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Abstract: Musculoskeletal disorders are the most common form of occupational ill-health. Neck
pain is one of the most prevalent musculoskeletal disorders experienced by computer workers.
Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the
leading causes of neck pain. These factors may also alter respiratory functions. Health and safety
interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders
and reduce the consequent economic burden. In this work, a multi-parametric wearable system
based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing
activity of computer workers. The sensing elements were positioned on the neck, in the frontal and
sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory
frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both
flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results
showed the good performances of the proposed system in monitoring the aforementioned parameters
when compared to optical reference systems. The wearable system is able to well-match the trend in
time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and
breath-by-breath respiratory frequency values with percentage errors ≤6.09% and ≤1.90%, during
quiet breathing and tachypnea, respectively.

Keywords: neck movements; breathing activity; respiratory frequency; occupational health and
safety interventions; wearable system; fiber Bragg gratings; flexible sensors
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1. Introduction

Neck pain is a musculoskeletal disorder (MSD) highly prevalent in office works [1,2]. Thirty-one
percent of computer workers in Europe experience neck pain [3]. It represents a socio-economic burden
since it causes periods of absence from work, reduced productivity, and high utilization of health care
services [3–5]. Proper occupational health and safety interventions (e.g., ergonomics training and
disability management programs) can be sufficient to reduce MSDs’ symptoms and to contrast their
negative impacts on society and workplaces [6,7].

Awkward postures may be influenced by bad workers’ habits and by the non-compliance of
computer workstations to the ergonomics guidelines. Inadequate positions of monitor, mouse,
keyboard, heights of seat and desk can force workers to assume prolonged head flexion-extension
(FE) and twisted neck (i.e., when the top of the head tilts to one side while the chin to the other
side [8]). Inadequate and prolonged sitting postures, and workers’ stressful conditions can cause
a greater activation of the neck muscles [7,9–13]. Besides, alteration of cervicothoracic mobility is
correlated to respiratory dysfunctions [1,11,14–17]. Monitoring respiratory frequency (fR) during
working activities is of great value because it is sensitive to cognitive load, emotional stress, pain, and
discomfort. This parameter has been demonstrated to be related to cognitive load, with important
implications for workers exposed to highly demanding tasks [18–20].

A potential solution can be the use of systems able to collect quantitative information of both neck
postures and respiration. In the literature, only a few systems have been proposed for monitoring
wrong postures and breathing activity [21–23]. Focusing on the computer working scenario, systems
embedding sensors directly in contact with the body (i.e., contact-based systems) are recommended.
Such systems do not need structured environments and may allow the performance of job-related
activities without limitations. Among contact-based systems, wearables have been proven as an
effective and comfortable solution to monitor vital signs (e.g., respiratory frequency, heart rate, blood
pressure, and temperature) [21,24,25], posture and human body motion [26–28]. A recent technological
breakthrough in the area of wearables is promoting innovative applications for spine curvature
monitoring [29] using inertial sensors [30,31], strain gauge [32], and optical sensors [33–35]. However,
despite the great importance of neck posture monitoring to contrast adverse effects caused by long-term
wrong postural habits (e.g., reduced productivity, absence from work and high utilization of health care
services) only a few studies presented wearable sensors to monitor cervical spine movements [1,36,37].
Recent works proposed wearables based on piezoresistive sensors [38] and fiber Bragg grating (FBG)
sensors [39] for monitoring single plane neck movements.

In this work, we developed the first wearable system able to monitor both neck movements and
respiratory activity. Two FBG sensors were encapsulated into a flexible matrix to have a robust system,
and to improve the adherence of the sensing elements to the skin and the compliance with the neck
movements. FBGs were chosen because of their lightweight, small size, high metrological performances,
and immunity to electromagnetic interference [21,40–46]. A pilot study on five volunteers aimed at
assessing the proposed wearable system in following FE and axial rotation (AR) of the neck, and
fR. We focused on these two movements because prolonged head FE and twisted neck are the main
vicious computer workers’ habits and on fR because negatively influenced by job stress and wrong neck
positions [16]. Therefore, an unobtrusive system providing quantitative information on the mentioned
parameters may be helpful to prevent the effects of prolonged wrong postures and inadequate positions
on computer workers. Future work will be focused on applying the wearable system on patients
affected by MSDs to find out its potential to detect wrong postures and pathological conditions.

