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Abstract: Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH
are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD)
and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of
TFIIH may cause one or a combination of these syndromes, and some of these mutations are also
related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret
the different manifestations observed in patients, particularly since some of these phenotypes may be
related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in
transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism
for the interpretation of different phenotypes during development as well as the understanding
of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans
caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH
in different developmental processes. Furthermore, studies performed in Drosophila of mutations
in different subunits of TFIIH that have not been linked to any human diseases, probably because
they are more deleterious, have revealed its roles in differentiation and cell death. In this review,
different achievements made through studies in the fly to understand the functions of TFIIH during
development and its relationship with human diseases are analysed and discussed.
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1. Introduction

The transcription of genes that encode messenger RNAs, (mRNAs), long non-coding RNAs
(lncRNAs) and micro-RNA (miRNA) precursors in eukaryotic cells is conducted by the RNA
polymerase II (RNPII) enzyme [1]. However, transcription initiation performed in a regulated
manner at a precise site in the promoter by RNPII requires assembly of the pre-initiation complex
(PIC) [2]. The PIC is composed of a series of factors that are initially recruited by transcription
activators in sequence. In general, the PIC is composed of the TFIID complex, which includes
TATA-binding-protein (TBP), RNPII, TFIIB, TFIIA, TFIIF, TFIIE, and TFIIH [2,3]. Among the PIC
components, the TFIIH complex participates in transcription by RNPII and RNA polymerase I (RNPI),
as well as in DNA repair, and one of its subcomplexes participates in cell cycle control (Figure 1). The
core and cyclin-dependent-activating-kinase (CAK) subcomplexes [4,5] comprise TFIIH. The core
contains the ATPases/helicases XPB and XPD as well as the p62, p52, p44, p34 and p8 subunits and
participates itself in the mechanism of nucleotide excision repair (NER). Cdk7, CycH and MAT1
constitute the CAK complex [6]. The core complex participates in the mechanism of nucleotide excision
repair, and the ATPase and helicase activities of XPB and XPD are necessary to open double-stranded

Int. J. Mol. Sci. 2020, 21, 630; doi:10.3390/ijms21020630 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-2019-7106
http://dx.doi.org/10.3390/ijms21020630
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/2/630?type=check_update&version=3


Int. J. Mol. Sci. 2020, 21, 630 2 of 13

DNA to facilitate excision of nucleotides from the damaged strand [7]. Furthermore, the CAK complex
is required for the phosphorylation of several cyclin-dependent kinases that modulate the cell cycle [4].
In transcription, the CAK complex and core form the 10-subunit TFIIH factor [7]. During transcription
activation, the XPB subunit uses its ATPase activity to rotate and translocate DNA into the RNPII,
allowing the enzyme to locate the transcription initiation start site to incorporate the first nucleotide
to synthetize RNA [8]. Simultaneously, Cdk7 phosphorylates serine 5 of the heptapeptide repeat
in the carboxy-terminal domain (CTD) of the RNPII catalytic subunit [9]. This CTD modification is
required for RNA processing and modifications and recruitment of the enzyme that introduces the cap
to nascent mRNA [10].
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the ATPase domain and therefore inhibits its translocase and helicase activities [11,12]. Furthermore, 
substances that specifically inhibit the kinase activity of Cdk7 have been developed; one of these 
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addition, XP patients suffer neurodegeneration among other developmental abnormalities. In some 
cases, XPB and XPD mutations in humans manifest in a combined phenotype reflecting XP and CS; 
these patients present mental retardation, dwarfism, cachexia and progeria [22]. Mutations in XPB, 
XPD and p8 may also generate TTD [22] It has been reported that p8 mutations in humans cause a 
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Figure 1. The TFIIH complex, its subunits and links with human diseases. The TFIIH cartoon model is
based in the recently published high-resolution structure of the core subcomplex of TFIIH with the
MAT1 subunit [5]. Cdk7 and CycH cartoon is fictitious. The name of each subunit is indicated and the
core and cyclin-dependent-activating-kinase (CAK) subcomplexes are delimitated by blue and black
dashed circles. The functions of TFIIH are also indicated as cell-cycle control for the CAK, and nucleotide
excision repair (NER) for the core and transcription by the 10 subunits TFIIH. Also, the subunits
affected in the Xeroderma Pigmentosum (XP), Cockeyne Syndrome (CS) and Ticothiodistrohy (TTD),
are indicated with dashed arrows.

