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Class 1 integrons (c1-integrons) are associated with multidrug resistance in diarrheagenic Escherichia coli (DEC). However,
little is known about gene cassettes located within these c1-integrons, particularly truncated c1-integrons, in DEC strains.
*erefore, the aims of the present study were to reveal the relationship between antimicrobial resistance and the presence of
truncated c1-integrons in DEC isolates derived from human stool samples in Japan. A total of 162 human stool-derived DEC
isolates from Japan were examined by antimicrobial susceptibility testing, PCR-based gene detection, and next-generation
sequencing analyses. Results showed that 44.4% (12/27) of c1-integrons identified in the DEC isolates harbored only intI1 (an
element of c1-integrons) and were truncated by IS26, Tn3, or IS1-group insertion sequences. No difference in the frequency of
antimicrobial resistance was recorded between intact and truncated c1-integron-positive DEC isolates. Isolates containing
intact/truncated c1-integrons, particularly enteroaggregative E. coli isolates, were resistant to a greater number of antimi-
crobials than isolates without c1-integrons. aadA and dfrA were the most prevalent antimicrobial resistance genes in the intact/
truncated c1-integrons examined in this study. *erefore, gene cassettes located within these intact/truncated c1-integrons
may only play a limited role in conferring antimicrobial resistance among DEC. However, DEC harboring truncated c1-
integrons may be resistant to a greater number of antimicrobials than c1-integron-negative DEC, similar to strains harboring
intact c1-integrons.

1. Introduction

Gene cassettes located within class 1 integrons (c1-inte-
grons) may play an important role in diarrheagenic
Escherichia coli (DEC) strains. DEC are generally classified

into five categories (enterotoxigenic E. coli (ETEC), en-
teropathogenic E. coli (EPEC), Shiga toxin-producing E. coli
(STEC), enteroaggregative E. coli (EAEC), and enter-
oinvasive E. coli) on the basis of their virulence traits [1].
Among the categories, EPEC and EAEC are known for their
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high prevalence in both community and/or clinical settings
[2, 3]. EAEC strains display higher rates of resistance to
several antibiotics when compared with that of other DEC
pathotypes [4, 5]. c1-integrons are a major source of anti-
biotic resistance genes and contain three main elements: an
integrase gene (intI), a primary recombination site (attI),
and a strong promoter. c1-integrons capture gene cassettes
conferring resistance to antibiotics via IntI-catalyzed re-
combination between the attI recombination site and a 59-
bp element called attC present on the gene cassettes
(Figure 1(a)) [6]. c1-integron-harboring bacterial strains
generally show higher rates of antibiotic resistance than
those without c1-integrons [7, 8]. Moreover, the presence of
c1-integrons contributes to multidrug resistance (MDR),
defined as resistance to three or more classes of antimi-
crobials, in Enterobacteriaceae [9]. While little is known
about gene cassettes located within intact c1-integrons in
DEC strains [6], even less is known about genes found in

truncated c1-integrons.*erefore, further research is needed
to evaluate gene cassettes in truncated c1-integrons.

*ere is also a lack of information about the role of
truncated c1-integrons in the antimicrobial resistance of
DEC. Previous work has shown that truncated c1-inte-
grons are involved in the dissemination of antimicrobial
resistance genes such as blaSHV-12 and blaVIM-7 in bacteria
other than DEC, including Enterobacter cloacae [10] and
Pseudomonas aeruginosa [11], respectively. *us, trun-
cated c1-integron cassettes should be evaluated in DEC.
However, it is difficult to investigate gene arrays in
truncated c1-integron cassettes because repeat sequences,
insertion sequences (IS), and transposons can result in
truncation of the genes, inhibiting amplification reactions
[12]. As such, the aims of the present study were to reveal
the relationship between antimicrobial resistance and the
presence of truncated c1-integrons in DEC isolates de-
rived from human stool samples in Japan using both
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Figure 1: (a) General structure of class 1 integrons (c1-integrons). *e red arrows show the positions of primers used for detection of intI1,
qacEΔ1, and sul1. *e blue arrows show the positions of primers used for sequencing. P indicates the promoter. (b) Intact c1-integron
cassette arrays that were confirmed by sequencing of PCR products, along with the corresponding resistance patterns. (c) Truncated c1-
integron cassette arrays that were confirmed by next-generation sequencing analysis, along with the corresponding resistance patterns.
EAEC: enteroaggregative Escherichia coli; EPEC: enteropathogenic E. coli; STEC: Shiga toxin-producing E. coli; CTX: cefotaxime; SXT:
sulfamethoxazole-trimethoprim; (S) streptomycin; (C) chloramphenicol; (K) kanamycin; AM: ampicillin; NA: nalidixic acid; TE: tetra-
cycline; aadA1: aminoglycoside resistance gene; dfrA: dihydrofolate reductase gene (trimethoprim resistance); OUT: O-serogroup-
untypeable. All insertion sequences designated “IS1” belong to the IS1 family.
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conventional sequencing and next-generation sequencing
(NGS) analyses.

