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Glioblastomas are among the most lethal cancers, with a 5 year survival
rate below 25%. Temozolomide is typically used in glioblastoma treat-
ment; however, the enzymes alkylpurine-DNA-N-glycosylase (APNG)
and methylguanine-DNA-methyltransferase (MGMT) efficiently mediate
the repair of DNA damage caused by temozolomide, reducing treatment effi-
cacy. Consequently, APNG and MGMT inhibition has been proposed as a
way of overcoming chemotherapy resistance. Here, we develop a mechanistic
mathematical model that explicitly incorporates the effects of chemotherapy
on tumour cells, including the processes of DNA damage induction, cell
arrest and DNA repair. Our model is carefully parametrized and validated,
and then used to virtually recreate the response of heteroclonal glioblastomas
to dual treatment with temozolomide and inhibitors of APNG/MGMT.
Using our mechanistic model, we identify four combination treatment strat-
egies optimized by tumour cell phenotype, and isolate the strategy most
likely to succeed in a pre-clinical and clinical setting. If confirmed in clinical
trials, these strategies have the potential to offset chemotherapy resistance in
patients with glioblastoma and improve overall survival.
1. Introduction
Glioblastoma, or glioblastoma multiforme (GBM), is the most common and
malignant of glial tumours, accounting for 60–75% of all astrocytomas. More
than 90% of GBM are estimated to develop over a period of only a few days
to weeks [1,2]. The malignancy and lethality of GBM is driven by a rapid rate
of cancer cell proliferation, coupled with a high degree of vascularity. Indeed,
with improvements in leukaemia survival since the 1980s, brain cancers have
taken over as the leading cause of childhood cancer death [3]. The first step
in treating GBM is maximal resection or surgery, if possible. Radiation and che-
motherapy with temozolomide (TMZ) may be administered subsequently [4,5].
With standard treatment, the median survival of adults diagnosed with high-
grade brain cancer (grades III and IV) is less than 15 months, and fewer than
10% survive beyond 5 years; in children, GBM 5 year survival is below 25%
[6]. Without treatment, patients with GBM have a life expectancy of less than
three to four months [4]. GBM-associated death rates remain high, in part
because the last few decades have produced only modest advances in treat-
ment. Consequently, the standard therapy for GBM remains palliative, rather
than curative, and patients ultimately die from this disease [1].

Chemotherapy has proven to be effective against cancers in general;
however, in the case of brain tumours, it has failed to produce sustained
remission. GBM typically responds well in the first few cycles of TMZ
administration. However, the emergence of resistance diminishes the cyto-
toxic effects of TMZ in subsequent cycles until there is little or no
response to treatment [4]. Several factors may contribute to TMZ resistance
(for a comprehensive review, see [7]). Here, we are concerned with resistance
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mediated by the efficient repair of treatment-induced DNA
damage in cancer cells.

The chemical mechanism by which TMZ induces cell
death is DNA methylation, leading to double-stranded
breaks (DSBs) and thus to apoptosis. A range of mechanisms
by which methylation causes DSBs are ably reviewed in [8].
The cell-killing potential of this methylation depends on the
position within the purine bicyclic ring where the methyl-
adduct is formed. The majority of TMZ-induced methylation
sites are N7-meG (greater than 70%) and N3-meA (9.2%). Less
frequently (less than 6%) TMZ creates O6-meG adducts [9].
N7-meG and N3-meA contribute minimally to the cytotox-
icity of TMZ as they are efficiently repaired via the base
excision repair (BER) pathway, mediated by the alkylpurine-
DNA-N-glycosylase (APNG) enzyme. O6-meG is more
lethal for the cell and is repaired via the methylguanine-
DNA-methyltransferase (MGMT) pathway, mediated by the
MGMT enzyme [9,10]. Additionally, the mismatch repair
(MMR) pathway may aid in DNA demethylation. However,
the expression of MMR genes is linked to TMZ sensitivity
[7]; therefore, this pathway is not considered here. The repair
of TMZ-induced DNA damage reduces its therapeutic efficacy.
There is a consensus in the literature that over-expression of
MGMT is a primary factor driving TMZ resistance [7,11–13],
and a landmark study [14] demonstrated that MGMT promo-
ter methylation was associated with almost a doubling of both
progression-free survival and overall survival, in compari-
son with unmethylated glioblastoma. Finally, in a
multivariate model including both MGMT methylation
and APNG expression, high APNG expression was associ-
ated with improved survival cumulative with the benefit
of MGMT methylation [15]. Consequently, it has been
hypothesized that MGMT and APNG expression or methyl-
ation may be used as biomarkers for glioma response to
treatment with alkylating agents such as TMZ [15–17].

