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Jan Bohlen 3

1 Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5,
121 16 Prague 2, Czech Republic; drozdenko@karlov.mff.cuni.cz (D.D.); fekete@karlov.mff.cuni.cz (K.H.F.);
juraj.olejnak@gmail.com (J.O.)

2 Nuclear Physics Institute, The Czech Academy of Sciences, 250 68 Řež, Czech Republic
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Abstract: The impact of precompression, thermal treatment and its combination on the deformation
behaviour of an extruded Mg–Zn–Ca (ZX10) alloy was studied with respect to a varied average grain
size. The Hall–Petch plot was used to highlight the impact in a wide grain size interval. The initial
texture of the wrought alloy was characterized by X-ray diffraction. Moreover, the evolution of
microstructure and texture was provided by the electron backscatter diffraction (EBSD) technique.
The obtained results indicate the strong contribution of deformation-thermal treatment on the resulting
deformation behaviour. Particularly, after precompression and heat treatment, higher strengthening
effect was observed in the reversed tensile loaded compared to compressed samples without any
change in the Hall–Petch slope throughout the grain size interval. Unlike this strengthening effect,
a reversed tension–compression yield asymmetry with higher strength values in compression has
been obtained.
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1. Introduction

The Mg–Zn–Ca alloys belong to the prospective metallic biomaterials due to their biocompatibility,
biodegradability [1,2] and the Young’s modulus of the alloys being close to that of bones [3]. A low
amount of alloying elements reduces production costs, and thus increases economic efficiency.
In general, in wrought Mg alloys, beside a hexagonal close packed (hcp) lattice, deformation texture
and the formation of precipitates contributes to the tension–compression yield asymmetry with higher
strength values in tension than that in compression [4]. The grain refinement and/or texture weakening
achieved by, for example, severe plastic deformation techniques or the twin-roll casting process also
can lead to a lower yield asymmetry in Mg–Zn–Ca alloys [5–8].

Another concept for obtaining fine-grained microstructure and improving mechanical properties
is using precompression and subsequent isothermal aging. It has been shown in [9] that application
of this processing performed at 150 ◦C or 200 ◦C on the Mg–Zn–Ca (ZX10) alloy containing around
1 wt.% of Zn and 0.25 wt.% of Ca is beneficial for increasing the compressive yield strength (CYS).
Furthermore, the level of precompression and the applied heat treatment strongly affects the tensile
yield strength (TYS). Interestingly, after processing the alloy, the yield strength is higher in compression
rather than in tension [10]. Similar mechanical properties are observed in natural bones, where CYS is
found to be around 130–180 MPa, TYS varied between 80 and 150 MPa, and elongation to failure is
1%–7% [3]. Thus, the proposed processing seems to be useful for the production of the next generation
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of biomedical materials. This concept has been introduced for the ZX10 alloy with a homogeneous
microstructure and an average grain size of 11 µm [9]. However, the grain size plays an important role
in controlling the mechanical and corrosion properties of biomaterials [6,11]. Therefore, understanding
the effect of precompression and applied heat treatment on the resulting mechanical properties with
respect to grain size is essential.

Thus, the aim of the present study is to provide a comprehensive study on using precompression
and subsequent isothermal aging in order to improve mechanical properties of the extruded ZX10
alloy with respect to the grain size. Particularly, the Hall–Petch plot is used to highlight the joined
impact of precompression and precipitation on the mechanical properties of the alloy in a wide grain
size interval.

2. Materials and Methods

The ZX10 (Mg + 1 wt.% Zn + 0.3 wt.% Ca) alloy was prepared by gravity casting and, prior to
extrusion, the machined billets were heat-treated at 400 ◦C for 20 h in order to maintain a solid solution
condition. The extrusion process for receiving a round bar with 10 mm diameter (extrusion ratio 1:25)
was carried out either at 300 ◦C with an extrusion speed of 0.6 mm/s to produce a very fine-grained
microstructure or at 400 ◦C with varied extrusion speeds of 0.5, 3.4 and 6.6 mm/s, respectively, to achieve
microstructures with a range of different average grain sizes.

Deformation tests were performed using an Instron 5882 universal testing machine (Norwood,
MA, USA) at room temperature and a constant crosshead speed of 10−3 s−1. All deformation samples
were machined from the extruded bar with their loading direction along the extrusion direction (ED).
Cylindrical samples for compressive loading had a diameter of 9.5 mm and a gauge length of 14 mm.
For tensile loading and reversed tensile loading after precompression, samples with screw heads on
both ends having a diameter of 5 mm and a gauge length of 13 mm were used.