2. Description of the Wearable System

2.1. Flexible Sensors Based on FBG

The proposed wearable system consists of two flexible sensors based on FBG technology (i.e.,
FBG1 and FBG2 with Bragg wavelength λB

FBG1 of 1545 nm and λB
FBG2 of 1541 nm, grating length
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of 10 mm and reflectivity of 90%; AtGrating Technologies, Shenzen, China). Each flexible sensor
encapsulates an FBG into a rectangular shaped matrix (approximately 90 mm × 24 mm × 1 mm) made
of silicone rubber (Dragon SkinTM 20; Smooth On, Inc., Macungie, PA, USA), as shown in Figure 1.
The design, the manufacturing process, and the metrological properties of the flexible sensors are
detailed in [42].
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The working principle of the proposed system takes advantage of the FBG sensitivity to strain.
An FBG is a diffraction grating, whose effect is to reflect a narrow part of the broadband incident
spectrum. The peak of the narrowband spectral component, the λB wavelength, relies on the effective
refractive index of the fiber (ηeff) and the period of the grating (Λ) as:

λB = 2× ηe f f ×Λ (1)

Any external agent responsible for a longitudinal strain (ε) and/or a temperature variation (∆T)
may change both Λ and ηeff resulting in a λB shift (∆λB). Therefore, an FBG is intrinsically sensitive to
both ε and T [47]:

∆λB

λB
= (1− pe) × ε+ ((1− pe) × αΛ + αn) × ∆T (2)

with pe the effective strain optic coefficient, αΛ the fiber thermal expansion coefficient, and αn the
fiber thermo-optic coefficient. Focusing on the application of interest, neck movements, and breathing
activity mainly cause ε, and in turn ∆λB, since temperature contribution can be assumed negligible.

2.2. Sensors Positioning and Measurement Parameters

Sensors positioning was carefully evaluated to ensure high sensor capability in detection and
discrimination of different neck movements and breathing activity. A polyacrylate bandage (100%
polyester, Curafix® H, Lohmann & Rauscher, Padova, Italy) was used to allow a better adhesion and
compliance to the skin. This bandage features adhesiveness, elasticity, and high breathability.

To detect FE movements, FBG1 was positioned in correspondence of the cervical spine segment
C1–C7, along the longitudinal direction starting from C7. For the AR monitoring, FBG2 was positioned
on the right side of the neck, horizontally with respect to FBG1 starting from the center of C6,C7
(Figure 2A).

The positions were chosen to optimize the strain distribution along the FBG longitudinal direction.
The FE movements cause longitudinal strain on FBG1: its output increases during flexion from λB0

to λB1, while decreases during extension from λB1 to λB0 (Figure 2B). The AR movements are mostly
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detected by the FBG2: its output increases during left rotations, while a decrease is experienced during
the right rotations (Figure 2C).Sensors 2020, 20, x FOR PEER REVIEW 4 of 17 
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Figure 2. (A) Sensors’ positions; (B) schematic representation of the FBG1 response to flexion-extension
(FE) movements; (C) schematic representation of the FBG2 response to axial rotation (AR) movements.

Breathing monitoring is allowed by the neck muscles activity and cervicothoracic junction
movements that strain both the FBGs. This phenomenon results in ∆λB pseudo-periodic oscillations,
which allows estimating fR [48].

3. System Assessment

3.1. Experimental Set-Up and Protocol

In this pilot study, a total of five healthy subjects (three males and two females) were enrolled.
The subjects did not show any MSD or neck pain. Age and anthropometric measures (i.e., height, body
mass, neck circumference) of each participant were collected before starting the experimental tests
(Table 1).

Table 1. Participants characteristics.

