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Abstract: Precision weeding can significantly reduce or even eliminate the use of herbicides in
farming. To achieve high-precision, individual targeting of weeds, high-speed, low-cost plant
identification is essential. Our system using the red, green, and near-infrared reflectance, combined
with a size differentiation method, is used to identify crops and weeds in lettuce fields. Illumination
is provided by LED arrays at 525, 650, and 850 nm, and images are captured in a single-shot using
a modified RGB camera. A kinematic stereo method is utilised to compensate for parallax error in
images and provide accurate location data of plants. The system was verified in field trials across
three lettuce fields at varying growth stages from 0.5 to 10 km/h. In-field results showed weed and
crop identification rates of 56% and 69%, respectively. Post-trial processing resulted in average weed
and crop identifications of 81% and 88%, respectively.
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1. Introduction

Traditionally, weed management has been achieved through broadcast application of selective
herbicide. A large proportion of herbicide used in broadcast spraying is released into the environment
through run-off and drift [1]. Increasing environmental and public health concerns have resulted in
stricter regulation of herbicide use [2,3]. Traditional selective herbicides also have to contend with
a growing number of resistant weed species [4]. Weeds represent a loss potential of 32%, with an
effect comparable to that of pathogens and parasites combined [5]. Therefore, effective weed control
is essential to maintaining and increasing worldwide food productivity to provide for a growing
global population [6]. Speciality crops, such as vegetables, are disproportionally affected by herbicide
resistance, as very few herbicides are registered for use in the sector [7]. Such farmers have been
forced to use hand-weeding methods, which are expensive, inefficient, and made more difficult by an
industry-wide labour shortage [8,9].

Several approaches have attempted to tackle weed management issues through the introduction of
new technology. Herbicide waste can be moderately reduced through the use of variable-rate spraying
and modifying existing spray booms [10]. Herbicide inputs may be completely eliminated through
robotic weed removal [11,12]. These approaches can be implemented using relatively simple detection
techniques, estimating overall plant coverage [10,13] or crop position [12,14]. Individual weed targeting
for mechanical removal [15] or herbicidal micro-dosing [16,17] has also been investigated in recent
years. Non-selective herbicides less effected by herbicide resistance can be utilised for micro-dosing
systems, which can reduce herbicide requirements by up to 99.3% according to [18]. In order to achieve
individual weed targeting, plant identification and accurate target position information are essential.
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Weed detection methods most often use a combination of a colour index followed by image
segmentation and feature extraction, to locate weeds in the crop bed [19]. Other methods have
been considered, but not so extensively, such as the use of LIDAR (light detection and ranging) to
discriminate between crops, plants, and soil using height information [20]. Colour indices use some
combination of visible and near infra-red (NIR) reflectance to create a single greyscale image [19,21].
Some methods require the transformation into different colour spaces [22], such as normalised
RGB [23] or HSV (hue, saturation, and value) [24]. Common indices include ExG (excess green),
ExR (excess red), NDI (normalised difference index), and NDVI (normalised difference vegetative
index), which discriminate between plants and soil with varying effectiveness [19]. Images are
segmented using a variation of thresholding techniques, but most commonly Otsu’s thresholding
technique [21]. To discriminate crops from weeds, other information is needed; shape [25] or textural
features [26] are most commonly used, which can be computationally expensive [3].

Machine learning has been used extensively in the discrimination of vegetation and soil
and between vegetation types. Support vector machines proposed in [27–29] have been utilised,
in combination with a selection of features, such as colour or shape information, for plant identification.
Fuzzy decision making methods were considered in [25] for the identification of monocot and dicot
weeds, using a set of shape features achieving up to a 92.9% classification accuracy. Each of these
approaches for decision making is applied following the segmentation of the image into crop and
weed areas and the calculation of a selection of features for plant areas. Convolutional neural networks
(CNN) have also been utilised successfully in [30,31] to locate weed patches, without the need to
provide feature sets prior to processing. While the method increases the training time for the algorithm
compared to, for example, support vector machines, it may provide a more universally applicable
system [31]. These methods show an important next step in the identification process, but are complex
and relatively computationally expensive. They are most notably being used to identify patches of
weeds within a field, not individual weeds in real-time.