Preventing the onset of chemotherapy resistance by inhibit-
ing MGMT or APNG in combination with TMZ administration
represents an exciting new avenue of research with the potential
for high impact in GBM treatment. Small molecule inhibitors of
MGMT, such as bortezomib, and APNG are in various stages of
pre-clinical or clinical development, with a majority of this
effort being directed at MGMT inhibition [8,18]. With all of
these new possibilities, a critical challenge in brain cancer thera-
peutics is the optimization of dosing and scheduling when
alkylating agents such as TMZ are combined with DNA
repair enzyme inhibitors. At the time of writing, no experimen-
tal studies could be found that consider the simultaneous
inhibition of the two repair enzymes. Here, we propose a quan-
titative modelling framework that is used to conduct in silico
pre-clinical and clinical trials with a view to predicting the
potential of—and optimizing—such a combination.

Specifically, we develop a mathematical model of the
response of GBM cells to TMZ administration, which incorpor-
ates TMZ-induced DNA damage, and its subsequent repair, at
the level of intracellular molecular mechanisms. This allows us
to simulate the effect of APNG and MGMT inhibition in a
mechanistic, rather than phenomenological, manner. The
model is extensively calibrated and validated versus available
experimental data. We then optimize dosing and scheduling
for the triple combination of TMZ and small molecule inhibi-
tors of APNG and MGMT by simulating the treatment of
phenotypically diverse GBM xenografts grown in virtual
mice. Finally, the effect on patient survival of the combination
with maximum anti-tumour potential is investigated by enrol-
ling virtual human patients in an in silico clinical trial. Analysis
of our results reveals critical features driving resistance to TMZ
and evolution of tumour cell phenotypes under various treat-
ment strategies. Our approach offers the key advantage of
consistent comparison across strategies since a virtual patient
may be treated with as many strategies as needed, allowing
us to compare results without the confounding factor of inter-
patient variability. Mathematical models have been employed
extensively to describe the growth and treatment of gliomas
(for instance, see [19–22]; see [23] for a review). However, to
the best of our knowledge, ours is the first to explicitly incorpor-
ate DNA methylation and repair pathways, and to consider
DNA repair inhibition in combination with chemotherapy.

2. Methods
2.1. Mathematical framework
Our modelling framework connects subcellular molecular inter-
actions that govern outcomes at a cellular level with the
resultant population-level behaviour of the tumour. A model
schematic is shown in figure 1, and a description of our model
derivation follows. Within the nucleus, TMZ induces methylation
of nucleic acids, a process wherein a hydrogen atom on a DNA
base is replaced by a methyl group (R−CH3). Methylation of
DNA, in turn, leads to the formation of DNA adducts [9,10].
Briefly, the active metabolite of TMZ binds to DNA reversibly, form-
ing drug–DNA complexes. Subsequently, the methyl group on the
drug is transferred irreversibly to DNA, resulting in adduct
formation, and TMZ is rendered inactive. In our formulation,
this process is approximated by the following reactions:

Tin þN7
���! ���

kNf

kNr

D7���!
kNp

A7 þ uTin and

Tin þO6
���! ���

kOf

kOr

D6���!
kOp

A6 þ uTin:

Here, capital letters denote concentrations of intracellular
species: Tin, intracellular TMZ; Tout, extracellular TMZ; N7,
unmethylated DNA at N7-G or N3-A positions; O6, unmethy-
lated DNA at O6-G positions; D7 and D6, position-specific
drug–DNA complexes; A7 and A6, DNA adducts N7-meG/N3-
meA and O6-meG, respectively; and uTin, inactive intracellular
TMZ. Lowercase ks with sub-/superscripts denote the respective
rates of reaction. The above chemical reactions are translated into
mathematical equations assuming mass action kinetics:

dTout

dt
¼ �goiTout þ gio

Vin

Vout
Tin � KdTout,

dTin

dt
¼ goi

Vout

Vin
Tout � gioTin � kNf N7Tin � kOf O6Tin

þ kNr D7 þ kOr D6,

dN7

dt
¼ �kNf N7Tin þ kNr D7,

dD7

dt
¼ kNf N7Tin � kNr D7 � kNp D7,

dA7

dt
¼ kNp D7,

dO6

dt
¼ �kOf O6Tin þ kOr D6,

dD6

dt
¼ kOf O6Tin � kOr D6 � kOpD6

and
dA6

dt
¼ kNp D6:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(2:1)
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Figure 1. Model schematic. Treatment with TMZ causes DNA methylation, leading to cell arrest. TMZ-induced methylation sites are N7-meG, N3-meA (repaired by
the APNG-mediated BER pathway) and O6-meG (repaired by the MGMT pathway). If DNA damage repair is successful, the cell recovers to the proliferating pool, or
undergoes apoptosis otherwise. (Online version in colour.)
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In the above equations, we distinguish between intracellular (Tin)
and extracellular (Tout) TMZ. The rate constants γj, j = {oi, io}
represent the transport of TMZ in and out of the cell, while
Kd represents the rate of clearance of TMZ from the extracellu-
lar compartment. The constants Vj, j = {in, out} represent the
apparent volumes of distribution of TMZ in the intra- and
extracellular compartments. Once DNA damage exceeds a criti-
cal threshold, the cell enters a state of arrest and different DNA
repair mechanisms are triggered depending on the site of
damage. For clarity, subcellular species in arrested cells are rep-
resented with the superscript *. For instance, if the damage is
O6-meG, the MGMT pathway is triggered. When MGMT
encounters O6-meG adducts, it transfers the methyl group to
an internal cytosine residue. After successfully receiving the
methyl group, MGMT inactivates itself, becoming a suicidal
protein [24]. In our formulation, this process is approximated
by the following reaction:

A�6 þMGMT� ���! ���
kMf

kMr

C�6���!
kMp

O�6 þ uMGMT�:

Briefly, MGMT binds reversibly to the methyl group on
O6-meG, forming a repair enzyme–DNA adduct complex.
Subsequently, the methyl group from the O6 position of
guanine is removed, and O6-meG is restored irreversibly to
its standard form, O6-G. A similar mechanism is assumed
for APNG-mediated demethylation of N7-meG and N3-meA,
that is,

A�7 þAPNG� ���! ���
kAf

kAr

C�7���!
kAp

N�7 þ uAPNG�:

Here, MGMT*, C�6, uMGMT*, APNG*, C�7 and uAPNG* denote
the intracellular concentration of MGMT, MGMT-O6-meG
complex, inactive MGMT, APNG, APNG-N7-meG complex
and inactive APNG, respectively. Assuming mass action
kinetics, and including production and degradation of species
when appropriate, the above reactions yield the following
equations governing DNA repair in arrested cells:

dN�7
da
¼ kApC

�
7,

dA�7
da
¼ �kAf A�7APNGþ kAr C

�
7,

dC�7
da
¼ kAf A

�
7APNG� kAr C

�
7 � kApC

�
7,

dAPNG
da

¼ SAPNG � lAPNGAPNG� kAf A
�
7APNGþ kAr C

�
7,

dO�6
da
¼ kMp C

�
6,

dA�6
da
¼ �kMf A�6MGMTþ kMr C�6,

dC�6
da
¼ kMf A

�
6MGMT� kMr C�6 � kMp C

�
6,

dMGMT
da

¼ SMGMT � lMGMTMGMT� kMf A
�
6MGMTþ kMr C�6:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(2:2)