Interestingly, drugs that target some of the enzymatic functions of TFIIH have been found or
developed. For instance, the drug triptolide, a diterpene tripoxide produced by the Tripterygium
wilfordii plant used in traditional Chinese medicine, targets the XPB subunit by covalently binding
the ATPase domain and therefore inhibits its translocase and helicase activities [11,12]. Furthermore,
substances that specifically inhibit the kinase activity of Cdk7 have been developed; one of these drugs
is THZ1, which, together with triptolide, has promising prospects for use against cancer [13–16].

In addition to all the important roles of TFIIH in transcription, DNA repair and cell-cycle control
in eukaryotic organisms, TFIIH is also relevant to human health, since mutations in some of its subunits
are related to three complex human syndromes. Mutations in the XPB, XPD and p8 subunits are linked
to the generation of xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy
(TTD). Mutations in XPB and XPD may generate XP syndrome; patients with XP syndrome are highly
sensitive to UV irradiation and prone to develop skin cancer [17–21]. In addition, XP patients suffer
neurodegeneration among other developmental abnormalities. In some cases, XPB and XPD mutations
in humans manifest in a combined phenotype reflecting XP and CS; these patients present mental
retardation, dwarfism, cachexia and progeria [22]. Mutations in XPB, XPD and p8 may also generate
TTD [22] It has been reported that p8 mutations in humans cause a reduction in the level of the
TFIIH complex, suggesting that p8 functions to stabilize the complex [22–24]. Individuals afflicted
with TTD suffer from brittle hair and nails, ichthyosis, mental retardation, dwarfism and osseous
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deformations [19]. Cells derived from patients with these three syndromes are highly sensitive to
ultraviolet (UV) irradiation, indicating a direct effect on the NER mechanism [17,19].

Due to the different functions in which TFIIH is involved, it has been challenging to associate the
different manifestations of human syndromes related to TFIIH with particular molecular processes.
The molecular nature of the mutations linked to each of these syndromes in the corresponding TFIIH
subunit has been identified in many human patients [25,26]. In the case of the helicases XPB and XPD,
most of the mutations are located in regions related to their enzymatic activities [25,26]. Based on
this information, elegant studies conducted by the Jean-Marc Egly group in Strasbourg using in vitro
transcription and NER assays with reconstituted human TFIIH complexes harbouring wild-type
XPB and XPD or mutant versions of XPB and XPD found in patients have allowed us to relate
syndrome-specific mutations with either transcription or DNA repair. However, these studies were
conducted in vitro or in cultured cells, and the effects of these mutations on organism development
and physiology can be only extrapolated. Then, mouse models to study the effects of mutations in
the p8, XPD and XPB TFIIH subunits were developed and used to understand how these mutations
identified in humans affect mouse physiology. Intriguingly, p8 knock-out (KO) in mice was embryonic
lethal; therefore, it was difficult to interpret how p8 KO affects development [27]. A mouse model with
alterations in XPB that cause a combination of XP and CS in humans showed only partially defective
NER and hypersensitivity to UV in the eyes and skin [28]. On the other hand, mouse models of XP and
CS in which XPD was mutated were more informative, since in addition to an increased sensitivity to
UV irradiation, the mice developed skin cancer, neurodegeneration and cachexia [29]. In addition,
a mouse model of TTD in which XPD was mutated presented TTD-like brittle hair and accelerated
ageing [30,31]. These mouse models have been useful for gaining an enhanced understanding of the
effects of these TFIIH-related syndromes; however, the complexity of mammalian development makes
the interpretation of pathological defects difficult. In this situations, an organism such as Drosophila
has been useful to not only understand how defects in TFIIH that affect transcription and DNA repair
impact the development of the organism but also study the effect of mutations in other TFIIH subunits
that have not been related to human diseases, probably because they have a more deleterious effect
on mammal development. In the following sections, we will analyse and discuss the contribution
of Drosophila to understanding how alterations in the functions of TFIIH affect tissues at different
developmental stages and adult tissues.