This study focuses on the development of a low cost, high-speed detection of individual
plants for use with a herbicide micro-dosing system, assuming a targeting area 20 mm in diameter.
As such, our detection system was designed with the target of operating at 5 km/h with the
capacity for cost-effective retrofitting to existing tractor tool-bar mounts, and minimal equipment cost.
The approach should be robust to variations in ambient lighting and to inadvertent wind dispersion
on the injected herbicidal products. The assembly, therefore, is enclosed under a tractor-mounted hood
(Figure 1) and controlled illumination is provided. The research aimed to determine the effectiveness
of using spectral reflectance in the red, green, and NIR wavebands using controlled illumination,
combined with size information in the discrimination between crops, weeds, and soil in horticultural
crops. Accurate position information for individual weed targets is required whilst maintaining a
large field-of-view from the camera to ensure high-speed operation. A system to mitigate the effect of
parallax error on location information of plants has been proposed through a kinematic stereo method.
Where possible, the detection method should provide flexibility for use across a range of scenarios.
As such, a modular design was utilised to allow for customisable width up to a maximum of seven
modules (3.78 m wide), which may be implemented concurrently for each PC.

2. Materials and Methods

2.1. Hardware Design

Each camera-lighting module (Figure 1b) covers a width of 0.54 m, allowing for customisation
according to application. Weather, time, and location may cause significant variations in the imaging
environment, and the detection system must be robust to these changes. Therefore, a closed canopy
houses the imaging system to provide illumination control. For easy integration with current farming
equipment, the canopy is mounted to the rear of a tractor (Figure 1a) and covers one crop bed (1.6 m,
3 camera-lighting modules).
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(a) (b)
Figure 1. The system in field trials. (a) The system mounted to the rear of the tractor. (b) The sensor
system in-field.

Three main components are used for crop and weed identification: a PC, RGB camera, and lighting
rig; a 12 V lead-acid battery powers the system in conjunction with an inverter to supply the PC; LED
arrays, 650 (red), 850 (NIR), and 525 nm (green) (Justar Electronic Technology Co. LTD). 5 × 5 arrays
at 525–530 nm, 650 nm, 850 nm, 25 W, 1.75 A are used for illumination.

An RGB machine vision camera (PointGrey, Grasshopper 3, GS3-U3-41C6C-C), with a wide angle
lens (Fujinon CF12.5HA-1), is used for image capturing. The camera is mounted between two lamps to
provide shadowless illumination. Each lamp consists of three LED arrays of each wavelength placed at
120◦ intervals within a metal hemisphere (Figure 2). The camera is positioned 0.6 m above the ground
resulting in a field of view of 0.54 × 0.54 m and a resolution of 0.9481 px/mm. This height was chosen
to balance coverage and precision requirements, whilst minimising image distortion.

Figure 2. Illumination system containing nine LED arrays per lamp, positioned at regular intervals.

Illumination control is facilitated through two circuit boards: the LED driver and microcontroller
boards. The camera receives signals from the PC to capture images, which are relayed to the
microcontroller board. The microcontroller generates PWM signals to control the intensity of the
LED arrays of different wavelengths, and multiplexes these with the ON/OFF signals received from
the camera. The LED drivers take this control signal and a 12 V supply to illuminate the area when
required by the camera. The duty cycles for each of the LED arrays are 50%, 50%, and 20% for the NIR,
green, and red, respectively. Comparisons were made between a selection of images taken at varying
duty cycles (between approximately 10% and 70% for each wavelength). Where the duty cycle for each
wavelength was equal, the red response appeared to dominate the image. The combination of duty
cycles chosen allowed for a balanced response in each channel and resulted in an image with clearly
differing responses between plants and soil, and to a lesser extent between plant types.

A custom built PC provides the required processing power for high speed identification, including
a dedicated GPU. The full PC component list can be seen in Table 1.
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Table 1. PC components.

Component Name

Motherboard MSI Z370-A PRO ATX LGA1151
CPU Intel Core i7-8700
GPU Gigabyte GeForce R© GTX 1080
RAM G.Skill Ripjaws 4 Series 16 GB

Storage Samsung PM961
Power Supply EVGA 600B

2.2. Plant Identification

Our approach uses red, green, and NIR reflectivity, combined with an assumption that crops are
generally larger than weeds, to identify crops and weeds in-field. In [32] a modified RGB camera is
used to implement NDVI using multiple filters to allow the green and blue channels to detect NIR
wavelengths. Our approach similarly modifies an RGB camera through the removal of the NIR filter
and introduction of a 515 nm long-pass filter to remove the unwanted response to blue light in the blue
channel. However, in addition to utilising red and NIR wavelengths, the green response is maintained
from the camera. The green response is intended to obtain minor tonal differences between plant types
to be included in the index calculation (RGNIR—Equation (1)). This may be useful where leaves of
crops and weeds overlap or large bodies of multiple weeds appear to be a single larger object.