Age (Years) Height (cm) Body Mass (kg) Neck Circumference (cm)

Volunteer 1 23 183 125 46
Volunteer 2 28 171 61 32
Volunteer 3 27 178 85 38
Volunteer 4 31 163 60 38
Volunteer 5 39 171 71 43

Participants were asked to sit on an armless and height-adjustable chair maintaining their feet on
the floor, both hands on the knees, with hips and knees flexed at 90◦ (Figure 3A). A Motion Capture
(MoCap) system (Smart-D, BTS Bioengineering Corp., Milan, Italy) was used as a gold standard to
assess the capability of the multi-parametric wearable system to discriminate FE and AR movements.
Four spherical, infrared photo-reflective markers (15.2 mm in diameter) were placed on each subject
as shown in Figure 4A,B. In particular, the first marker is placed on the forehead (marker P1 in
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Figure 4A,B), the second marker on the C7 spinous process (marker P2 in Figure 4A,B), and the last
two markers were placed in correspondence of the acromioclavicular joints (P3′ and P3” in Figure 4B).
8 cameras collected the trajectories of the markers at a sampling rate of 60 Hz. An FBG interrogator
(si255 based on HYPERION platform; Micron Optics Inc., Atlanta, GA, USA) was used to record the
FBGs output, at a sampling rate of 1000 Hz.

After markers and FBGs positioning, the protocol was explained to each subject. Participants
started with the head and neck in a neutral position and looking forward. Firstly, the participants
were asked to perform FE and AR movements, simultaneously recorded by the wearable and MoCap
systems. Each participant performed: (i) five FE repetitions, followed by 30 s in the neutral position,
and then five FE repetition (Figure 3B); (ii) five AR repetitions to the right, followed by 30 s in the
neutral position, and then by five AR repetition to the left (Figure 3B). An additional trial was executed
to assess the ability of the multi-parametric wearable system to monitor breathing activity (Figure 3C).
During this trial, a commercial flowmeter (SpiroQuant P, EnviteC, Alter Hozhafen, Wismar, Germany)
connected to a differential pressure sensor (163PC01D75, Honeywell, Minneapolis, MN, USA) was
used as a reference system. The output of the differential pressure sensor was collected through a
DAQ (NI USB-6009, National Instrument, Rockville, MD, USA) and a custom Virtual Instrument
developed in LabVIEW® environment, at the sampling frequency of 250 Hz. Participants were asked
to ventilate into a mouthpiece while performing two breathing patterns: ten breaths of self-controlled
quite breathing and ten breaths of self-controlled tachypnea; a 10 s stage of apnea was performed
between the two breathing patterns (Figure 3D).
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Figure 3. (A) Experimental set-up to assess the feasibility of the proposed system for monitoring neck
movement; (B) experimental protocol for monitoring FE and AR movements; (C) Experimental set-up
to assess the feasibility of the proposed system for respiratory frequency monitoring; (D) experimental
protocol for fR monitoring.

3.2. Data Analysis

3.2.1. Neck Movements

The number of FE and AR repetition was calculated from the raw data collected by the MoCap
and the wearable systems.

The 3D coordinates of the markers recorded by the MoCap system were used to carry out the
reference signals by following these steps: (i) the FE angle (αFE) was estimated in the sagittal plane
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(i.e., y–z) as the angle between the vectors
→

P2P1 and
→
u (same direction of the y-axis), as shown in

Figure 4A; (ii) the AR angle (θAR) was estimated in the transverse plane (i.e., x–z,) as the angle between

the vectors
→

P2P3′ and
→
v (the same trend may be obtained by considering the vectors

→

P2P3′′ and
→
v), as

shown in Figure 4B. The θAR decreases during the right rotation (clockwise) and increases during the
left rotation (counterclockwise).

Regarding the wearable system, the analysis of the neck movements’ detection was performed as
follows: (i) the changes of FBG1 output were used to evaluate FE movements since the chin lowered
down toward the chest causes a longitudinal deformation of FBG1; (ii) the changes of FBG2 output
were considered to evaluate AR movements, as the right and left rotations of the head around its
vertical line (y-axis in Figure 4A) causes a longitudinal deformation of FBG2.

