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Urban alteration of neutral and adaptive evolutionary processes is still
underexplored. Using a genome-wide SNP dataset, we investigated (i)
urban-induced modifications of population demography, genetic diversity
and population structure and (ii) signature of divergent selection between
urban and forest populations in the ant species, Temnothorax nylanderi. Our
results did not reveal an impact of urbanization on neutral processes since
we observed: (i) analogous genetic diversity among paired urban/forest
sites and two control populations; (ii) weak population genetic structure
explained neither by habitat (urban versus forest) nor by geography; (iii) a
remarkably similar demographic history across populations with an ances-
tral growth followed by a recent decline, regardless of their current habitat
or geographical location. The micro-geographical home range of ants may
explain their resilience to urbanization. Finally, we detected 19 candidate
loci discriminating urban/forest populations and associated with core cellu-
lar components, molecular function or biological process. Two of these loci
were associated with a gene ontology term that was previously found to
belong to a module of co-expressed genes related to caste phenotype.
These results call for transcriptomics analyses to identify genes associated
with ant social traits and to infer their potential role in urban adaptation.

Urbanization alters natural habitats [1-3], leading to the extirpation of native
species and the establishment of non-native species, and promoting biotic hom-
ogenization [4-6]. Nevertheless, some species are able to persist in urban
landscapes providing the unique opportunity to assess the consequences of
urbanization on both neutral and adaptive evolutionary processes [7]. Habitat
modification resulting from urbanization involves habitat loss and fragmenta-
tion. These changes may induce a rapid decline of genetic diversity and an
increase of population differentiation in species with small effective population
size whose dispersal is hampered by the new habitat configuration [8-10].

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Sampled localities and individual genotypes plotted in the space of the first two axes of a principal coordinate axis (PCA). Colonies were sampled in
wooded parts of urban parks (BorC, LyoC and ParC) and in forest localities (BorF, LyoF, ParF, Bre and Vil). (Online version in colour.)

Environmental changes resulting from urbanization may
also impose new selective pressures, ultimately leading to
genotypic and phenotypic differences between urban and
non-urban populations [11-13]. Several studies reported
urban-induced shifts in phenotypic traits, including life his-
tory, morphology, behaviour, physiology and reproductive
traits. Although mechanisms underlying such phenotypic
changes are unknown for most organisms, some common
garden experiments disentangled phenotypic plasticity from
genetic adaptation to urban-induced environmental changes
[14,15]. Because such an approach allows study of only a
restricted number of traits that are relatively straightforward
to measure, difficult-to-measure but potentially informative
traits may be overlooked [16]. Genomic data may help to
overcome this limitation and to identify genomic signatures
of local adaptation. Only a small number of studies have
profited from genome-wide data to search for the footprints
of divergent selection between urban and non-urban popu-
lations (but see [17-19]). In addition, they focused on a
single urban area although replication over multiple urban
areas is required to understanding urban adaptation [7,20].
Ants are frequently used as bio-indicators in ecological
studies and monitoring programmes: they respond rapidly
to environmental changes and have extensively adapted to
a wide range of environments [21,22]. Studies on the conse-
quences of urbanization on the genetic variability of ant
species are rare (but see [23,24]), generally investigating the
community level and reporting contrasted effects on species
assemblages [25]. Here, using a replicated design over three
cities, we explored (i) urban-induced modifications of genetic
diversity, population structure and demography; (ii) signa-
ture of divergent selection between urban and forest
populations in Temmnothorax nylanderi, a forest leaf litter-
dwelling, cavity nesting, small-sized predatory ant found in
small colonies of 50-200 workers. An absence of genetic
structure in Western Europe was previously suggested for
this species based on one allozyme and two mitochondrial
genes [26]. However, single-locus (such as mtDNA) inference
of spatial genetic differentiation is not reliable [27] and
further instigation based on genome-wide loci is warranted.