Conditions for thermal and deformation-thermal treatment are based on our previous knowledge
of the extruded ZX10 alloy (11 µm) [9,10]. In the present work, samples were precompressed up to 3%
of plastic strain in order to introduce deformation twins inside the material. Further, using the same
strain level of precompression provides a reference basis for a study of the deformation behaviour of
the alloy with respect to grain size and the applied thermal or deformation-thermal treatment.

The heat treatment (HT) for 16 h at 150 ◦C followed by water quenching—isothermal aging
(hereafter denoted as 16 h @ 150 ◦C)—has been adjusted to maximize the strengthening effect of
precompressed material.

This HT has been applied to the as-extruded alloy in order to reveal its effect on the resulting
deformation behaviour. Therefore, the following experiments have been performed:

• Compression of the as-extruded state
• Tension of the as-extruded state
• Compression of heat-treated (16 h @ 150 ◦C) samples
• Tension of heat-treated (16 h @ 150 ◦C) samples
• Furthermore, samples have been precompressed up to 3% of plastic strain and subjected to
• Compression
• Tension
• A heat treatment of 16 h @ 150 ◦C followed by compression
• A heat treatment of 16 h @ 150 ◦C followed by tension

The proposed procedure allows revealing an influence of intermediate treatment: sole HT,
pre-deformation, combination of precompression and HT, on resulting deformation behaviour.

The global characterization of the texture of the alloy in as-extruded condition has been performed
by using X-ray diffraction (XRD). A Malvern Panalytical X-ray diffractometer X’Pert (Malvern, UK)
setup using CuKα radiation was employed to measure six pole figures on polished samples in reflection
geometry to a sample tilt of 70◦. To characterize the orientation distribution an open-source toolbox,
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MTEX (version 4.3.2, TU Chemnitz, Chemnitz, Germany, 2016) [12], has been employed for the
recalculation and systematization of inverse pole figures.

For the microstructure investigation, typical metallographic procedures including grinding with
SiC paper and polishing with diamond pastes down to a 0.25 µm particle size has been used. Finally,
the surface was polished by means of ion beam Leica EM RES102 system (Leica Mikrosysteme,
Wetzlar, Germany). The electron backscatter diffraction (ESBD) measurements were performed on
the longitudinal sections parallel to the ED using Zeiss Auriga Compact focused ion beam scanning
electron microscope (FIB-SEM) (Jena, Germany) equipped with an energy dispersive detector (EDAX,
Mahwah, NJ, USA). EBSD measurements were conducted at a working distance of 9 mm with 10 kV
acceleration voltage. The measured area and step size were varied with respect to the grain size of
the investigated samples to get statistically relevant data. The orientation imaging microscopy (OIM)
data analysis software (EDAX, version 7.3, Mahwah, NJ, USA, 2015) has been used for collection and
processing of the obtained data.

3. Results

Figure 1 shows orientation maps from longitudinal sections of the extruded bars. Obviously, the
average grain size varies as a result of the extrusion parameters. An increase of the extrusion temperature
or the extrusion speed would typically result in enhanced grain growth during recrystallization, the latter
as a result of increased deformation heating [13]. Thus, the average grain size of the investigated
alloy varies between 4 µm and 53 µm with measurement error about 5%, as shown in Figure 1. In the
case of the finest-grained extruded bar, the microstructure is not completely recrystallized and some
large grains elongated along ED are still present in the alloy. In the three other conditions, fully
recrystallized and homogeneous microstructures are found. To simplify a description of the different
ZX10 alloy extrusions, the average grain sizes of the as-extruded state are added to the alloy label,
i.e., a designation ZX10-04, ZX10-11, ZX10-23, and ZX10-53 are used throughout this work. The same
designation is also used for the precompressed and/or isothermally aged samples in order to simply
describe and follow the strengthening/softening of the individual alloy extrusions, i.e., deformation,
thermal, and deformation-thermal effects on the grain size are omitted on the alloy label.
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Figure 1. Initial microstructure of the extruded alloy: (a) ZX10-04, (b) ZX10-11, (c) ZX10-23, (d) ZX10-53
measured at longitudinal section (extrusion direction - ED is horizontal). Colour code used for
orientation maps is represented along ED. Triangular inverse pole figure (IPF) in each subfigure
represents texture of the alloy along ED (i.e., ED is perpendicular to IPF).
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The applied extrusion conditions result in textures with their basal planes mainly aligned parallel
to ED, Figure 2. In the case of ZX10-04, a pronounced