Trends of signals collected by the MoCap system are shown in Figure 4C,D, and the ones collected
by the wearable system are shown in Figure 4E,F.
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To assess the capability of the proposed system to detect neck movements on different planes, the
collected data were processed by following two main steps:

1. the outputs of both the wearable and the MoCap systems were normalized in amplitude and
plotted over time to evaluate trend similarity between signals;
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2. the FE and AR repetitions were detected by using a custom peak detection algorithm in MATLAB
environment. FE movements were detected by considering the maximum peaks of both MoCap
and FBG1 signals: when αFE increases during the neck flexion (signal provided by the MoCap)
FBG1 is strained with a consequent increase of λB (Figure 5A,B). Right AR movements were
detected by considering the minimum peaks of both MoCap and FBG2 signals: whenθAR decreases
during the right AR (signal provided by the MoCap) FBG2 is compressed with a consequent
decrement of λB (Figure 5C). These data were collected during the first 5 AR repetitions; left
AR movements were detected by considering the maximum peaks of both MoCap and FBG2
signals because when θAR increases during the left AR (signal provided by the MoCap) FBG2 is
strained with a consequent increment of λB (Figure 5B). These data were collected during the last
5 AR repetitions.
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3.2.2. Breathing Activity

The assessment of the proposed wearable system for the fR monitoring was performed by using
the flowmeter as a reference instrument and following six main steps:

1. The outputs of the wearable system and the flowmeter were normalized in amplitude and split
into quiet breathing-related signals and tachypnea-related ones (i.e., FBG1qb, FBG2qb, FLOWqb,

FBG1tc, FBG2tc, and FLOWtc), as shown in Figure 6;
2. The signal of both FBG1qb and FBG1tc were inverted since the FBG1 was compressed during the

inspiration (when the volume of lungs increases) and tensioned during the expiration (when the
volume of lungs decreases). This step was not implemented on the FBG2 output since its trend in
time matches that of the reference system;

3. a third-order Butterworth low pass filter was applied on signals collected during quiet breathing
(cut-off frequency, fc, of 0.5 Hz) and during tachypnea (fc of 3 Hz);

4. spectral analysis in terms of power spectral density (PSD) was performed on the filtered signals
and the maximum frequency (f0) of both the reference and the wearable systems signals were
evaluated (Figure 7);

5. peak detection was performed by using findpeaks in MATLAB environment: the input parameter
related to minimum peaks distance was set starting from the value of f0 (Figure 7);

6. the respiratory periods of each breath (i.e., TR
i) was computed as the time elapsed between two

consecutive maximum peaks of the signal provided by FBG1, FBG2, and the flowmeter, see
Figure 7. The fR

i values during both quiet breathing and tachypnea were estimated as 60/TR
i and

expressed as breaths per minute (bpm).
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Figure 6. Signals collected by the flowmeter (blue trend) and by the FBGs (black trend) during both
quiet breathing (light blue box) and tachypnea (red box).

The assessment of the wearable system in the estimation of fR during both quiet breathing and
tachypnea was performed using three parameters:

1. in terms of percentage error (ep) as in:

ep [%] =
fR

FBG
− fR

FLOW

fR
FLOW × 100 (3)

where fR is the mean value of fR;
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2. in terms of absolute percentage errors for a breath-by-breath analysis:

∣∣∣ei
p

∣∣∣[%] =

∣∣∣ f i
R

FBG
− f i

R
FLOW

∣∣∣
f i
R

FLOW
× 100 (4)

where f i
R

FBG and f i
R

FLOW are the values of the ith fR estimated either by FBG1 or FBG2 and by the
flowmeter;