2. The Phenotypes of TFIIH Mutants in Drosophila and Their Relationships with Human
Syndromes

The use of Drosophila to study homozygous organisms carrying lethal alleles has been possible,
allowing the analysis of the defects at different stages of development. This has been the case for the use
of different mutant alleles of the TFIIH subunits. The first characterization of a mutant allele of a TFIIH
subunit gene was the haywire (hay) gene, which encodes the Drosophila XPB subunit. This allele, named
haync, was identified in a genetic screen for genes that interact with testis-specific tubulin and generate
male sterility [32]. In addition, several revertant mutants in which the hay phenotype in the testis
was suppressed were isolated and identified as point mutations of the same hay gene [33]. The haync2

allele and all the revertants were highly sensitive to UV irradiation, as heterozygous mutants, and
haync2 behaved as an antimorphic mutation, while all revertants were hypomorphic and homozygous
lethal [33,34]. However, the combination of different hay alleles was semilethal, allowing adult
organisms to be obtained [34]. These flies presented abdominal defects, abnormal wings and bristle
deformations. The abdominal defects were due to a reduction in the thickness of the cuticular layer; in
other words, the cuticle was thinner, which was somewhat similar to the ichthyosis phenotype observed
in TTD patients. In addition, the defective bristles were thinner and severely deformed, similar to the
brittle hair phenotype present in TTD-afflicted individuals. Furthermore, the introduction of mutations
in XPB observed in patients into the hay gene under a mutant hay heterozygous background enhanced
these phenotypes [34]. Additionally, a genetic interaction was observed between hay mutant alleles
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and a conditional cdk7 mutant for these phenotypes, which was the first demonstration of a functional
interaction between two TFIIH subunits in a complete animal. Both the cuticle and bristle phenotypes
were shown to correlate with a reduction in the transcript levels of genes involved in cuticle formation
and, together with the genetic interaction between hay and cdk7 mutants, strongly suggested that
these phenotypes are linked to transcriptional defects [34]. Although the skin and hair in humans
are not analogous structures to the cuticle and bristles in the fly, the construction of these structures
requires high levels of terminal differentiation gene transcription, suggesting that when transcription
is reduced but not completely abolished, the most obvious phenotypes are caused by a reduction in
the expression in highly transcribed genes. Intriguingly, defects in the development of the nervous
system were also observed in hay mutants [32,34], demonstrating that these defects are correlated with
an increase in apoptosis during fly brain development. Thus, these studies showed that defects similar,
but not identical, to those observed in humans can be studied in the fly.

Drosophila has also allowed the study of mutations in TFIIH subunits that have not been related
to human diseases, probably because their effects are more deleterious and these subunits have a
structural and regulatory role in TFIIH. One such example is the p52 subunit. The marionette (mrn) gene
encodes the p52 homologue in Drosophila, and initial studies using a combination of alleles showed
phenotypes similar to those observed in hay mutants, particularly cuticle and bristle defects [35].
In addition, flies in which p52 was mutated were smaller, presenting a minute-like phenotype, that may
be linked to a global reduction in transcription, interestingly as previously mentioned, patients afflicted
with CS and TTD have a short stature [35]. Additionally, flies in which p52 was mutated developed
melanotic tumours correlated with the presence of chromosomal aberrations during development.
Importantly, characterization of the nature of different p52 mutant alleles allowed the generation of
these mutations in human p52, which were introduced into insect culture cells, co-expressed with
all the other components of the TFIIH complex and assayed in in vitro experiments to determine the
effect of these mutations on transcription and DNA repair [35]. These experiments confirmed that
p52 is important for the incorporation of XPB into the complex and that it modulates XPB-ATPase
activity, thereby affecting DNA repair and transcription. Thus, the analysis of p52 mutants in Drosophila
contributed not only to finding cellular defects generated during development when TFIIH is not
functional but also to understanding the mechanistic role of this subunit in the functions of TFIIH.

