-

sulted in increased Itga4, Itgal, and Itgb2 transcripts and
ent of three is shown as the average ± SEM, n = 3 triplicate cultures.
ment, or Rac1 inhibitor (NSC23766, 10 mM). The graph show data
MLL1i, with each data point representing the average of triplicate
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increased Cd49d surface expression. hMLL1 induction also

promotes integrin-mediated cell adhesion and further acti-

vation of integrin signaling through Vla4, resulting in

enhancedCFU from this EMP-like population. Several previ-

ous studies have implicated the Rac/Rho/integrin axis as

limiting for hematopoietic development and homeostasis.

First, the Cd49d+ fraction of ESC-derived endothelium is en-

riched in both primitive and definitive hematopoietic pro-

genitor activity (Shinoda et al., 2007). Second, Rac1 activa-

tion during early embryonic hematopoiesis in the dorsal

aorta, as well as Rac2 and Cdc42 activation in Linneg/

c-Kit+/Sca-1+ HSPCs, is associated with Vla4-mediated adhe-

sion,migration, engraftment, and survival ofHSPCs (Ghiaur

et al., 2008; Yang et al., 2001). Interestingly, studies identi-

fying Runx1 target genes in hemogenic endothelia of the

embryo or in EBs also revealed integrin signaling, Rho

signaling, cytoskeletal organization, and cell adhesion as en-

riched pathways regulated by Runx1 (Gao et al., 2018; Lie

et al., 2014). The effect of Runx1 induction has been pro-

posed to be in part through direct regulation of the integrin

Cd61 (Itgb3) (Lie et al., 2014). The cause of widespread Rac/

Rho activation in hMLL1-induced EMP-like progenitors is

unclear but may reflect a complex combination of direct

and indirect effects of increasing MLL1 levels. Since we

observe downregulation of several RhoGEFs, it is also

possible that compensatory upregulation of the Rac/Rho

pathways results in the more active adhesion phenotype

in MLL1-induced progenitors and could account for the

greater number of hematopoietic cells in the aortic clusters.

Collectively, our data underscore the impact of integrin/Rac/

Rho signaling in the EHT process, and that Runx1 andMLL1

may both regulate this critical step in parallel.

In summary, utilizing this physiologic MLL1-inducible

model system revealed an unanticipated connection be-

tween MLL1 and integrin-mediated signaling that appears

to enhance the efficiency of EHT. Whether these pathways

are conserved in the later waves of hematopoiesis in the

embryo and adult, and whether they can collaborate with

other signals for more efficient production of HSPCs, will

be important future questions.
EXPERIMENTAL PROCEDURES

ESC Culture and Differentiation
ESCs were maintained on embryonic fibroblasts using standard

conditions (Ernst et al., 2004b). For in vitro differentiation, sin-

gle-cell suspensions from dissociated ESC cultures were seeded at

10,000–20,000 cells/mL in Petri dishes (Fisher) with orbital rota-

tion (50 rpm, Labnet Orbit 1000). The differentiation medium

was Iscove’s modified Dulbecco’s medium (Mediatech) containing

15% fetal bovine serum (Gibco), 2 mM L-glutamine (Mediatech),

1% penicillin/streptomycin (Mediatech), 200 mg/mL holo bovine

transferrin (Millipore), 4.5 3 10�4 M monothioglycerol (Sigma)
296 Stem Cell Reports j Vol. 14 j 285–299 j February 11, 2020
and 50 mg/mL ascorbic acid (Sigma). Doxycycline (Enzo Life Sci-

ences) was added to the differentiation medium at 1–2 mg/mL for

the times indicated in each figure legend.

Flow Cytometry, Cell Isolation, and Sorting
EBswere dissociatedwith collagenase (0.8U/mL, Sigma) and dispase

I (2 mg/mL, Sigma) and then incubated with the indicated anti-

bodies (Biolegend or eBiosciences). Stained cells were analyzed or

sorted using an LSR Fortessa or FACSAria Fusion, respectively (BD

Biosciences). Gating was based on either single color or isotype

control staining. Enrichment was performed using Miltenyi Cd41

magnetic beads. Flow cytometry data were analyzed using FlowJo

software (TreeStar).

Single-Cell Sequencing, RNA Sequencing, and

Bioinformatics
Single-cell RNA sequencingwas performedwith singlet-gated,DAPI-

negative, c-Kit+/Cd41+ cells from day 6 EBs sorted using a FACSAria

Fusion. Cell purity was determined by post-sort re-analysis and was

typically >90% (Figure S4A). Approximately 4,000 sorted cells were

used to generate libraries and sequenced by the University of Colo-

rado Cancer Center Genomics and Microarray core facility. Bulk

RNA sequencing was performed using sorted c-Kit+/Cd41+ pools of

cells fromWT (KH2) or hMLL1-inducible EBs incubated with doxy-

cycline from day 4 to day 6. Three separate differentiation experi-

ments were performed with WT (KH2) and hMLL1i differentiated

in parallel. Detailed sequencing data analysis and methods can be

found in Supplemental Experimental Procedures.

Statistical Analyses
Significance was analyzed in all studies using unpaired

Student’s t tests and standard error of the mean (SEM) with

*p < 0.05, **p < 0.01, ***p < 0.001 considered significant unless

otherwise indicated in the figure legends. GraphPad Prism or

Microsoft Excel software was used to perform the statistical

calculations.
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