Skip to main content
. 2020 Feb 11;21:53. doi: 10.1186/s12859-020-3393-1

Table 2.

Performance values in terms of the precision (%), recall (%) and F1-score (%) for the state-of-the-art methods and the proposed model DTranNER

Corpus BC2GM BC4CHEMD BC5CDR-Chemical BC5CDR-Disease NCBI-Disease
P R F1 P R F1 P R F1 P R F1 P R F1
Att-BiLSTM-CRF (2017) - - - 92.29 90.01 91.14 93.49 91.68 92.57 - - - - - -
D3NER (2018) - - - - - - 93.73 92.56 93.14 83.98 85.40 84.68 85.03 83.80 84.41
Collabonet (2018) 80.49 78.99 79.73 90.78 87.01 88.85 94.26 92.38 93.31 85.61 82.61 84.08 85.48 87.27 86.36
Wang et al. (2018) 82.10 79.42 80.74 91.30 87.53 89.37 93.56 92.48 93.03 84.14 85.76 84.95 85.86 86.42 86.14
BioBERT (2019) 85.16 83.65 84.40 92.23 90.61 91.41 93.27 93.61 93.44 85.86 87.27 86.56 89.04 89.69 89.36
DTranNER 84.21 84.84 84.56 91.94 92.04 91.99 94.28 94.04 94.16 86.75 87.70 87.22 88.21 89.04 88.62

Note: The highest performance in each corpus is highlighted in Bold. We quoted the published scores for the other models. For Wang et al. [11], we conducted additional experiments to obtain the performance scores for two corpora (i.e., BC5CDR-Chemical and BC5CDR-Disease) using the software on their open source repository [45]