2. Materials and Methods

2.1. Bacterial Strains. A total of 162 DEC isolates, con-
sisting of 40 EAEC, 37 EPEC, 83 STEC, and two ETEC,
were examined. All DEC isolates, except for 51 of the
STEC isolates, were obtained from stool samples col-
lected from asymptomatic carriers and patients with
gastrointestinal symptoms at the Kawasaki City Institute
for Public Health, Japan, from 2012 to 2014. *e
remaining 51 STEC isolates were collected from outpa-
tients at several hospitals in Kawasaki between April 2012
and December 2014 (Table 1). *e 40 EAEC isolates were
also examined in our previous study of antimicrobial
resistance patterns [13]. *e ETEC and EPEC isolates
were identified by PCR-based assays using primers tar-
geting eae [14] and elt and est (primers ELT− 1/− 2,
ESH− 1/− 2, and ESP− 1/− 2; Takara Biomedicals, Kusatsu,
Japan). *e 83 STEC isolates were identified using stx-
targeting PCR primers EVC− 1/− 2 (Takara Biomedicals)
or using a Loopamp Verotoxin Typing Kit (Eiken
Chemical Co., Tokyo, Japan). For all of the DEC isolates,
O-serotyping was conducted using a slide agglutination
method with 43 commercially available O-antisera
(Denka Seiken Co., Tokyo, Japan).

2.2. Antimicrobial Susceptibility Testing. Antimicrobial
susceptibility profiles were determined using the disc
diffusion method with BD Sensi-Discs (Becton Dickinson,
Tokyo, Japan) according to the guidelines outlined in
Clinical and Laboratory Standards Institute documents
M02-A13 and M100-S28 [15, 16]. *e following 14 an-
tibiotic discs were used: cefotaxime (30 μg), norfloxacin
(10 μg), sulfamethoxazole-trimethoprim (23.75 μg,
1.25 μg), streptomycin (10 μg), chloramphenicol (30 μg),
ciprofloxacin (5 μg), kanamycin (30 μg), gentamicin
(10 μg), ampicillin (10 μg), fosfomycin (50 μg), nalidixic
acid (30 μg), tetracycline (30 μg), imipenem (10 μg), and
meropenem (10 μg).

2.3. Detection of c1-Integrons. DNA template was extracted
from each isolate using a QIAamp DNA Stool Mini Kit
(Qiagen GmbH, Hilden, Germany). In general, the 5ʹ-
conserved segment (5ʹCS) of c1-integrons contains intI1,
while the 3ʹ-conserved segment (3ʹ-CS) contains both
qacEΔ1 and sul1 (Figure 1(a)). In this study, the presence of a
c1-integron was confirmed by three independent amplifi-
cations of intI1, qacEΔ1, and sulI (Figure 1(a)) via PCR-
based assays [17].

2.4. Amplification and Sequencing of Gene Cassette Regions.
*e isolates from which genes in the 5ʹ-CS and 3ʹ-CS regions
could be amplified were classed as containing intact c1-
integrons. *ese isolates were then subjected to PCR using
the 5ʹCS/3ʹ-CS primers, followed by Sanger sequencing of

the resulting amplicons to determine the sequence of the
region between intI1 and qacEΔ1 in intact c1-integrons
(Figure 1(a)) [17]. Acquired resistance genes within each c1-
integron were analyzed using the ResFinder platform (http://
genomicepidemiology.org/), while similarity searches were
performed using BLAST (http://www.ncbi.nlm.nih.gov/
BLAST/) [18, 19]. *e primers used for PCR analyses are
described in Table 2.