The implementation of the UAS-GAL4 system in Drosophila allows an easy study of gene
functions. Using this system, it was possible to direct specific interfering RNAs against TFIIH subunits
in particular cell types. Using this system against the p52 and p34 subunits in the wing imaginal disc,
a reduction in the size and number of the cells that generated smaller wings compared with wild-type
wings was shown [36]. Intriguingly, a dramatic increase in apoptosis was observed following depletion
of the p52 or p34 subunit of TFIIH, and simultaneous depletion of the tumour suppressor p53 enhanced
Jun kinase pathway-dependent apoptosis [36]. Furthermore, these phenotypes were phenocopied
by the inhibition of XPB ATPase activity with the drug triptolide [36]. This finding is relevant for
the interpretation of the link between TFIIH and the p53 and JNK pathways in the generation and
treatment of cancer and confirmed that the inhibition of ATPase activity by triptolide causes defects
identical to those observed in TFIIH mutants [36].

The p8 TFIIH subunit is enigmatic. When TFIIH was purified from human cells and yeast,
all components of the complex were visualized by SDS-polyacrylamide gel electrophoresis, and 9
subunits were identified; however, p8 was not visualized because despite its presence in the gels, as p8
is a 72 amino acid protein, it was not stained. In addition, rare cases of TTD in which neither XPB nor
XPD was mutated were identified. A mysterious gene was still missing and named TTDA [37]. It was
not until a metaproteomic analysis was conducted in yeast cells that a new protein of approximately
8 kDa was identified as a component of the PIC [38]. Since mutations in the corresponding gene in
yeast were highly sensitive to UV irradiation, p8 was believed to be related to the TFIIH complex
and at the same time identified as part of the TFIIH complex in humans [23]. Reduced TFIIH levels
is characteristic of cells derived from TTDA patients, and the p8 subunit was proposed to stabilize
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TFIIH [23]. In fact, some reports indicated that in TTDA-derived cells, the levels of ectopic XPB-GFP
expression were reduced compared with wild-type cells [27].

In Drosophila and in all arthropods, p8 is encoded as a bicistronic transcript with a subunit of the
SWIR complex [39]. Thus, the identification of mutants that affect only p8 was complicated. However,
an insertion of the P element into half of the p8-coding sequence did not affect the expression of the
other proteins, generating a null allele for p8. Thus far, this is the only mutant allele of p8 reported
in Drosophila. Homozygous flies for this allele are viable; however, males are sterile and present a
minute-like phenotype, similar to p52 mutants [39,40]. Interestingly, heteroallelic combinations of
p52 alleles are semi-viable, but the males are also sterile. These phenotypes allowed the detailed
characterization of defects in spermatogenesis in TFIIH mutants. Intriguingly, p8 and p52 mutations
have a moderate effect on gene expression during spermatogenesis and arrested cell differentiation in
meiosis, a phenotype that is identical to that in testis-specific mutants of TBP-associated factors (tTAFs).
Importantly, in p8 null organisms, the levels of the rest of the TFIIH complex subunits were shown
not to be reduced; however, in the p52 mutants, a clear reduction in the XPB and p8 subunits was
evident [40]. These results are in contrast with the proposed role of p8 as a stabilizing factor for the
TFIIH complex in human cells. However, the p8 mutants derived from patients afflicted with TTDA
are not null [27] and seem to act as antimorphs that affect the rest of the TFIIH complex. Instead of
p8, the p52 subunit seems to be important to maintain the levels of XPB and p8 [40]. Taking all of the
information in this section into account, the analysis of TFIIH mutants in Drosophila has allowed a
better understanding of the effects of the TFIIH complex during development linked to the different
manifestations observed in humans afflicted with XP, CS and TTD.

3. Involvement of TFIIH in Cell-Cycle Control, Chromosome Instability and Cancer
in Drosophila

As mentioned before, the CAK subcomplex of the TFIIH complex independently participates
in cell cycle control. For some time, the direct role of Cdk7 as a Cdk-activating kinase (CAK)
was elusive. In Drosophila, the necessity of Cdk7 for CAK activity was demonstrated in vivo,
since temperature-sensitive mutants were defective in activation of the cdc2/Cyc A and cdc2/Cyc
B complexes and therefore exhibited defects in cell division [41]. However, it was also shown in
Drosophila that dominant negative mutants of cdk7 delayed the onset of transcription in the early
embryo but did not affect the fast and synchronized nuclear cycles at the syncytial blastoderm [42].