〈
1010

〉
texture component can be associated

with the elongated grains, as shown in Figure 1a. In the other cases, there is no such strong alignment
but a broader intensity distribution on the arc between the

〈
1010
〉

and
〈
1120

〉
poles. Therefore,

the investigated extruded bars are characterized by comparable textures and they can be distinguished
only by the grain size. It should be noted that results of texture measurements from XRD are in a good
agreement with those recalculated from EBSD results, Figures 1 and 2.
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Figure 2. Inverse pole figures of the extruded alloy in initial as-extruded condition obtained by X-ray
diffraction: (a) ZX10-04, (b) ZX10-11, (c) ZX10-23, (d) ZX10-53. The contour levels are 1, 1.5, 2, 3, 5, 7
m.r.d. (multiples of a random distribution).

Tensile and compressive deformation behaviour of the as-extruded state is presented in Figure 3.
In the case of the ZX10-04 alloy, a pronounced yield plateau can be observed on both deformation
curves, whereas the plateau is significantly longer on the compressive curve. Deformation curves of
the ZX10-11, ZX10-23, and ZX10-53 alloy exhibit a similar trend throughout each loading direction.
During tensile testing (Figure 3b), a continuous elastoplastic transition follows the increase in stress
over a strain hardening range, with decreasing slope towards the maximum stress. Fracture strains
appear grain size dependent, being higher at smaller grain size. In the case of compression tests
(Figure 3a), after yielding, an increase of the slope during the strain hardening range is observed up to
an inflection point before the slope decreases again. In earlier work this strain hardening behaviour has
been associated with twin-dominated deformation rather than slip-dominated deformation operated
in case of tensile testing [14]. If the heat treatment is applied before loading, there is no change in shape
of the tensile or compressive curves compared to those observed in as-extruded state (Figure 3), and
only a slight increase in the stress levels can be seen (deformation curves are not presented here).

To achieve 3% of precompression the following stress levels have to be reached for the particular
extruded bar: 170 MPa (ZX10-04), 140 MPa (ZX10-11), and 124 MPa (ZX10-23 and ZX10-53). In other
words, the stress level decreases with increasing grain size. During precompression, extension twins
were formed in the microstructure (including sample with the finest grain size). The evidence of
this type of twinning is presented in orientation maps in Figure 4 and it is also confirmed by the
appearance of a new texture component with intensity at the 〈0001〉 pole compared to the as-extruded
state, as shown in Figure 1.
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Figure 4. Microstructure of the precompressed extruded alloy: (a) ZX10-04, (b) ZX10-11, (c) ZX10-23,
(d) ZX10-53 measured at longitudinal section (ED is horizontal). Colour code used for orientation maps
is represented along ED. Triangular inverse pole figure (IPF) in each subfigure represents texture of the
alloy along ED (i.e., ED is perpendicular to IPF).

The stress–strain curves of precompressed samples with or without HT exhibit similar shape, only
with an increase of stress levels with applying HT. Thus, deformation curves for samples subjected to
precompression with subsequent HT (i.e., complete intermediate treatment) are presented in Figure 5.
During recompression, all curves exhibit a yield plateau independently on the grain size and overall
strain hardening behaviour for investigated samples is comparable, as shown in Figure 5a. Reversed
tensile loading results in S-shaped curves for all investigated samples (Figure 5b) in contrast to the
as-extruded samples, where rather concave shape is observed (Figure 1b). Moreover, this hardening
behaviour at the beginning of the deformation (i.e., a significant S-shaped curve up to cca. 4% of strain)
differs for the investigated samples.
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Figure 5. Compressive (a) and tensile (b) deformation behaviour of the extruded ZX10 alloy after pre-
compression up to 3% of plastic strain and subsequent heat treatment (16 h @ 150 ◦C).

In order to capture the changes in the strengthening/softening behaviour caused by mechanical
(predeformation), thermal or deformation-thermal treatment with respect to the grain size, a Hall—Petch
type interpretation can be used. Thus, the yield stresses are plotted vs. the inverse square roots of the
average grain size in Figure 6. The yield strength asymmetry is revealed with higher stress values
in tension rather than in compression (Figure 6a, Table 1). The grain-size related strengthening (i.e.,
Hall–Petch slope) is comparable for both loading directions (Figure 6a, compression—black solid line,
tension—black dash line). The application of heat treatment only slightly reduces tensile–compressive
yield asymmetry (Table 1) and changes the slope, caused by a larger increase in the stress in sample
with higher grain size (ZX10-53).
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of precompression with subsequent HT.