2.5. Next-Generation Sequencing. Integrons from which
only intI1 could be amplified (i.e., missing qacEΔ1 and sulI)
were classed as truncated integrons. Isolates harboring
truncated c1-integrons were subjected to next-generation
sequencing analysis. DNA extraction from the strains was
carried out as described previously [20]. A short insert size
(approximately 0.5 kb) paired-end library was constructed
using a Nextera XT DNA Library Prep Kit (Illumina, San
Diego, CA, USA), followed by whole-genome sequencing
using the Illumina NextSeq 500 platform with a 300-cycle
NextSeq 500 Reagent Kit v2 (2×150 mer). *e extracted
contigs were validated by comparison against the whole-
genome sequence database GenEpid-J [21] and by using the
ResFinder and VirulenceFinder tools available from the
Center for Genomic Epidemiology (http://www.
genomicepidemiology.org/).

2.6. Detection of Extended-Spectrum β-Lactamase (ESBL)
Genes. Isolates that showed resistance to cefotaxime during
antimicrobial susceptibility testing were further examined
for the presence of ESBL genes (blaCTX-M, blaTEM, and
blaSHV) by PCR, as described previously [22, 23]. Primers
used for sequencing of blaTEM were designed in this study:
TEMseq-F, 5ʹ-GGTGCGGTATTATCCCGTGT-3ʹ; TEM-
seq-R, 5ʹ-TTGTTGCCGGGAAGCTAGAG-3ʹ. *e resulting
PCR amplicons were sequenced and the nucleotide and
deduced amino acid sequences were compared with entries
in the GenBank database (http://www.ncbi.nlm.nih.gov/
BLAST/), as well as with those described on the β-lacta-
mase classification website (http://www.lahey.org/Studies/,
accessed February 2017), to determine the β-lactamase gene
subtype.

2.7. Statistical Analyses. Statistical analyses were performed
using Fisher’s exact test. A p-value of <0.05 was considered
statistically significant.

2.8. EthicalApproval. *is study was performed in accordance
with the guidelines of the Ethics Regulations Related toMedical
Research Involving Human Subjects at the Kawasaki City In-
stitute for Public Health under permit number 28-2.

3. Results

3.1. Susceptibility to Antimicrobial Agents. Of the 162 DEC
isolates, 64 were resistant to at least one of the antibiotics
tested, with 32 isolates showing MDR (Table 3). As shown in
Table 4, the highest prevalence of antimicrobial resistance
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was associated with ampicillin (50 isolates, 30.9%), followed
by tetracycline (39 isolates, 24.1%) and sulfamethoxazole-
trimethoprim (28 isolates, 17.3%). Furthermore, EAEC
isolates showed resistance to a greater number of antimi-
crobial agents than EPEC or STEC isolates. MDR pheno-
types were more frequently associated with DEC (p< 0.001),
EAEC (p< 0.0011), and EPEC isolates (p � 0.002) harboring
intact/truncated c1-integrons than with c1-integron-nega-
tive isolates (Table 4).

3.2. Frequency of c1-Integrons. EAEC isolates were more
likely to harbor intact/truncated c1-integrons (50.0%) com-
pared with EPEC (13.5%), STEC (2.4%), and ETEC (0%)
isolates (Tables 3 and 4). Within DEC pathotypes EAEC,
EPEC, and STEC isolates containing c1-integrons had sig-
nificantly higher rates of resistance to seven specific drugs
compared with c1-integron-negative isolates (Tables 3 and 4).

3.3. Identification ofGeneCassetteArrayswithin c1-Integrons.
NGS analysis revealed that the 3ʹ-CS regions of the 12
isolates harboring truncated c1-integrons were truncated by

the insertion of IS26 (n� 6), insertion sequences belonging
to the IS1 group (n� 5), or by transposon Tn3 (n� 1)
(Figures 1(b) and 1(c)). No differences in the frequency of
antibiotic resistance or in the number of antibiotics to which
isolates showed resistance were observed between isolates
harboring intact and truncated c1-integrons (Table 3).