In addition, the dual role of the CAK subcomplex in cell-cycle control and RNPII transcription
has been the subject of investigations on how the CAK subcomplex is regulated. Initially, it was
suggested the XPD subunit of the core subcomplex of TFIIH controls the cell cycle function of Cdk7 [43].
This hypothesis was based on the fact that a tetramer composed of CAK and XPD was identified in
metazoan cells and that the overexpression of XPD in early Drosophila embryos generated a decrease in
the T-loop phosphorylation in other Cdk proteins as well as mitotic defects; in contrast, a reduction in
XPD levels caused an increase in CAK activity and cell proliferation [43].

Further studies on the possible regulatory role of XPD in CAK activity showed that the complete
absence of XPD in early embryos caused defects in the formation of the mitotic spindle as well as changes
in the distribution of the CAK subcomplex in different subcellular compartments [44]. Intriguingly, in
mammalian cells, XPD may also be part of the MMXD complex, which includes MMS19, Ciao, ANT2
and MIP18, factors that are known to participate in proper chromosome segregation [45]. As described
in the same report, abnormal nuclei and mitosis were observed in cells derived from patients with XP
and CS with XPD mutations [45]. Furthermore, in Drosophila XPD was shown to interact with MMS19,
Galla1 and Galla2, which are homologues of MIP18, and the product of crumbs [46]. Mutations in these
components also generate defects in mitosis in the early embryo, similar to those thought to be caused by
deregulation of the CAK subcomplex of the TFIIH complex due to mutations in XPD. However, a recent
report showed that defects in mitosis caused by null mutations in MMS19 in Drosophila could be
rescued by overexpressing the CAK subcomplex or reducing the levels of XPD [47]. Additionally, this
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study suggested that MMS19 binds XPD and that the CAK complex can phosphorylate Cdk1 [47].
These latter results may explain the interconnection between XPD, the components of the MMXD
complex and the CAK subcomplex. However, how XPD knows to interact with MMS19, the CAK
subcomplex or the TFIIH complex is not yet understood. In addition, the recent 3D structure of the
TFIIH core shows the relevant structural role of XPD in the TFIIH complex [5]. Within the TFIIH
complex, XPD makes a strong connection with the p62 and p44 subunits [5]. XPD also directly interacts
with XPB and MAT1. Therefore, the absence of XPD may have a deleterious effect on the functions
of the TFIIH complex in NER and transcription, thereby complicating the interpretation of defects
in mitosis and chromosome segregation and limiting these interpretations only to possible negative
modulation by the CAK subcomplex. Indeed, it was recently reported that mutations in p8 and hay
(XPB) in Drosophila cause defects in mitosis and chromosomal segregation in early embryos that are
identical to the phenotypes observed in XPD mutants that were attributed to deregulation of the
CAK subcomplex [48]. In addition, the knock-down of Cdk7 in the early embryo generated the same
phenotypes [48]. Furthermore, the severity of mitotic defect phenotypes in embryos from p8 null
mothers was correlated with the direct effect on global gene expression during oogenesis, suggesting
that these defects are due to the deficient transcription of maternal genes that participate in fast and
synchronized mitosis in the early embryo. Although these defects in mitosis may be caused by the
accumulation of a pleiotropic effect on the different functional roles of XPD, the direct role of XPD in
regulating the localization and activity of the CAK subcomplex remains controversial.

The fact that mutations in TFIIH subunits generate mitotic defects and chromosome instability
links TFIIH with cancer. In addition, patients with XP have an increased predisposition to skin cancer.
Drosophila, then, is an interesting model in which to study the association between cancer and TFIIH.
All the mutants flies in which core subunits of the TFIIH complex were mutated were shown to be
sensitive to UV irradiation with different penetrance. Intriguingly, the XPD mutations that generated
the highest degree of UV sensitivity in Drosophila were not correlated with XPD mutants in humans
that generate a higher predisposition to cancer [49]. On the other hand, the mutations associated with
a higher risk of cancer in humans in the fly clearly affected the association of XPD with the TFIIH core
and CAK subcomplexes and generated a higher frequency of mitotic defects [49]. These results are in
agreement with the fact that mutation of the TFIIH complex in general generates catastrophic mitosis.