To this end, we generated a genome-wide SNP dataset for
96 colonies belonging to eight localities (12 colonies per
locality). Colonies were sampled in wooded parts of histo-
rical urban parks (e.g. the Jardin des Plantes of Paris
acquired its present form in the seventeenth century,
around 400 generations before present considering a gener-
ation time of 1 year) of three highly populated French
cities: Bordeaux (BorC), Lyon (LyoC) and Paris (ParC).
Forest localities (BorE, LyoF and ParF) were chosen to achieve
a paired study design including three replicates, each consist-
ing of one urban and one forest locality in close geographical
proximity (30-50 km) but functionally disconnected. Two
additional forest localities (Bretagne, Bre and Villefranche,
Vil) were included to provide a better coverage of the T.
nylanderi geographical distribution (figure 1). Because of the
tiny size of T. nylanderi (ca 3 mm), we randomly pooled 50
workers per colony to obtain a suitable amount of DNA.
We followed a single-digestion RADseq protocol [28], indivi-
dually barcoding each colony. Temnothorax nylanderi colonies
are predominantly monogynous and monoandrous [29]:
pooling several workers from a colony results in sequencing
three alleles per locus, since workers carry the allele from
the male and one of the two alleles from the queen. Barcoding
a colony is therefore analogous to barcoding a triploid geno-
type. Popular pipelines performing de novo assembly and
SNP calling for RADseq data cannot handle triploid individ-
uals. To circumvent this problem, we split the bioinformatics
analysis of raw fastq reads into two steps: (i) we first built loci
using the denovo_map pipeline implemented in STACKS [30];
(ii) we artificially built a reference sequence using the
assembled loci and mapped reads back using BWA v0.7.15
[31]. Triploid genotypes were called after local realignment
using GATK v3.8-1-0 [32].

To test the hypothesis of urban-induced reductions of
population size, genetic diversity and gene flow, we esti-
mated within-population diversity, in all sampled localities,
by calculating the observed heterozygosity (Ho) using the
gametic homozygosity concept of Moody et al. [33], the
expected heterozygosity (Hg) and multilocus Fig values cor-
rected for the ploidy level following Hardy [34]. We also
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Table 1. Estimates of genetic diversity. For each site, geographical coordinates, the number of sampled colonies (V), expected (Hg) and observed (Ho) n
heterozygosity and Fis values are provided.

g
locality site latitude longitude N L [3 Hy Fis §_
Bor BorC 44°51"16.60" N 0°3517.21” 0 10 0.224 0.231 0 ‘§

Borf 44°5223.61" N 0°815.25" 0 n 0.216 0.217 0.028 %
Lyo LyoC 45°46'43.87" N 4°5120.35" E 9 0.229 0.230 0.034 é

LyoF 45°44'40.28" N 5927'23.36" E 9 0.230 0.228 0.046 :S
Par ParC 48°50'39.39” N 2°2143.45" E 9 0.235 0.243 0.003 5

Parf 48°25'42.14" N 2°43'50.81" E 9 0.235 0.237 0.029 %
Bre Bre 47°40'37.84" N 2°73027" 0 9 0.230 0.233 0.027 =
Vil Vil 42°35'9.77" N 2°26'13.07" E 9 0.233 0.234 0.032

investigated the genetic structure by: (i) a principal com-
ponent analysis (PCA) on triploid genotype frequencies; (ii)
a non-metric multidimensional scaling (NMDS) on the
matrix of Fgr pairwise distances. Finally, for each locality,
we investigated the variation of the scaled mutation rate
(O, the product of the effective population size Ne and the
mutation rate per generation p) using the stairwayplot soft-
ware [35] and the abc-skyline method of [36]. To investigate
the potential genomic signature of local adaptation to urban
landscape in T. nylanderi, we applied two complementary
random forest (RF) variable selection procedures,
implemented in the packages VSURF [37] and Boruta [38],
by feeding genotypes as discriminating variables for each
pair of urban/forest localities.

Full details on the methodology for this study are in
electronic supplementary material, S1.

2. Results and discussion

(a) Locus assembly and data filtering

Following [39], the optimal set of STACKS's parameters
resulted in m3, M3 and n3 (electronic supplementary
material, S2). After implementing a newly developed pipeline
for building triploid genotypes in non-model organisms, we
obtained the final filtered dataset composed of 5728 poly-
morphic loci and 10723 SNP for 75 colonies, with an
average coverage of 47X and 4.9% of missing data.

(b) Genetic diversity and population structure
Expected (Hg) and observed heterozygosity (Hp) averaged
across loci ranged, respectively, from 0.216 to 0.235 and
from 0.217 to 0.243 (table 1). We observed similar values
between each pair of forest (F) and urban (C) sites. Multilocus
Fs corrected for the ploidy level were slightly positive within
each sampled site and ranged from 0 (BorC) to 0.046 (LyoF),
suggesting that populations within each site are at Hardy-
Weinberg equilibrium.