A single shot method is used, flashing all LEDs simultaneously and capturing the red, green and
NIR reflectance in one frame. The RGB channels of the camera overlap, and as such, all respond to the
wavelengths used in the system to a varying extent. From the datasheet for the CMOSIS CMV400 chip,
an estimation of the quantum efficiency of the RGB channels at the system wavelengths is shown in
Table 2.

Table 2. Estimated quantum efficiency of camera channels.

RGB Channel Wavelength

Red (650 nm) NIR (850 nm) Green (525 nm)

Red Channel 45% 15% 5%
Green Channel 3% 15% 45%
Blue Channel 5% 15% 15%

The removal of the NIR filter led to colour distortion of the captured image; to compensate, a
background image is taken in a black box condition and then removed from the image. An example
of each of the captured RGB frames is shown in Figure 3. The channel responses are combined in
Equation (1) to produce a single greyscale image for segmentation. This equation is similar to the
normalised green index proposed by [33], although in our case the blue channel is a combined response
to NIR and green wavelengths. The RGNIR intensity is calculated as

RGNIR =
β(Gc − gc)

α(Rc + rc) + β(Gc − gc) + γ(Bc − bc) + L
, (1)

where Gc, Rc, and Bc are the green, red, and blue channels, respectively; gc, rc, and bc are the
background corrections for each channels (0–255); α, β, and γ are the channel weights (0–1); L is
the soil adjusted constant.

The histogram of the RGNIR image (Figure 4a) is taken and segmentation is performed using
Otsu’s multi-level (in this case three) thresholding method [34,35]. The features from the segmented
image are identified as either crop or weeds using a size exclusion method (Figure 4b).
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(a) (b) (c)

Figure 3. Responses of the red (a), green (b), and blue (c) camera channels, in controlled illumination.

(a) (b)
Figure 4. Image processing steps. (a) Greyscale output of the RGNIR function. (b) Image
following thresholding.

2.3. Height Estimation

In order to image a field efficiently at high speed, it is essential that each frame captures the
largest feasible area while maintaining sufficient detail to accurately identify and locate small plants.
However, where plants are not located directly below the camera, variations in their height can result
in an inaccurate determination of their position due to parallax error. In our system, the usable frame
area (assuming a parallax error of less than 5% is acceptable) is approximately a 19% slice across the
centre (Figure 5).

Figure 5. Heat map of the normalised position error across a frame.

While it is possible to disregard all but this area within the image, the camera would need
to capture five times more images in order to cover the same area. This effectively reduces the
camera frame rate from 90 fps to ≈17 fps, limiting the maximum speed of the system and the ability
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to incorporate additional wavelengths in the future. A stereo imaging technique using a single
camera in motion [36,37] was chosen to compensate for the error, eliminating the need to purchase
additional equipment.

Given that the imaging system is in constant motion, and the camera has a high frame rate, it is
possible to use a single camera to achieve kinetic depth estimation. As the camera moves between two
consecutive images, taller objects will appear to move faster than their shorter counterparts. Therefore
the height disparity between the objects can be calculated using a dense optical flow algorithm.
The system utilises the Farneback optical flow algorithm [38], chosen because of the low processing
time and availability of the GPU kernel in the OpenCV library.

Tests were carried out to verify the reliability of the algorithm using objects of known height
imaged twice with 2.1 cm camera displacement between images (chosen from the 90 fps camera frame
rate and target 5 km/h system speed). The item on the left in Figure 6a is 2.5 cm tall; the object on the
right is 3.5 cm tall at its lowest point and 11 cm at its highest. A height disparity map was produced
from these images (Figure 6b), which shows significant error in the height estimation algorithm.
The error was attributed to the small number of features, and thus, low spatial frequency of the image.
Given that neighbouring pixels had very similar values, the algorithm was not able to accurately
calculate the pixel shift.