In addition, in Drosophila, it was demonstrated that the TFIIH complex plays a direct role in
regulating the fly homologue of human MYC. MYC in humans is a proto-oncogene that is overexpressed
in a large number of different types of tumours, and part of its role in oncogenesis is to over-activate a
large number of genes [50]. One of its regulators in human cells is fuse interacting repressor (FIR),
a protein involved in mRNA processing and transcription. FIR recognizes a specific element known as
the far upstream sequence element (FUSE) to negatively regulate the expression of MYC [51]. Part of the
mechanism by which FIR represses the expression of MYC is its interaction with XPB, which tethering
FIR to the TFIIH complex and affects formation of the PIC [51]. Half print (Hlp) is the fly homologue of
FIR, and in Drosophila, Hlp acts as a tumour suppressor; furthermore, mutations in this gene generate
cellular overproliferation due to XPB-dependent overexpression of fly myc [52,53].

In recent years, the TFIIH complex has become an important target for cancer treatment. This is
because it is now evident that cancer cells are addicted to high levels of transcription, and affecting the
PIC components may therefore be a suitable way to combat cancer cells [15]. As previously mentioned,
the diterpenoid triepoxide triptolide (TLP), derived from T. wilfordii, a plant used in traditional Chinese
medicine with antiproliferative properties, targets the XPB subunit of the TFIIH complex [12]. TPL
inhibits the ATPase activity of XPB, and its derivative minnelide is the subject of a clinical trial [54].
In addition, THZ1 and related compounds that inhibit the kinase activity of CDK7 by binding a protein
region outside of its catalytic domain (Cys312) are very effective in killing different types of cancer
cells [55,56]. Since TPL inhibits XPB, it has been used to study RNPII transcription initiation in cells
and fly embryos [57,58]. However, the effects of neither TPL nor THZ1 have been analysed in cancer
models in Drosophila. Therefore, the loss of apico-basal polarity by a reduction in the levels of disc
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large 1 (dlg1), which is involved in basolateral junctions [59], combined with a ras mutant allele was
used as a model in which severe carcinomas in the wing disc were generated (Figure 2A). Then, we
analysed the effect of TPL on these tumours in the wing disc. Intriguingly, the administration of TPL
at 5 µM in the food of third instar larvae increased the number of apoptotic cells in the tumour but
not in wild-type tissue (Figure 2A–C). In addition, TPL reduced the size of the tumours (Figure 2D).
Interestingly, in the tumour cells in the wing disc, the expression of wingless (wg) was dysregulated,
but in the discs from similar larvae fed TPL, the expression pattern of wg was partially recovered
(Figure 2F,G). These experiments show that the use of the fly as a model organism in which to analyse
the effect of drugs that affect the activities of TFIIH in cancer cells is very promising.
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Figure 2. Effect of triptolide (Trip) on third instar wing imaginal disc tumours. (A) Shows the generation
of apoptosis (TUNEL assay, used to visualize apoptotic cells) by Trip on wing imaginal disc tumours,
induced by the knock down (KD) of the disc large 1 (dlg) gene using the MS1096 driver in a Ras85v125d
mutant allele background (MS1096>dgl(II) Ras85v125d). In green the dlg expression is visualized and
in red the apoptotic cells. Note that the number of apoptotic cells is increased in the tumour tissues
treated with Trip. (B) TUNEL assay to determine apoptosis in a wild type disc treated with Trip. Note
the absence of apoptotic cells. (C) Quantification of apoptotic cells from MS1096>dgl(II) Ras85v125d
treated with DMSO or with Trip. (D) Total area of third instar imaginal discs, wild type (ORR) and
MS1096>dgl(II) Ras85v125d from third instar larvae feed with DMSO or Trip. Note that the total area
in tumour discs is higher than in ORR as well as reduction of the total area in tumour wing discs
from larvae feed with Trip. (E) Expression pattern (immunostaining) of wingless (wg) in a wild type
third instar larvae wing disc. wg is indicated in pink and DNA in blue. (F) Expression of wg (pink) in
MS1096>dgl(II) Ras85v125d tumour wing discs, DNA is in blue, from three instar larvae feed with DMSO.
Note that the distribution of wg is heterogeneous. (G) Distribution of wg in MS1096>dgl(II) Ras85v125d
tumour wing discs, from three instar larvae feed with Trip. Note the suppression on wg distribution in the
discs as well as the reduction of the tumour size.
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4. Analysis of TFIIH Complex Dynamics at the Onset of Transcription at the
Mid-Blastula Transition