Principal component analyses revealed a lack of structure
(figure 1), as colonies were not separated on the basis of their
origin for any of the first 20 axes (representing 48% of the
total variance). Consistently, both the global Fsr (Fst=
0.028) and the pairwise Fsr values suggest that most of the
observed genetic variance is partitioned within sites.
Indeed, none of the pairwise Fsr values exceeded 0.039

(LyoF versus Bre), despite many comparisons being signifi-
cant at the 0.05 level (electronic supplementary material,
S3). The lack of genetic structure driven by habitat type was
confirmed in two out of three forest versus urban compari-
sons by the NDMS (electronic supplementary material, S4),
the only exception being Lyon (in agreement with the pair-
wise Fgy, electronic supplementary material, S3). An
absence of genetic structure in Western Europe was pre-
viously suggested for this species based on one allozyme
and two mitochondrial genes [26]. Here we confirmed this
finding, strengthened not only by genome-wide data, but
also by the finer spatial sampling. The dispersal flight of sex-
uals over large distances and/or the passive transport of
established colonies in acorns and hazelnuts by vertebrates
including humans [40] could allow high level of gene flow
and may explain this absence of contemporary genetic
structure.

(<) Demographic history and adaptation

We inferred the demographic history of the eight populations
using stairwayplot (figure 2) and the abc-skyline. After remov-
ing missing data, an average of 2800 polymorphic loci were
available for each population, the majority of which have
one SNP only (approx. 90% of the loci). The inferred variation
of O through time was substantially unchanged whether the
singletons were included or not in the case of the stairwayplot
(figure 2). The results reveal an initial growth followed by a
recent decline for all populations analysed, regardless of
their current habitat. This suggests that the observed demo-
graphic history is the result of events independent from the
contemporary urbanization process. The lack of a robust esti-
mation of the genome-wide molecular rate hampers a
flawless dating of the observed demography. We therefore
preferred to report estimates of @ and scaled time. However,
we note that using the evolutionary rate proposed for the
whole ant group by Romiguier et al. [41], the expansion
and the following decline (figure 2) would have occurred
around approximately 50000 and approximately 20000
years B.P. respectively, further strengthening the idea that
the historical demography of T. nylanderi was not affected
by urbanization. We further check the robustness of the stair-
wayplot, the performance of which has been recently
questioned for datasets of less than approximately 10000
SNPs [42], by running the abc-skyline (electronic supplemen-
tary material, S4). Results were in agreement, suggesting
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Figure 2. Maximized composite likelihood of © through time obtained through the stairwayplot method on the folded SFS. The inferred effective size @ is plotted,
from left to right, from present time (0) to the past (in scaled units of time). (Online version in colour.)

Table 2. Candidate loci discriminating urban and forest sites and corresponding functional annotation (Gene Ontology GO).

SNP IDs BLASTn E-values

paired urban—forest sites

Bor(—BorF 775198 no significant similarity found

BorC—BorF 782672 1.00x 107

Bor(—BorF 855369 no significant similarity found

Bor(—BorF 1416915 no significant similarity found
BorC-Borf 1471596 no significant similarity found

Bor(—BorF 1640863 no significant similarity found

BorC-BorF 2343564 6.00x 107%°

Bor(—BorF 2627927 no significant similarity found

LyoC-LyoF 280520 no significant similarity found

LyoC—LyoF 395140 no significant similarity found

LyoC—LyoF 813323 4,00 x 1072

LyoC—LyoF 827337 4,00 x 107>

LyoC-LyoF 1567225 no significant similarity found

LyoC—LyoF 2136348 300107

LyoC-LyoF 2602998 no significant similarity found

LyoC—LyoF 3297929 no significant similarity found

ParC—Parf 808830 no significant similarity found

Par(—Park 865740 no significant similarity found
Par(—Parf 2841848 no significant similarity found

that the recent decline is not an artefact of the inferential
methods but the result of real biological processes shared
among all sampled sites regardless of the habitat type.

The demographic signature and the absence of contem-
porary genetic structure are compatible with the scenario of
rapid post-glacial recolonization from southern refuges host-
ing genetically homogeneous populations previously
invoked in this species [26]. However, the causes of the
decline observed in all populations remain to be further
explored. A recent increase in connectivity may result in an
apparent decrease of @ in populations analysed with unstruc-
tured models such as the stairwayplot [43]. This explanation
would be consistent with the low population differentiation
found, but the causes of such a recent increase in connectivity
remain to be elucidated.