(a) (b)
Figure 6. Height estimation using kinematic stereo method—preliminary test. (a) The image prior to
processing containing two objects of different heights. (b) The height disparity map produced using
the optical flow algorithm on the first attempt.

The error in the disparity values can be reduced by applying a Laplacian filter to the image and
summing the filtered and non-filtered images (Figure 7). This can improve the texture of the image,
preserving the high spacial frequency components. As can be seen in Figure 7, the error in disparity
values across the image is reduced. Approximately 1 cm in height corresponds to 3 units in the height
disparity map (Figure 7), showing a good estimation of the object height by the algorithm. However,
some inconsistencies still exist at object edges, which can be mitigated by taking the disparity value in
the middle of any given object.

Using Equation (2) the real distance can be calculated, allowing the system to provide accurate
position information of individual plants across an entire frame. The distance between two frames is
calculated using a speed estimation algorithm and the time between images, as:

x− x′ =
b f
d

(2)

where x and x′ are the point of interest in frame one and the one in frame two respectively; b is the
distance between frames; f is the focal length of the camera; and d is the disparity map (object height).
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(a) (b)
Figure 7. Height estimation using the kinematic stereo method with the addition of a Laplacian filtered
image. (a) Sum of the original and Laplacian filtered images. (b) The height disparity map using the
optical flow algorithm with addition of laplacian filtered image to reduce error.

2.4. System Optimisation

The system uses a NVIDIA GTX1080 GPU with a parallel implementation of the software
developed in NVIDIA Compute Unified Device Architecture (CUDA)—Toolkit 9.0. A parallel prefix
sum algorithm is used to reduce the run time of the multi-thresholding algorithm by several orders
of magnitude. Three images were processed 1000 times, and the average speed was taken for
the implementations on each the CPU and GPU to establish the time advantage of introducing
multithreading. The results show the algorithm is up to 10,000 times faster using the GPU method,
with the same threshold values found. A trial run of 50 images gave a total average loop time of 100 ms
and maximum of 175 ms per frame with one detection module in use.

An in-field calibration method allows the user to optimise the system for different conditions.
A background image is taken with no illumination, as are two further images in different positions to
allow the user to tune parameters in Equation (1) and the height estimation algorithm. Figure 8 shows
the calibration process with the “ideal” processed images output from the tuned parameters.

Figure 8. Screenshot of the system during calibration process for plant identification, showing a
desirable output following thresholding.

2.5. Field Trial Procedure

Trials were performed in three separate iceberg lettuce fields at three growth stages in Ely,
Cambridgeshire, United Kingdom on the 17 August 2018.

The tractor speed was varied from 0.5 to 10 km/h. The average weed density varied across
each of the fields (150, 69, 31 weeds/m2 for fields 1, 2 and 3 respectively). A maximum density of
364 weeds/m2 was found in those frames analysed. Weeds found in the fields were between the one
and three leaf stage and were predominantly broadleaf type.

Over 20,000 unprocessed images were captured from the trials for further testing. Each image file
name contains the timestamp of capture, such that any lag in the system may be detected. The time
between frame capture is fixed regardless of system speed, resulting in increased overlap between
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frames at a lower speed. This variable could be optimised to reduce overlap at lower speeds for
future trials. Each trial run produced a database entry for each crop detected, including its size and
location. These databases were produced to log information which may be of use to the farmer in
other activities.

The in-field calibration files were also saved to reproduce the processed images after the trial;
there were two files, one used for field 1 and part of field 2, the other for the remainder of field 2 and
field 3. A random sample of 50 images was considered for further analysis. Each of the raw images
was evaluated, and weeds and crops were identified by eye. This was then compared to the processed
images to identify which plants had been correctly identified and where false negatives and positives
had occurred according to the colour code described in Table 3. The process was completed first with
the trial calibration and then with the post-trial calibration to establish the limitations of the calibration
process and the capabilities of the system with optimal calibration (Figure 9).

Figure 9. Images following processing (left) using in-field (top) and post-trial (bottom) calibration.
Blue areas were designated as crops, and weeds are shown in green, with the centre of each target
identified by a star. Unprocessed images are labelled by hand (right) according to the accuracy of the
system identification using the key as defined in Table 3.