Overall, 7.5% (3/40) of EAEC isolates and 2.7% (1/37) of
EPEC isolates contained ESBL genes, none of which were
identified in the STEC or ETEC isolates. Importantly, none
of the ESBL genes detected in the current study (three
blaCTX-M-14 and one blaCTX-M-15; Table 4) were located
within the c1-integron cassettes.

3.4. Nucleotide Sequences. All sequence data for c1-inte-
grons amplified using primers 5ʹCS/3ʹ-CS have been de-
posited in the GenBank database under accession numbers
LC380541–LC380554 and LC383355. Raw sequence reads
have been deposited in the DNA Data Bank of Japan Se-
quence Read Archive under Biosample IDs SAMD001
17734–SAMD00117745 (Run IDs DRR129827–DR
R129838) (Supplementary Table 1).

Table 1: Diarrheagenic Escherichia coli strains used in this study (n� 162).

Pathogenic
categories

No. of
strains Origin O-serogroup Isolation

year

EAEC∗ 40

Symptomatic patient
(n� 17)

86 (n� 1), 111 (n� 1), 125 (n� 1), 126 (n� 1), 127 (n� 2), 153
(n� 1), OUT (n� 10) 2012–2014

Asymptomatic carrier
(n� 23) 44 (n� 1), 55 (n� 1), 86 (n� 1), 126 (n� 2), OUT (n� 18) 2012–2014

EPEC 37

Symptomatic patient
(n� 12) 55 (n� 1), 114 (n� 1), 164 (n� 1), OUT (n� 9) 2012–2014

Asymptomatic carrier
(n� 25)

15 (n� 1), 63 (n� 1), 124 (n� 2), 125 (n� 1), 145 (n� 1), 167
(n� 1), OUT (n� 18) 2013-2014

STEC 83

Symptomatic patient
(n� 68)

26 (n� 3), 103 (n� 3), 111 (n� 4), 145 (n� 2), 157 (n� 54), 165
(n� 1), 186 (n� 1) 2012–2014

Asymptomatic carrier
(n� 15) 26 (n� 3), 157 (n� 12) 2012–2014

ETEC 2 Asymptomatic carrier
(n� 2) 148 (n� 1), 169 (n� 1) 2013-2014

∗EAEC: enteroaggregative E. coli; EPEC: enteropathogenic E. coli; STEC: Shiga toxin-producing E. coli; ETEC: enterotoxigenic E. coli; OUT: O-serogroup
untypeable.

Table 2: Primers used in this study.

Target gene Primer direction Nucleotide sequence (5′–3′) Amplicon size (bp) Reference number

intI1 F CAGTGGACATAAGCCTGTTC 160 15R CCCGAGGCATAGACTGTA

sul1 F CGGCGTGGGCTACCTGAACG 433 15R GCCGATCGCGTGAAGTTCCG

qacEΔ1 F ATCGCAATAGTTGGCGAAGT 250 15R GAAGCTTTTGCCCATGAAGC

Class 1 gene cassette F GGCATCCAAGCAGCAAGC Variable 15R AAGCAGACTTGACCTGAT

aggR F GTATACACAAAAGAAGGAAGC 254 10R ACAGAATCGTCAGCATCAGC

eae F GCTTAGTGCTGGTTTAGGAT 591 10R CTCTGCAGATTAACCTCTGC
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4. Discussion

Based on the results of this study, DEC harboring truncated
c1-integrons may be resistant to a greater number of anti-
microbials than c1-integron-negative DEC. Structures of c1-
integrons from strains in this study were compared with
those from other Enterobacteriaceae (Table 5) [24–32].
Dominant resistant genes aadA (conferring resistance to
aminoglycoside) and/or dfrA (conferring resistance to tri-
methoprim) within intact/truncated c1-integrons from
strains examined in this study are also the major genes in
other c1-integrons of other Enterobacteriaceae strains
(Table 5). Only “dfrA17,” “dfrA17-ORF,” or “dfrA1-ORF”
were unique gene cassettes from strains in the present study.
In contrast, seven of the ten sequence patterns of cassette-
borne antimicrobial and related genes in intact/truncated
c1-integrons from strains studied herein have also been
identified in other strains from other countries (Table 5),
suggesting a worldwide circulation of the c1-integrons
among Enterobacteriaceae. *e cassette-borne genes iden-
tified in the present study suggest that gene cassettes within
intact/truncated c1-integrons play a limited role in deter-
mining the antimicrobial resistance of Enterobacteriaceae.
*is indicates that the majority of antimicrobial resistance
genes, except for aadA and dfrA, in DEC isolates are not
cassette-borne and are located outside intact/truncated c1-