3. by calculating the mean value of the breath-by-breath absolute percentage errors (i.e., MAPE), for
each volunteer as in: ∣∣∣ei

p

∣∣∣ [%] =
1
n
·

∑ ∣∣∣ fRFBG
− fRFLOW

∣∣∣
fRFLOW · 100 (5)
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Figure 7. An example of signals processing performed for the fR estimation from data recorded by the
flowmeter and the wearable systems, during quiet breathing. The power spectral density (PSD) spectra
over frequency [Hz] and the peak detection over time [s] are shown for both the reference system and
the proposed wearable system based on two flexible sensors (FBG1 and FBG2). The Sf

n (t) signals are
filtered and normalized.
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3.3. Results

3.3.1. Detection of Neck Movements

Results showed that the proposed wearable system was able to follow both FE and AR movements
and detect the repetitions, as shown in Figure 8.Sensors 2020, 20, x FOR PEER REVIEW 10 of 17 
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Figure 8. The output changes of both the wearable (black line) and the Motion Capture (MoCap)
system (blue line) collected during FE and AR repetitions.

In particular, the wearable system showed good performance in detecting FE and left AR
repetitions. Indeed, the ∆λB

FBG1 and ∆λB
FBG2 patterns matched the MoCap ones (pink and light blue

boxes in Figure 8). On the contrary, ∆λB
FBG2 pattern during the right AR movements did not always

match the reference signal (green box in Figure 8).

3.3.2. Breathing Activity: Respiratory Frequency Estimation

All signals involved in the peak detection of the breathing analysis are shown in Figure 9. The peak
detection allowed estimating fR in all volunteers but one (for FBG1 output changes of Volunteer 1
during both quiet breathing and tachypnea).
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Figure 9. (A) signals collected by the flowmeter (blue line) and the FBGs (black lines) for each volunteer
during quiet breathing and (B) during tachypnea. All the signals are synchronized, filtered, and
normalized. The detected peaks are highlighted by using red markers.

The ep, the MAPE and the |ep| values are listed in Tables 2 and 3. The eFBG1 are always ≤1.53% and
≤0.71% whereas the eFBG2

≤ 6.09% and ≤1.90%, during quiet breathing and tachypnea, respectively.
The MAPEFBG1 errors are always ≤12.87% and ≤5.86%, and MAPEFBG2 always ≤15.36% and ≤4.90%,
during quiet breathing and tachypnea, respectively. Data from FBG1 for Volunteer 1 were discarded.
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Table 2. Mean fR values and percentage errors (eP).

Quiet Breathing

Volunteer fR
FBG1 [bpm] fR

FLOW [bpm] ¯
e

FBG1
p [%]

1 - 15.37 -
2 14.47 14.63 −1.09
3 14.36 14.14 1.53
4 22.36 22.09 1.22
5 15.15 15.22 −0.45

fR
FBG2 [bpm] fR

FLOW [bpm] ¯
e

FBG2
p [%]

1 15.30 15.37 −0.48
2 14.65 14.63 0.15
3 15.00 14.14 6.09
4 22.40 22.09 1.40
5 15.10 15.22 −0.79

Tachypnea

Volunteer fR
FBG1 [bpm] fR

FLOW [bpm] ¯
e

FBG1
p [%]

1 - 83.62 -
2 48.65 48.80 −0.32
3 83.28 83.87 −0.71
4 54.53 54.58 −0.09
5 37.88 38.09 −0.56

fR
FBG2 [bpm] fR

FLOW [bpm] ¯
e

FBG2
p [%]

1 82.02 83.62 −1.90
2 48.46 48.80 −0.72
3 82.98 83.87 −1.05
4 54.99 54.58 0.75
5 38.01 38.09 −0.19

Table 3. Breath-by-breath absolute percentage errors, |ep|, and mean absolute percentage error
(MAPE) values.