Crops are encircled with yellow and red regions to indicate the area within 2 and 4 cm of a crop
respectively. Targets within the red-zone are ignored, as they are considered likely to result in crop
damage, those within the yellow-zone are flagged to be handled with care, as are those within the
pink box. Blue boxes at the top and bottom of each image identify the edge of the area for targets
to be generated within each frame. The post-trial set used also used two calibrations, one for field 1
and another for field 2 and 3; this is mainly due to the significant size difference between the crops in
these fields.

Table 3. Key for labelling of system targets.

Actual Object Identified By System As:

Weed Crop Debris Missed Multiple Targets

Weed Green Blue Orange Red Yellow
Crop Pink Black N/A N/A N/A
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3. Results and Discussion

Figure 10 shows the proportion of weeds per frame correctly identified taken from a sample of 50
of the processed images. Post-trial calibration (C2) results are consistently better than their in-field (C1)
counterparts. With increasing field number, positive weed identification decreased for both in-field
and post-trial calibration, with a particularly poor result (18%) for field 3 in-field calibration.

Figure 10. Proportion of weeds correctly identified for each field (F1–3) and calibration (C1, C2).

Field 3 had the smallest crops, and therefore, the fewest weeds/frame on average (nine) which
may have resulted in the smaller peak in the histogram, a change in the threshold values, and a worse
detection rate. Field 3 and part of field 2 also used a second, different calibration in-field due to the
substantial change in crop size from those in field 1. This in-field calibration may have been less
effective than that used for field 1. Post-trial calibration results are an improvement due to a process of
trial and error not possible in-field and due to a lack of screen visibility in-field making it difficult to
finely tune as required.

As can be seen from Figure 11, there was a wide range of values for the percentage of weeds
identified as multiple targets, particularly in field 3. For increasing field number, there was a decreasing
trend of multiple target weeds. Larger weeds with several leaves are most often misidentified as
multiple targets, where each leaf is mistakenly identified as an individual plant. Those fields with
fewer and smaller weeds are less likely to have weeds identified as multiple targets. Overall, the
post-trial calibration reduces this error in identification (from an average 19% to 12%). Post-trial results
in field 3 do not appear to reduce the error as expected; however, the wide range in results makes it
difficult to draw a definitive conclusion from these results. Although the addition of extra targets to
the system may decrease efficiency, these weeds can still be effectively managed, and the overall effect
is determined by the resolution of any actuator system. As such, it is clear the system performs well in
identifying weeds, with total average identification rates of 56% and 81% for the in-field and post-trial
calibrations respectively (Figure 12).

The system has a significant problem with false positives, where debris in the field (e.g., stones
and twigs) are incorrectly identified as a weeds. Whereas weed identification improves in the post-trial
calibrations, false positives worsen, and there is a clear trade-off when calibrating the system between
improved weed identification and increasing false positives. Figure 13 shows the proportion of
generated targets which are in fact debris.
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Figure 11. Proportion of weeds identified as multiple targets for each field (F1–3) and calibration
(C1, C2).

Figure 12. Proportion of weeds identified for each field (F1–3) and calibration (C1, C2).

Figure 13. Proportion of objects identified which are debris for each field (F1–3) and calibration (C1, C2).

Field 1 had the lowest proportion of misidentified targets, due to its higher number of
weeds/frame (average of 43 weeds/frame). The larger number of weeds, if average debris per
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image is approximately constant, results in an apparent reduction of debris identified. Where there is
higher leaf coverage in an image, more of the debris will also be obscured. Finally, where there is a
very high debris-to-weed ratio, it may result in a false peak in the histogram and error in identification.

Approximately 31% and 12% of crops were misidentified as weeds in the in-field and post-trial
calibrations respectively, as shown in Figure 14. The vast majority of these false positives were at the
edge of images where the crop is not fully visible, and as such the size exclusion method identified the
object as a weed (see Figure 9). The effect was most pronounced in field 3, where crops were smallest.
This issue could be mitigated in future work using image stitching when more than one module is in
use so the full crop is visible to the system. Alternatively, as in [39], plants not fully contained in the
image may be excluded from the classification algorithm to avoid crop damage. The increase in crop
misidentification in in-field calibration is due to the threshold for size exclusion being set too high.
The size exclusion threshold is currently taken from approximate crop size provided during calibration.
It may be more effective to derive the value instead from weed size, as there is considerable variation
in crop size within each field.