Zygotic genome activation (ZGA), one of the more intriguing stages in animal development,
is the moment when gene expression is activated for the first time [60]. During ZGA, thousands of
genes are turned on simultaneously [60]. Drosophila has been an excellent model in which to study
how this process takes place, and there are excellent reviews on this subject [for a recent review: 62].
The early fly embryo is a syncytium that initially suffers 8 fast and synchronized nuclear divisions
without transcription conducted by maternal factors deposited in the egg [61]. After nuclear division 8,
at the pre-mid blastula transition (pMBT), the first wave of transcription takes place, which activates
approximately 100 genes [62], and the rate of nuclear division is increased. At nuclear division 13,
the mid-blastula transition (MBT) occurs, and the second wave of transcription takes place, in which
more than 3000 genes are activated [62]. Transcription of the first zygotic genes is activated by the
transcription factor zelda (zld) with the help of the GAGA factor [63]. To activate transcription,
these two factors recruit the PIC at the promoters of genes activated at ZGA, which includes the
genes encoding TFIIH complex members. Therefore, this developmental stage in the fly facilitates
the study of the recruitment of components of the basal transcription machinery for the first time
during development. Studies on the dynamics of the PIC components began with the visualization
of RNPII phosphorylated at its CTD by immunostaining, which revealed that it can be detected in
somatic nuclei in the syncytial blastoderm only after nuclear division 8 [64] More recently, by using
ChIP-nexus experiments, the occupancy of RNPII at the promoters of genes activated at the pMBT
and MBT was determined [62]. Another PIC component initially analysed in early embryos was
TATA-binding protein (TBP). Interestingly, TBP was found to be imported from the cytoplasm to the
nuclei until ZGA [64].

In addition to RNPII and TBP dynamics and the functions of components of the PIC, only studies
of TFIIH complex subunits have been performed in the early fly embryo. The first studies on the
TFIIH complex suggested that most of the core subcomplex components of the TFIIH complex
were cytoplasmic and that these components were localized in the nuclei before the first wave of
transcription [65]. However, more refined studies using transgenic organisms expressing several
TFIIH subunits fused with different florescent proteins have demonstrated that all the TFIIH subunits,
including the CAK components, follow a similar dynamic pattern of expression in the syncytial
blastoderm [48]. The TFIIH subunits oscillate between the nuclei and cytoplasm during synchronized
nuclear division and are more concentrated in the nuclei. However, during mitosis, TFIIH can still
be visualized on chromosomes, suggesting that some TFIIH complex is retained in chromatin due to
the fast nature of nuclear division in the early embryo [48]. Intriguingly, in the interphase nucleus
and during early mitosis, the TFIIH components can be observed as foci or grains that are similar in
appearance to nuclear structures identified as liquid–liquid phase separation condensates Figure 3 [48].
It would be relevant to determine whether functional TFIIH is encased in these condensates and
whether some of its subunits facilitate the formation of these membrane-free organelles.
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Figure 3. Confocal microscopy images (65X) of syncytial blastoderm nuclei from embryos expressing 
the p52 subunit of TFIIH fused to the yellow florescent protein (p52-YFP). As control to visualize the 
chromatin the histone 2Av (H2Av) fused to the red fluorescent protein is show in the same nuclei. 
Note the presence of p52-YPP foci that resemble liquid-liquid phase separation condensates.  

