Skip to main content
. 2020 Jan 11;20(2):421. doi: 10.3390/s20020421
Algorithm 1 Training process for TFFNet
Input: traffic flow matrices:    {Xt|t=0,,n1};
    external factors: {Et|t=0,,n1};
    lengths of temporally dependent sequences: lc, lp, and lq;
    period parameter: p; trend parameter: q.
Output: TFFNet model .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
 S
 for all available time intervals t (1tn1) do
   Xc=[Xtlc,Xt(lc1),,Xt1]
   Xp=[Xtlpp,Xt(lp1)p,,Xtp]
   Xq=[Xtlqq,Xt(lq1)q,,Xtq]
   // Xt is the target value at time interval t
   put a training instance ({|Xc,Xp,Xq|,Et},Xt) into S
 initialize model parameters θ
 repeat
   randomly select a batch of training instances Sb from S
   find θ by minimizing the objective (θ) with Sb
 until the stopping criteria is satisfied
 output the learned TFFNet model