integrons. Intact/truncated c1-integrons are generally as-
sociated with mobile genetic elements like transposons
[10, 33, 34], which are major reservoirs of antimicrobial
resistance genes. Subsequently, like strains with intact c1-
integrons, DEC strains containing truncated c1-integrons
might be resistant to a greater number of antimicrobials than
strains without c1-integrons, as observed in the present
study.

*e high rates of resistance genes in EAEC isolates may be
attributed to the presence of intact/truncated c1-integrons and
may be promoted in animal production environments. *e
results of the present study align with those of previous reports
showing that EAEC strains display higher rates of resistance to
several antibiotics compared with other DEC pathotypes [4, 5].
In addition, significantly higher resistance rates were observed
among c1-integron-positive EAEC compared with the other
three DEC pathotypes (Tables 3 and 4). Moreover, our results
showed that the antimicrobial resistance patterns of intact/
truncated c1-integron-positive EAEC isolates were similar to
those of Japanese E. coli isolates originating from livestock,
particularly broiler chickens, although previous studies have
reported that EAEC isolates from humans are characteristically
divergent from those from animals [35–37].*erefore, the high
prevalence of intact/truncated c1-integrons incorporating re-
sistance genes among EAEC in the current study suggests that
these isolates may be derived from meat or meat products.

Table 3: Number of antibiotics to which the strains with/without integrons showed resistance.

Presence of integrons Intact/truncated integron and
pathotype

No. of
strains

Number (%) of antibiotics to which each strain showed
resistance†

None One Two *ree Four Five Six

Strains with integrons

Intact integron
EAEC∗ 11 0 1 0 0 5 3 2
EPEC∗ 2 0 0 0 0 1 0 1
STEC∗ 2 0 1 0 0 0 0 1
ETEC∗ 0 0 0 0 0 0 0 0

Subtotal 15 1 (7%) 2 (13%) 0 0 6
(40%)

3
(20%)

3
(20%)

Truncated integron
EAEC 9 0 0 0 1 2 5 1
EPEC 3 0 0 0 1 1 1 0
STEC 0 0 0 0 0 0 0 0
ETEC 0 0 0 0 0 0 0 0

Subtotal 12 0 0 0 2
(16.7)

3
(25.0)

6
(50.0) 1 (8.3)

Strains without
integrons

EAEC 20 6 6 5 1 1 1 0
EPEC 32 25 2 2 1 1 0 1
STEC 81 66 6 7 1 1 0 0
ETEC 2 0 1 0 0 0 1 0

Subtotal 135 97
(71.6)

15
(11.1)

14
(10.4) 3 (2.2) 3 (2.2) 2 (1.5) 1 (0.7)

Total 162 98
(60.5)

17
(10.5) 14 (8.6) 5 (3.1) 12

(7.4)
11
(6.8) 5 (3.1)

†A total of 14 antimicrobials were tested (ampicillin, sulfamethoxazole-trimethoprim, tetracycline, nalidixic acid, streptomycin, chloramphenicol, genta-
micin, cefotaxime, norfloxacin, kanamycin, ciprofloxacin, fosfomycin, imipenem, and meropenem).
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5. Conclusion

Regardless of whether the integrons were intact or truncated,
c1-integron-positive DEC isolates examined in the current
study were more frequently resistant to antibiotics than

integron-negative isolates even through intact/truncated c1-
integrons may only play a limited role in conferring anti-
microbial resistance among DEC isolates. *us, truncated
c1-integrons may also be involved in the acquisition of
antimicrobial resistance genes by DEC, particularly EAEC.

Table 5: Comparison between this study and other studies of gene cassettes within class 1 integron.
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Continuous surveillance is therefore required to better
monitor cassette-borne resistance genes in DEC in clinical
and related fields.
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