Table 1. Tensile–compression yield asymmetry values in MPa for different states of the ZX10 extrusions.
The yield asymmetry was calculated as the difference between the tensile and compressive yield
strength value (standard deviations of stresses is 2 MPa), i.e., negative values represent the reversed
tensile–compression yield asymmetry.

Designation As-Extruded Heat-Treated Precompressed Precompressed and Heat-Treated

ZX10-04 29 27 −83 −46
ZX10-11 34 31 −60 −55
ZX10–23 48 46 −62 −48
ZX10–53 39 36 −62 −43

In Figure 6b, the results for the precompressed samples are collected. For comparison, the results
for the as-extruded conditions are repeated. The selected precompression level changes the slope for
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subsequently loaded samples. During recompression (blue solid circle), in case of the finest grain size
(ZX10-04), the CYS is slightly decreased, whereas with the larger grained microstructures, the yield
level is increased distinctly, which results in a lower slope (blue solid line) compared to that for
compression of samples in as-extruded state (black solid line). It is noteworthy, that the compressive
yield stresses of samples in precompressed state are only slightly lower compared to stresses applied
to achieve 3% of strain during precompression.

For reversed tension of precompressed samples (blue open circle), a massive reduction of TYS
compared to the initial state was observed. Particularly, the decrease is at least of 60 MPa in case
of ZX10-53. Thus, a large reversed tensile–compression yield asymmetry was observed (Table 1).
However, it should be noted that the slope for tension and compression of precompressed samples
(Figure 6b, blue solid and dash lines) is similar.

The 16 h @ 150 ◦C heat treatment applied to the precompressed samples led to an increase in the
yield strength during a subsequent compressive or tensile loading compared to that for sample after sole
precompression (Figure 6b, red lines compared to blue lines, respectively). The increase was around
25 MPa for the compression and cca. 40 MPa for tension. Thus, the reversed tensile–compression yield
asymmetry was reduced (Table 1).

4. Discussion

4.1. Effect of Extrussion Parameters

It is obvious, that even small changes in the process parameter settings during extrusion, i.e.,
varying the temperature between 300–400 ◦C and changing the extrusion rate between 0.6 mm/s to
6.6 mm/s (still rather slow extrusion) leads to significant changes in the resulting microstructures
(homogeneity and a grain size range). In an attempt to keep the temperatures low that determine the
grain structure development during recrystallization, the fine-grained microstructure still maintains an
inhomogeneity due to an unfinished recrystallization process. Further grain growth can be enhanced
by adding more thermal energy with further increase of the temperature or the extrusion rate [13,15].
The pronounced texture component observed at the

〈
1010
〉

pole, in case of fined-grained material,
is linked to the unrecrystallized elongated grains. Similar results have been observed in rapid solidified
Mg alloy ribbons consolidated by extrusion, having a bimodal microstructure with an average grain
size lower than 1 µm [16]. It was explained in [17], that this texture component is developed due to
promoted basal and prismatic slip during the extrusion process.

Basically, all extruded bars (including the fine-grained one) exhibit a texture with preferential
basal planes parallel to ED, typical for extruded Mg alloys, which favours deformation twinning when
compression is applied along ED [18]. Thus, this type of texture contributes to a relatively strong
tensile–compression yield asymmetry with higher TYS values, as shown in Figure 6a. The small
deviation in the yield asymmetry for each tested sample regarding the average grain size can be
associated with the orientation distribution variation in the initial texture.

4.2. Effect of Heat Tratment

There is a small effect of the heat treatment on the strengthening for the as-extruded samples,
as shown in Figure 6a. It was documented in [9] that a heat treatment at 150 ◦C of this alloy promotes
the formation of Mg2Ca precipitates in a form of short and thin plates aligned along the basal planes.
These precipitates are distributed inside grains as well as along grain boundaries. The strengthening
effect of basal Mg2Ca precipitates is reported to be very limited [19], which corresponds with the
observed effect in present work, as shown in Figure 6a. It should be highlighted that in samples
with a larger grain size, the precipitation strengthening effect is slightly higher compared to the
finer-grained samples.
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4.3. Effect of Precompression