5. Concluding Remarks and Perspectives 

Drosophila is a suitable model to analyse the effect of genetic alterations related to human 
diseases. In the particular case of TFIIH-related syndromes, it has been possible to study defects in 
the fly produced by mutations in different subunits at a level that cannot be attained in mammal 
models. In addition, interpretation of the complex genotype–phenotype relationship has been less 
complicated in Drosophila, particularly in phenotypes that are generated during the development of 
the organism, such as the increase in apoptosis in the nervous system and catastrophic mitosis in the 
early embryo and larval tissues. In addition, phenotypes in Drosophila similar to some of the 
manifestations of TTD or CS in patients, such as a thin cuticle, brittle bristles and the minute 
phenotype, were clearly shown to be caused by problems in transcription. Furthermore, in Drosophila, 
it has been possible to study mutations in other TFIIH complex subunits that appear to be highly 
deleterious in mammals. However, there are still several aspects of this complex that can be studied 
in Drosophila to complement work performed in other models and humans. For instance, it is 
necessary to analyse mutations in other core TFIIH subunits, such as p34 and p44, and compare the 
related phenotypes with the reported phenotypes following XPB, XPD, p52 and p8 mutation. 
Additionally, it would be very informative to determine the genetic interactions of the TFIIH complex 
with other PIC components and to analyse double mutants in CAK subunits with mutations in the 
TFIIH core. The TFIIH complex also interacts directly with several transcriptional activators in 
human cells, the homologues of which in Drosophila have been analysed by genetic interaction 
studies, and their analysis during development will be highly informative for understanding the 
function of several transcription activators during development. Finally, the performance of chemical 
genetic experiments by introducing substances that inhibit the enzymatic activities of the TFIIH 
complex in embryos will allow the role of these specific activities in different developmental 
processes to be determined. 
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Figure 3. Confocal microscopy images (65X) of syncytial blastoderm nuclei from embryos expressing
the p52 subunit of TFIIH fused to the yellow florescent protein (p52-YFP). As control to visualize the
chromatin the histone 2Av (H2Av) fused to the red fluorescent protein is show in the same nuclei. Note
the presence of p52-YPP foci that resemble liquid-liquid phase separation condensates.

These studies in Drosophila are important for understanding the role of TFIIH during development
and to relate the TFIIH complex with the functions that are affected in cancer and human syndromes
since mammalian models are more complicated and expensive.

5. Concluding Remarks and Perspectives

Drosophila is a suitable model to analyse the effect of genetic alterations related to human diseases.
In the particular case of TFIIH-related syndromes, it has been possible to study defects in the fly
produced by mutations in different subunits at a level that cannot be attained in mammal models.
In addition, interpretation of the complex genotype–phenotype relationship has been less complicated
in Drosophila, particularly in phenotypes that are generated during the development of the organism,
such as the increase in apoptosis in the nervous system and catastrophic mitosis in the early embryo
and larval tissues. In addition, phenotypes in Drosophila similar to some of the manifestations of TTD
or CS in patients, such as a thin cuticle, brittle bristles and the minute phenotype, were clearly shown
to be caused by problems in transcription. Furthermore, in Drosophila, it has been possible to study
mutations in other TFIIH complex subunits that appear to be highly deleterious in mammals. However,
there are still several aspects of this complex that can be studied in Drosophila to complement work
performed in other models and humans. For instance, it is necessary to analyse mutations in other
core TFIIH subunits, such as p34 and p44, and compare the related phenotypes with the reported
phenotypes following XPB, XPD, p52 and p8 mutation. Additionally, it would be very informative to
determine the genetic interactions of the TFIIH complex with other PIC components and to analyse
double mutants in CAK subunits with mutations in the TFIIH core. The TFIIH complex also interacts
directly with several transcriptional activators in human cells, the homologues of which in Drosophila
have been analysed by genetic interaction studies, and their analysis during development will be highly
informative for understanding the function of several transcription activators during development.
Finally, the performance of chemical genetic experiments by introducing substances that inhibit the
enzymatic activities of the TFIIH complex in embryos will allow the role of these specific activities in
different developmental processes to be determined.
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