description of significant hits GO IDs GO names

protein kinase C G0:0004697 protein kinase C activity

ultra-conserved locus no GO found no GO found

protein kinase C G0:0004697 protein kinase C activity

serine/arginine repetitive G0:0006397 mRNA processing
matrix protein

uncharacterized protein G0:0016021 integral component

of membrane

The two selection procedures identified 19 common SNPs
that discriminate urban and forest paired sites (three for Par
and eight for both Bor and Lyo, electronic supplementary
material, S5). To validate RF results, following [44], we
further computed Fgr at the selected SNPs between urban
and forest paired sites and found an approximately 10
times increase compared to values based on the whole SNP
dataset, with all three comparisons becoming significant.
These SNPs are therefore efficient in discriminating forest
versus urban landscape and could be considered candidates
for being under divergent selection. We recorded five loci
with significant homologies after BLASTn searches (table 2).
The Blat2GO annotation tool identified a protein kinase C,
involved in catalysis of a molecular reaction, from two differ-
ent candidate loci found in Bor and Lyo, strongly suggesting
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the role of this protein family in urban adaptation. An
uncharacterized protein recognized as an integral component
of membrane and a serine/arginine repetitive matrix protein
involved in biological processes related to mRNA processing
were also identified (table 2). The mRNA processing GO term
associated with the locus carrying the SNP 827337 (table 2)
was previously found to belong to a module of co-expressed
genes correlated with caste phenotype [45]. The genetic
toolkit hypothesis posits that conserved sets of genes and
gene pathways involved in core physiological processes
have been repeatedly used in the evolution of complex
social behaviour [46]. Recent studies identified modules of
co-expressed genes whose up- and downregulation is associ-
ated with phenotypic traits related to social behaviour (e.g.
caste, worker sterility) and species ecology (e.g. invasiveness)
[45,47]. Further transcriptomics analyses will help to identify
genes related to social traits associated with adaptation to
urban habitat.

Recent empirical research on urban dweller species has
shown that urbanization may increase genetic differentiation
among populations through a reduction of functional connec-
tivity and an increase of genetic drift [8,9,18,48,49]. Our
results, substantially strengthened by the congruence among
the replicated landscapes, support a different scenario and
call for a species-specific null model in urbanization studies.
Despite living in fragmented patches of habitat, colonies of
T. nylanderi are apparently genetically not isolated. The demo-
graphic reconstruction suggests that this is the consequence of
past demographic events rather than urbanization. Moreover,
a recent increase in connectivity is possibly ongoing, contri-
buting to further hinder the effects of urbanization on
genetic patterns. Indeed, with the intensification of transport
networks, human-mediated dispersal contributes, in some
species like ants, to gene flow by transgressing dispersal
barriers [50,51].

Discrepancies between observed and expected conse-
quences of urbanization on neutral evolutionary processes
were previously described in studies on ant communities
structure, suggesting that biotic homogenization has not
taken place in this group at the European scale [52].

Models of natural habitat islands isolated within an urban
matrix that reduces functional connectivity are often used to
describe patterns of vertebrate diversity. Our results provide

1. McKinney ML. 2002 Urbanization, biodiversity, and
conservation: the impacts of urbanization on native

Annu. Rev. Ecol. Syst. 32, 127-157. (doi:10.1146/
annurev.ecolsys.32.081501.114012)

evidence, at another organizational level of biodiversity [ 5 |

(within-species genetic diversity), that these models may
not be relevant for small species exploiting micro-habitats
[22,25]. Such ecological and/or life-history requirements
drive species-specific patterns of landscape functional con-
nectivity. Species-centred approaches offer considerable
promise to predict species sensitivity to human-induced
landscape alteration [53,54].

Despite the predominant influence of the demographic
history, we found evidence of divergent selection at 19 loci;
among them, four are known to be involved in core cellular
components, molecular functions or biological processes.
Although recent transcriptomics studies in ants (e.g. [45,47])
identified conserved functional genomic units involved in
social behaviour traits, their potential role in adaptation to
urban habitats was not investigated. Group living, by allow-
ing workers to manipulate the environment of the developing
larvae, could buffer environmental variations between urban
and forest environments [55,56]. Nevertheless, we found sig-
natures of divergent selection between urban and forest sites,
potentially linked to sociality (table 2). This is in agreement
with recent phenotypic studies that suggest rapid phenotypic
differentiation in urban populations in response to heavy
metal pollution in T. nylanderi [57], rapid temperature
increases in T. curvispinosus [14,58] and human food inputs
[59], indicating that further transcriptomic studies under
controlled conditions are warranted.

All applicable national and/or institutional guidelines for the
collection of animals were followed.

Home-made code to reproduce the analysis of popu-
lation structure (PCA, Fst and bootstrap confidence interval,
NMDS) and the filtered vef with one SNP per locus are deposited
in Dryad and they are accessible with this temporary review link:
https://datadryad.org/stash/share/9y3WVtfMO1YPoszolvaoHIOG
FiaaW7U6EPqJIUvq3Zs.
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