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Parasites often infect genetically diverse host populations, and the evolutionary
trajectories of parasite populations may be shaped by levels of host hetero-
geneity. Mixed genotype host populations, compared to homogeneous host
populations, can reduce parasite prevalence and potentially reduce rates of
parasite adaptation due to trade-offs associated with adapting to specific
host genotypes. Here, we used experimental evolution to select for increased
virulence in populations of the bacterial parasite Serratia marcescens exposed
to either heterogeneous or homogeneous populations of Caenorhabditis elegans.
We found that parasites exposed to heterogeneous host populations evolved
significantly less virulence than parasites exposed to homogeneous host popu-
lations over several hundred bacterial generations. Thus, host heterogeneity
impeded parasite adaptation to host populations. While we detected trade-
offs in virulence evolution, parasite adaptation to two specific host genotypes
also resulted in modestly increased virulence against the reciprocal host
genotypes. These results suggest that parasite adaptation to heterogeneous
host populations may be impeded by both trade-offs and a reduction in
the efficacy of selection as different host genotypes exert different selective
pressures on a parasite population.

Hosts and parasites are ubiquitous in nature. A long-standing goal in evolution-
ary biology is to understand the reciprocal selective pressures exerted by host and
parasite interactions [1]. Theoretical and empirical studies point to multiple
factors that can determine the rate and magnitude of parasite adaptation to
hosts. These factors include host genetic heterogeneity [2,3], host spatial structure
[4,5], competition [6,7], and migration and gene flow [8,9]. Of particular interest is
how host genotypes influence the evolutionary trajectory of parasites populations
as they adapt to host populations.

Historically, host heterogeneity has been overlooked in theoretical models of
infection dynamics [10,11], yet host heterogeneity is both biologically relevant
and a potential source of selection driving parasite evolution. Host homogeneity
is generally rare in natural populations, even in many asexual hosts [12,13]. Theor-
etical models of host heterogeneity predict that specialization on similar host
genotypes results in reduced transmission between dissimilar genotypes, which
leads to lower parasite prevalence [3,14]. Due to this trade-off, parasite prevalence
tends to be mitigated compared with homogeneous populations, known as the
monoculture effect [15]. Evidence for the monoculture effect has been found in
agriculture systems [16-19] and natural populations [20-27], in which prevalence
differs between homogeneous and heterogeneous populations.

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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Heterogeneous populations may impede parasite adap-
tation and thus limit virulence. In some cases, host genetic
diversity can even prevent parasite adaptation altogether
[3]. Host diversity reduces the average rate at which parasites
successfully infect hosts [28], thereby limiting specialization
on a single host genotype. Here, we asked whether hetero-
geneity per se is sufficient to alter parasite evolution by
examining virulence in populations with different ratios of
host genotypes. Further, if homogeneity leads to greater viru-
lence, is there a cost of adapting to one specific genotype
when parasitizing novel hosts, resulting in a fitness loss?

We used experimental evolution to select for virulence
while passaging parasites through either genetically homo-
geneous or heterogeneous host populations. We predicted
that heterogeneous host populations would impede virulence
evolution and that parasites evolved in homogeneous host
populations would evolve greater virulence by specializing
on a single host genotype. Further, we expected to see a cost
of specialization when infecting a new host genotype. To test
these predictions, we evolved a clonal bacterial parasite, Serratia
marcescens (Sm2170), in two genotypes of the host Caenorhabditis
elegans. The C. elegans genotypes used were CB4856 and ewIR
68 [29]. The two strains have genetically diverse backgrounds
but identical portions of chromosome V, where many innate
immune loci reside. CB4856 and ewlIR 68 were chosen to mini-
mize trade-offs of specialization as a means to better isolate
heterogeneity as a variable. For our experimental treatments,
we varied the ratio of the host genotypes in each host popu-
lation. We then compared the mortality rates of the evolved
parasites from each treatment to the ancestral parasites by
infecting each host genotype separately.