Quiet Breathing

Volunteer |ep
FBG1| [%] MAPEFBG1 [%]

1 - - - - - - - - - -
2 10.40 0.34 0.28 0.19 0.58 1.91 2.24 2.93 3.22 2.45
3 16.66 10.88 2.28 4.97 10.26 7.75 13.7 5.62 8.17 8.92
4 12.32 7.11 14.04 13.51 10.17 28.65 1.24 15.56 13.21 12.87
5 0.21 8.24 4.48 5.92 0.91 3.56 6.58 4.71 1.04 1.47

|ep
FBG2| [%] MAPEFBG2 [%]

1 5.28 3.76 0.20 2.18 4.75 4.19 1.33 4.92 4.33 3.44
2 2.69 0.86 2.06 1.14 0.97 2.09 0.19 6.76 4.42 2.36
3 29.36 12.12 4.05 3.63 17.35 27.82 8.21 15.75 19.93 15.36
4 15.34 16.03 4.22 0.85 7.36 3.46 3.33 0.16 1.35 5.79
5 2.53 1.52 0.95 1.95 ~0 0.41 2.31 2.89 1.23 1.53
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Table 3. Cont.

Tachypnea

Volunteer |ep
FBG1| [%] MAPEFBG1 [%]

1 - - - - - - - - - -
2 3.74 0.65 3.11 3.34 7.56 6.21 4.64 11.54 3.75 4.95
3 1.69 2.70 1.71 0.55 3.72 4.09 ~0 5.82 1.16 2.38
4 2.95 9.77 4.48 18.86 0.37 1.46 1.44 5.35 8.10 5.86
5 0.52 1.06 0.77 1.84 0.50 0.73 0.24 1.31 2.11 1.01

|ep
FBG2| [%] MAPEFBG2 [%]

1 6.95 2.26 0.56 2.72 2.63 3.68 1.63 2.81 5.13 3.15
2 4.07 0.97 3.67 2.52 3.34 0.96 0.97 6.69 3.45 2.96
3 8.85 7.14 0.55 ~0 1.12 1.14 0.55 1.11 7.41 3.10
4 6.41 2.47 9.92 5.24 5.43 2.11 6.23 6.29 ~0 4.90
5 0.52 1.33 0.26 1.84 0.49 ~0 1.72 1.02 0.72 0.88

4. Discussion

In this pilot study, a multi-parametric wearable system was used to detect both neck movements
(i.e., FE, and AR) and fR in computer workers. The system consists of two custom flexible sensors
based on FBG technology (i.e., FBG1 and FBG2). Each FBG was encapsulated into a silicone matrix
which improves the FBGs robustness, adherence to the skin, and compliance with the neck movements.
Moreover, the flexibility provided by the encapsulation enhances the FBGs usability making them
more competitive than other sensors in some medical applications [49].

This is the first study reporting on a wearable system able to monitor the abovementioned
parameters, which significantly expands our explorative study on a single FBG-based wearable
system [39]. Indeed, the presence of 2 FBGs allowed the new system to monitor both neck movements
and fR. In addition, we performed a quantitative assessment of system performances on five volunteers,

by using reference systems during each trial.
Regarding the neck movements’ detection, the proposed wearable system showed good

performance in following both FE and left AR movements and detect the repetitions, while some
limitations resulted in the right AR detection. These findings could be explained considering different
working conditions of FBG2 during AR repetitions: the grating is tensioned during left AR and
compressed during right AR. Therefore, the FBG2 compression during right AR causes a partially
adherence of this sensor to the neck surface. As a consequence, the asymmetric sensor arrangements
can cause small distortions of the reflection spectrum [50]. In the literature, the neck movements’
detection was mainly performed by using wearable systems based on electric sensors (e.g., inertial
sensors [36], accelerometers [37], and piezoresistive sensors [38]). Two inertial sensors were proposed
to evaluate FE, AR, and lateral bending (LB) of patients treated with cervical arthrodesis [36]. Sensors
were placed on the forehead and on the sternum, respectively, and an optoelectronic system was
used as a reference instrument. With respect to our system, such wearable inertial sensors required a
pre-calibration to align the sensor axis with the segment anatomical frame. Moreover, the measurement
units were not located on the neck but on single points of other anatomical segments. A 3-axis
accelerometer was placed on the forehead to monitor cervical postures [37]. Only FE movements were
monitored but no reference instrument was used to assess such capability. The flexible encapsulation
of our sensors allows for a multi-point positioning and better compliance with the neck anatomy with
respect to these solutions based on accelerometers or inertial sensors. A wearable system based on six
piezoresistive sensors was proposed to monitor FE, AR, and LB movements [38]. As our system, the
sensing elements detected neck movements from the induced strain, being in direct contact with the
skin. Each movement was monitored by using a couple of sensors on the opposite sides of the neck
whereas we used only one FBG for FE and one FBG for AR. Our choice was motivated by the desire to
enhance system wearability and comfortability. Results in the literature [38] suggested that placing
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sensors diametrically opposite on the neck can allow monitoring both right and left AR movements
despite the higher amount of wires.