Figure 14. Percentage of crops misidentified for each field (F1-3) and calibration (C1, C2).

Figures 15 and 16a show the debris misidentification and percentage of weeds correctly identified
respectively, with respect to weed count. No clear correlation is shown between weed count and
correct weed identification or speed and weed identification (Figure 16b). It should be noted that at
the highest speeds results may deteriorate as images become more blurry, and identification by eye
of objects in raw images becomes more difficult. However percentage of debris and weed count are
clearly correlated for the reasons discussed previously.

It should be noted that some lag in the capture of a very small minority of images occurred
during the field trial; the reason for this is unclear and should be considered in future studies. Due
to the significant overlap of each frame in most of the trial speeds, this did not result in the failure to
identify objects in the areas were this error occurred. Individual weed and debris identification may
have resulted in the introduction of some human error to the determination of the effectiveness of
the system.

These results are promising but further development should be considered to increase
classification rates and reduce false positives. The system provides a relatively simple approach
for crop and weed identification, but more complex approaches have shown better classification
performance. In [28], plants were divided first into three groups of monocot, dicot, and barley with
97.7% accuracy, and weeds further classified by species with varying success using a support vector
machine and shape features. Hyperspectral imaging is suggested for species identification in [40],
providing 100% crop recognition, and weed species identification (31%–98% correctly identified
depending on species and classifier method). This method is implemented at low resolution and
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operating speeds (average ground speed = 0.09 m/s). Plants were identified in maize fields using
a selection of nine colour indices combined with support vector data description in [41] achieving
up to 90.79% classification, but with significant variation in results due to weather and time of day.
By comparison, our system has a lower classification rate, but provides real-time identification at high
resolution for individual plant treatment, whilst correcting target position data through the height
estimation algorithm. The system currently has sufficient computational redundancy such that future
work may introduce further discriminating features and processes to improve plant recognition and
reduce false positives. The need for this increased complexity to improve recognition rates may be
required if it offers an economic advantage to total weed management beyond re-running the system
periodically and capturing those undetected weeds from the earlier passes.

Figure 15. Proportion of objects identified which are debris versus weed count.

(a) (b)
Figure 16. System weed identification capability with varying speed and weed count. (a) Percentage of
correctly identified weeds versus total weed count. (b) Percentage of correctly identified weeds versus
system speed in-field

4. Conclusions

This paper reports a full-scale, on-tractor, field demonstration of a single-shot, multispectral
imaging system for autonomous identification of emergent weeds at forward velocities of up to
10 km/h (2.8 m/s). The method successfully identified an average of 81% of weeds and 88% of
crops in field trials, showing promise for the future development of this approach. The approach
combines controlled spectrum artificial illumination alongside a short-wavelength (nominal cut-off
wavelength, 515 nm), optically filtered, and modified (removal of NIR filter) Bayer-array (colour)



Sensors 2020, 20, 455 13 of 15

digital imaging sensor. Single shot imaging of the red, green, and NIR reflectivity is delivered to
achieve plant-soil discrimination.

Weeds are assumed to have a leaf area significantly less than the lettuce crop, and so a
size-exclusion approach has been used to separate the target weeds from the neighbouring crop
plants. This method of processing relies on the nature of lettuce production and similar horticultural
crops where soil pre-treatment is used prior to the growing season to remove emergent weeds, before
the transplantation of young plants. The green wavelengths (centred around 525 nm), are intended to
handle more difficult weed detection cases associated with overlapping small weeds, which are then
interpreted as a larger single plant. Further system testing to establish the performance at high weed
density is required to verify the effectiveness of this approach.

A kinematic stereo method has been used to estimate the height of plants in the image and
correct the parallax error to allow for accurate targeting of plants by a herbicide micro-dosing system.
The method allows the full frame to be processed without increasing the system cost through the
addition of expensive equipment, such as stereo vision cameras or LIDAR sensors. As a follow-on
from this research programme, tests to ensure the proper functionality of the height-estimation system,
and thereby the accuracy of the plant location data in-field are required.

Future developments of the design may include more sophisticated image processing, and taking
advantage of the tonal differences between the crop and weed types or the morphologies of the various
plant shapes. The significant improvement in plant identification using the post-trial calibration
indicates the calibration system should be improved to ensure the system can be operated more
effectively in-field.
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