2. Methods

(a) Experimental evolution

Using experimental evolution, we imposed selection for increased
virulence on S. marcescens Sm2170 parasites exposed to either
homogeneous or heterogeneous host populations. Hosts were
the C. elegans strains ewlIR 68 and CB4586. S. marcescens infection
occurs upon feeding. Some live bacterial cells survive ingestion
[30] and infect the host [31]. We measured virulence as infection-
induced host mortality rate, and imposed selection for increased
virulence by passaging Sm2170 only from hosts that died after
24 hpi (see electronic supplementary material, figure S1 for
detailed experimental design). Thus, parasite genotypes that facili-
tated rapid killing were favoured. We passaged Sm2170
populations through five different host treatments and a control
in which parasites were passaged in the absence of hosts
(in vitro, 0-0) (electronic supplementary material, figure S2).

For each passage of experimental evolution, we plated 1000
worms on a Serratia selection plate (electronic supplementary
material, figure 51) and allowed the worms to consume Sm2170
for 24 h [32,33]. We then isolated 30 dead worms from the
Sm2170 lawn. Dead worms were identified by a lack of movement
in response to provocation with a platinum wire [34]. Then, we
extracted Sm2170 from the hosts, cultured them in standard
laboratory conditions (28°C shaker overnight) and inoculated
an unseeded nematode growth media (US Biological, Salem,
MA, USA) plate to grow colony-forming units (CFUs) for 48 h at
room temperature. From these plates, we randomly picked
40 CFUs per Sm2170 population, to inoculate the next passage.
New naive (non-evolved) hosts (from homozygous host lines
kept at —80°C) were then placed on the evolved bacteria and the
process was repeated. For our in vitro control (0-0), 40 CFUs of

Sm2170 were picked from the bacterial lawn. This treatment n

served as our control for passage conditions. The selection exper-
iment concluded at the end of 10 passages (totalling hundreds of
bacterial generations). At the end of each passage, a subset of the
evolved bacteria was stored at —80°C.

(b) Mortality assays

Mortality assays were used to determine virulence at the begin-
ning and end of the experiment. Bacteria from passage 10 were
used to infect homogeneous groups of either host genotype,
and mortality rates were compared to the ancestral bacteria.
The steps outlined in the creation of the Serratia selection plates
were identical to those of the mortality assays (see electronic
supplementary material, figures S1 and 52).

We placed 200 worms from one genotype on a mortality assay
plate (electronic supplementary material, figure S2, step 1). After
48 h at 20°C, the number of dead worms on each plate was counted
(electronic supplementary material, figure S2, step 2). Mortality
rates were calculated as the proportion of dead worms divided
by the number plated. When performing mortality assays, each
replicate population had 3-6 technical replicates for a total of 360
mortality assay plates (electronic supplementary material, figure
S2, step 3). Ancestral mortality assays were performed both at
the outset of the experiment and again when performing evolved
Sm2170 mortality assays at the end of the experiment (electronic
supplementary material, figures S2 and S3).

(c) Statistical analysis

To assess the mean changes in mortality rate between ancestral and
evolved populations, we used JMP Pro 14 (SAS, Cary, NC, USA) to
perform a generalized linear model (GLM) with a link logit function
and normal distribution. Factors in the model include treatment
(e.g. homogeneous, heterogeneous, in vitro), host genotypes in mor-
tality assays (ewIR 68 or CB4856) and the interaction. We did not
detect overdispersion using a Pearson test. Post-analysis Tukey con-
trast tests were used to determine the significance of pair-wise
comparisons. We report our values as y° statistics and correspond-
ing p-values. Multiple comparisons were corrected for using a
Bonferroni correction of p<0.025 (p<a/k, where a=0.05, k=2
comparisons: host genotype and parasite treatment).