Further developments of our system can address the wiring issue thanks to the multiplexing
FBGs capability. In all these studies, the monitoring of breathing activity was not taken into account,
although evidences suggested a relationship between neck pain and respiratory disfunction [16,17].
Moreover, fR is sensitive to cognitive load and emotions with important implications for workers
exposed to highly demanding tasks [18–20].

The high sensitivity of the custom made flexible FBGs allows our system the monitoring of fR from
the neck. Our findings suggest a good accuracy in fR monitoring in terms of mean and breath-by-breath
values in all trials but one (i.e., Volunteer1). In this trial, FBG1 failed during both quiet breathing and
tachypnea, presumably because of a non-well adherence of the sensing element to the skin due to a
more prominent C1–C7 cervical segment and skin surface properties. For all the other volunteers,
both FBG1 and FBG2 were able to detect fR values. They showed comparable results in terms of
mean and breath-by-breath values during both quiet breathing and tachypnea (i.e., ep ≤ 6.09% vs.
≤1.90%, |ep| ≤ 29.36% vs. ≤18.86%%, and MAPE ≤15.36% vs. ≤5.86% during quiet breathing and
tachypnea, respectively). Similar results between fR values estimated by FBG1 and FBG2 are confirmed
by considering the agreement with respect to the reference instrument (e.g., MAPEFBG1

≤12.87% vs.
MAPEFBG2

≤ 15.36% during quiet breathing, and MAPEFBG1
≤ 5.86% vs. MAPEFBG2

≤ 4.90%, during
tachypnea).

In the literature, the majority of wearables for fR monitoring used strain sensors located at the chest
surface [42,51–53] Only a few studies investigated the possibility of monitoring respiratory activity by
using acoustic sensors in contact with the neck [54,55]. An acoustic sensor was attached to the anterior
lateral base of the neck to measure the sounds coming from the flow of air in the trachea [54]. Each of
the five volunteers enrolled in the study was instructed to breathe slowly, passing to quiet breathing
and ending with tachypnea. A commercial acoustic transducer (RRaTM rev C, Masimo Corp, Irvine,
CA, USA) was applied to the patient’s throat and connected to a monitor (Rad-87 Pulse CO-Oximeter,
Masimo Corp.) [55]. These acoustic systems are usually employed in sound-controlled environments
and need the rejection of noised signals related to heartbeat, muscle activations, and swallowing [56].

5. Conclusions

In conclusion, we reported an FBG-based multi-parametric wearable system which can be
considered a first attempt to monitor both neck FE and AR movements since highly affected by
the harmful postural habits of computer, and fR since the evident correlation between wrong neck
postures with respiratory dysfunctions. The present study is intended to be a pilot study in which
five healthy volunteers were enrolled, both males and females and the capability of neck movements
detection and fR monitoring was assessed. The strength of the proposed multi-parametric wearable
system relies on the capability to provide multiple measures that could have a great impact in the
occupational health and safety interventions. Further tests will be devoted to increasing the sample
size and enrolling patients suffering from neck pain to figure out if the system is able to discriminate
pathological conditions from healthy ones. More FBGs will be added to improve the system capability
of monitoring neck movements (including also LB) and study the influence of different anthropometric
characteristics on the FBGs output. Finally, the capability of the system to estimate neck range of
motion during FE, AR and LB movements will be investigated.
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