Before evaluating the possible benefits of deformation-thermal processing, the effect of
precompression on the following compressive or tensile properties is addressed. It is worth repeating
that during precompression up to 3% of plastic strain, extension twins were formed in the microstructure
(including sample with the finest grain size of 4 µm). The subsequent compression (Figure 6b, blue
solid line) led to a slight reduction of CYS compared to precompression stress levels without any
significant change in elongation to failure. This behaviour can be explained by an anelastic behaviour,
which is commonly observed in Mg alloys during loading–unloading cycles [20–22]. The tensile
deformation behaviour of the precompressed samples is strongly determined by the detwinning process.
The shrinkage of the existing extension twins that formed during precompression is responsible for
both: the significant decrease in the TYS (Figure 6b, blue dash line) compared to the initial state (black
dash line), as well as the S-shape of the deformation curve, as shown as Figure 5b. It is not likely to
associate this behaviour with a simple twin nucleation process, which determines the higher CYS of
the as-extruded condition. In case of reversed tension, detwinning is related rather to the mobility
of twin boundaries, which requires lower stresses compared to twin nucleation [23]. At the same
time, twin boundary mobility also determines changes in hardening behaviour at the beginning of the
tensile loading, i.e., significance of S-shape. A comprehensive study on reversed loading and resulting
deformation behaviour in Mg alloys can be found e.g., in [24,25].

It is obvious that for the precompressed samples, the grain-size strengthening slope is determined
by the precompression stress level. The precompression itself introduces mobile twin boundaries and
dislocations. The mobile twin boundaries determine the deformation and do this similarity in both
testing directions, tension and compression. Thus, a similar slope is observed (blue solid and dash line
in Figure 6b), which is different to the as-extruded case (black solid and dash lines).

4.4. Effect of Precompression and Heat Treatment

In case of deformation-thermal-treated samples, HT leads to a significant increase in the yield
stresses in both testing directions. The presence of dislocations acting as nucleation sites for fine
particles to precipitate is likely to play a major role, especially if the effect is compared to the much lower
increase of the yield stresses in case of the heat-treated samples without precompression in Figure 6a [26].
After precompression and HT, the yield stress increase is also more pronounced in tension (at least
40 MPa) compared to that in compression (cca. 25 MPa). However, HT does not introduce any
specific grain size related (i.e., change in the slope) change for both tension and compression loading
compared to samples after only precompression without HT. Thus, it is hypothesized that the yield
determining mechanism—the onset for continuous twin boundary motion—is not changed due to HT
in the investigated grain size range. This directly implies a distinct effect of dislocation precipitation
additionally to a twin boundary pinning effect. During reversed tension, beside detwinning, dislocation
slip remains the dominant mechanism, while during recompression, the twin nucleation is still the
most favourable one. Thus, the higher YS shift in tension compared to compression indicates that
precipitation at dislocations is main contributor to strengthening. The higher offset of tensile yielding
leads to conclusion that the onset of detwinning could be also shifted to higher stresses as a result of
precipitation. In case of the ongoing compression test, the nucleation of new twins can be assumed
because from the textures point of view this still is the preferred mechanism to be activated at lower
stresses [25,27]. The offset of additional 25 MPa is then related to the activation stress of twin nucleation
in this specific condition and it is not grain size dependent, as shown in Figure 6b.

However, despite of the ability of this alloy to strengthening by HT, the reversed tensile–
compression yield asymmetry persists throughout the investigated grain size interval (Figure 6b,
Table 1). Thus, precompression in combination with a following HT allows for the adjustment of the
tensile–compression yield asymmetry.
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5. Conclusions

The extruded ZX10 alloy with an average grain size of 4, 11, 23, and 53 µm, respectively, has been
prepared to study the influence of precompression and a subsequent isothermal aging on deformation
behaviour, especially yield strength behaviour, as a function of the grain size. The following conclusions
can be drawn from a comprehensive study of the individual processing steps:

• Heat treatment (HT) at 150 ◦C for 16 h leads to strengthening and consequently to a slight increase
in stress compared to the as-extruded condition within observed grain size interval.

• However, using HT after precompression, the strengthening effect is significantly higher compared
to that observed after HT of extruded bars.

• At the same time, HT reduces the impact of detwinning on yielding during reversed tensile loading.
• Precompression up to 3% of plastic strain slightly decreased the compressive yield strength and

distinctly reduced the tensile yield strength in comparison with the initial state. However, the
Hall–Petch plot is similar throughout the observed grain size interval for both loading conditions.

• The strengthening effect caused by heat treatment applied after precompression is more pronounced
in tension than in compression without any change in the Hall–Petch slope throughout the observed
grain size interval. Thus, there is no grain size dependence of strengthening.

• Deformation-thermal processing leads to reverse tensile–compression yield asymmetry with
higher strength values in compression. By comparison of the yield strength in the initial state
with that observed after deformation-thermal processing, it is evident that the increasing grain
size has a positive effect on compressive yield strength and also reduces negative effect on tensile
yield strength due to the twinning–detwinning process.
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