3. Results

The ancestral populations of Sm2170 bacteria tested at the
beginning of experimental evolution produced a mean mor-
tality rate of 49.51% (s.e.m. +0.03) in host strain ewIR 68 and
64.32% (s.e.m. = 0.04) in host strain CB4856 [35]. As predicted,
we found that selection for virulence resulted in an increase in
mortality when experimental populations were assayed
concurrently with the ancestral population. Parasites evolved
in both homogeneous host populations were significantly
more virulent than the in vitro controls (CB4856: ;(2=29.13,
p<0.0001; ewlR 68: ;(2 =14.68, p=0.0001, figure 1; electronic
supplementary material, tables S2 and S3). Parasites evolved
in CB4856 hosts had a 29% increase in mortality rate in
CB4856 populations compared to the ancestor, while parasites
evolved in ewIR 68 had a 19% increase in mortality rate in
ewlR 68 populations compared to the ancestor.

There were no significant differences in mortality induced
by parasites in either host between any of the pairs evolved on
75-25, 50-50 or 25-75 (figure 1). When tested in CB4856 hosts,
parasites evolved in heterogeneous host populations did not
differ significantly in mortality rate from the in vitro para-
sites (y*=0.0023, p = 0.96, figure 1a; electronic supplementary
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Figure 1. (a,b) Mean change in host mortality rate relative to the ancestral para-
sites in C. elegans host strains (B4856 (a) and ewlR 68 (b). All experimental
populations shared a common ancestor, and thus, any change from the ancestral
data is indicative of relative virulence. Parasites were evolved in heterogeneous host
populations, homogeneous host populations or in vitro (no hosts), and then tested
for changes in virulence. The heterogeneous populations, from left to right, are 75—
25, 50-50 and 25-75. Circles represent the mean change within each technical
replicate (18—36 each). Bars represent =+ s.e.m. (Online version in colour.)

material, table S2), indicating little to no adaptation to the
CB4856 host genotype. Further, the same parasites exhibited
no significant increase in mortality rate compared to in vitro
parasites when tested in ewIR 68 hosts (;(2 =0.00002, p=0.99,
figure 1b; electronic supplementary material, table S3). Parasites
evolved in homogeneous ewlIR 68 populations caused greater
virulence in ewlR 68 than parasites evolved in heterogeneous
populations (* = 18.37, p < 0.0001, figure 1b; electronic supple-
mentary material, table S3). Additionally, parasites evolved in
homogeneous CB4856 populations caused greater virulence
in CB4856 hosts than parasites evolved in heterogeneous
populations (% =52.99, p < 0.0001, figure 14; electronic supple-
mentary material, table S2). Overall, these results demonstrate
that host heterogeneity impedes parasite adaptation relative to
host homogeneity.

Next, we determined if parasites that were evolved on
homogeneous hosts and then exposed to a novel host exhibited
reduced virulence, and thus lowered fitness, as predicted by
trade-off theory. In both cross-infections, there was an increase
in mortality rate relative to the ancestral strain and relative
to the in vitro controls (figure 2; electronic supplementary
material, table S1). Further, cross-infections were significantly
different from one another (;(2 =6.04, p=0.014, figure 2;

electronic supplementary material, table S1), indicating that [ 3 |

although parasites caused high mortality in novel hosts, they
did not increase to the same extent as parasites in familiar
hosts. Despite this difference, the result overall is in accordance
with the previous finding: that heterogeneous host populations
limit the evolution of parasite virulence and indicate a trade-off
imposed by host heterogeneity.

4. Discussion

In our selection regime, higher host mortality equates to higher
virulence, and thus greater parasite fitness. Our results show that
parasites selected in homogeneous host populations evolved
substantial increases in virulence when infecting those same
hosts (for both ewIR 68 and CB4856) when compared with
in vitro controls (figure 1). However, parasites that were selected
in mixed genotype host populations and then tested on
homogeneous host genotypes exhibited limited increases in
virulence (figure 1), despite strong selection favouring increased
virulence. We found no differences in the mortality rates of hosts
infected by parasites evolved with any mixed host population on
either host—neither comparing between each mixed treatment
nor compared with the in vitro control. Thus, exposure to hetero-
geneous host populations impeded virulence evolution relative
to exposure to homogeneous hosts. Further, parasites evolved in
homogeneous populations and then used to cross-infect the
other (novel) host genotype exhibited smaller increases from
the ancestral virulence than when infecting their familiar host
(figure 2). Therefore, we observed trade-offs in virulence due
to specialization on the parasites’ familiar host genotype.

Trade-offs in parasite virulence due to specialization on a
particular host genotype are often invoked as a reason that het-
erogeneous host populations may impede parasite adaptation.
Here, we found that heterogeneous host populations impeded
the evolution of parasite virulence and we found evidence of
trade-offs in parasite virulence (figure 1). However, the evolved
trade-offs in parasite virulence that we observed are not sulffi-
cient to explain the limited virulence evolution in parasites
evolved with heterogeneous host populations. Despite parasite
specialization (greater virulence) on familiar homogeneous
hosts, parasites evolved in homogeneous host populations
still exhibited increased virulence against novel hosts relative
to the in vitro control parasites (figure 2). Therefore, any poten-
tial cost of a trade-off should have been mitigated in the
heterogeneous host populations, as adaptation to either host
genotype still resulted in increased virulence against the
other host genotype. Yet, we still observed a limited response
to selection for increased virulence in parasites evolving in
heterogeneous host populations (figure 1).

One possibility for the lack of a substantial trade-off cost (i.e.
a decline in parasite fitness) may be that the C. elegans genotypes
used, CB4856 and ewIR 68, share an identical region of chromo-
some V, which harbours loci associated with innate immunity
[36]. It is likely that parasites evolved in either genotype were
under strong selection to evolve in response to that particular
region of the genome. Despite the genetic similarity of the strains
at many innate immune system loci, heterogeneous populations
still impeded parasite adaptation relative to homogeneous
populations. While it is plausible that trade-offs in virulence
slowed parasite adaptation in the heterogeneous host popu-
lations to some degree, trade-offs alone are insufficient to
explain the lack of increase in virulence exhibited by
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Figure 2. Each dot represents the treatment’s average change in mortality rate of all populations and replicates relative to ancestral parasites. All experimental
populations shared a common ancestor, and thus, any change from the ancestral data is indicative of relative virulence. The x-axis shows the type of host infected:
either familiar to the parasite or novel. The p-value is based on a post-GLM Tukey contrast test between all familiar hosts (left panel) and all novel hosts (right
panel) (Zz =6.04, p =0.01). In both cases, although all treatments had an increased mortality rate relative to the ancestor, novel hosts had a lower mortality rate
than do the familiar hosts. Bars around mean represent s.e.m. (Online version in colour.)

heterogeneous-selected parasites when infecting CB4856 hosts
(figure 1). We hypothesize that this lack of response to selection
was likely driven by a reduction in the efficacy of selection in the
heterogeneous host populations relative to the homogeneous
hosts. Selection imposed by different host genotypes can act on
different groups of loci in the parasite genome [37]. As a result,
the efficacy of selection on a particular set of loci in the parasites
may be reduced in the heterogeneous hosts as parasites encoun-
ter different host genotypes with each infection [38]. Although a
portion of our host genomes were identical, the diverse genetic
backgrounds of the CB4856 and ewlIR 68 strains may have
imposed fluctuating selection on the parasite populations,
resulting in limited parasite adaptation within heterogeneous
host populations. Another possibility is that specialization on a
single host, as opposed to a generalist strategy, may lead to a
stronger strength of selection over time. Thus, our results at pas-
sage 10 may be the result of stronger selection in homogeneous
populations as specialization increases [39].

Heterogeneous host populations are shown to be common
in nature [40—-44], and our results demonstrate that heterogen-
eity can alter the trajectory of parasite evolution. Importantly,
parasites are capable of adapting to heterogeneous host popu-
lations [45]. Nonetheless, our results indicate that parasite
adaptation can be impeded by heterogeneous relative to homo-
geneous host populations. While we observed little cost to host
specialization in our experiment, trade-offs are likely to impede
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