We remark that, here, a is a second time variable that represents
how long a cell has spent in the arrested compartment. The con-
stants Si and λi, i = {APNG, MGMT} represent the rates of repair
enzyme production and degradation, respectively. At the popu-
lation level, the tumour is compartmentalized into proliferating
and arrested cells. Following experimentally observed growth
patterns, proliferating cells are assumed to grow either logisti-
cally, when simulating in vitro cell growth inhibition assays
and in vivo xenograft assays, or exponentially, when simulating
GBM growing in situ. TMZ application induces DNA damage,
leading to cell cycle arrest and triggering of the BER and
MGMT pathways [7]. An age structure is imposed on the
arrested compartment to account for the time taken from induc-
tion of DNA damage to cell death, or recovery following
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successful completion of damage repair. We remark that TMZ
targets actively proliferating cells, inducing arrest in G2/M
phase [10,25]. Consequently, cells in the arrested compartment
are assumed to be unaffected by its further application. The fol-
lowing equations are taken to represent these population-level
processes:
lso
cietypublishing.org/journal/rsif
J.R
dP
dt|{z}

ProliferatingCells

¼ aP P(t) 1�
P(t)þ

ðt
0
A(t, a)da

K

0
BB@

1
CCA

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Proliferation

� G(A7, A6)P(t)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Arrest

þ
ðt
0
C(N�7 , O

�
6)A(t, a)da|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Recovery

and
@A
@t
þ @A

@a|fflfflfflfflffl{zfflfflfflfflffl}
ArrestedCells

¼ �C(N�7 , O
�
6)A(t, a)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Recovery

� (F6(MGMT�, a)þF7(A�7, a))A(t, a)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Apoptosis

, A(t, 0) ¼ G(A7, A6)P(t):

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2:3)
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Here, P(t) represents the number of proliferating tumour cells at
time t, and A(t, a) the number of arrested cells at time t that have
been arrested for a units of time. Furthermore, α is the proliferation
rate of tumour cells and K is the carrying capacity (when needed).

The subcellular and population scales are connected by
decisions made at the cellular level, represented in the above
equations with upper case Greek letters. For instance, cells
enter a state of arrest (with age 0) at a rate Γ, which is assumed
to depend on the level of DNA damage. From an arrested state,
cells may recover to the proliferating pool at a rate Ψ, if DNA
damage repair has been successful, which is assumed to be
proportional to the fraction of DNA that has been repaired.
Arrested cells may also undergo apoptosis at rates Φ6 and Φ7,
taken to be functions of the levels of damaged DNA and
repair enzymes and the amount of time spent in an arrested
state. Specifically, these rates are taken to be:
72
2
G(A7, A6) ¼ m
A7 þ A6

Total DNA
, C(N�7 , O

�
6) ¼ r

N�7 þO�6
Total DNA

and F6(MGMT�, a) ¼ b1
1þ e�c1(a�a0)

e�c2MGMT� , F7(A�7, a) ¼
b2

1þ e�c1(a�a0)
1

1þ e�c3A
�
7
:

9>>=
>>; (2:4)
The rates of cell arrest and recovery are taken to be pro-
portional to the fraction of damaged and healthy DNA,
respectively, with constants of proportionality μ and ρ, respect-
ively. The functional forms of the rates of arrested cell death
are chosen to reflect the following empirical observations. The
cytotoxicity of TMZ has been shown to correlate positively
with time spent in an arrested state [26–28]. Thus, the rates of
arrested cell death are assumed to be increasing functions of
time spent in an arrested state, with a0 denoting a characteristic
waiting time before apoptosis is initiated and c1 denoting the
sensitivity of arrested cells to this waiting time. bi, i = {1, 2} are
the maximum rates of arrested cell death due to O6-meG or
N7-meG. Furthermore, it has been shown that MGMT expression
protects cells from TMZ-induced apoptosis [29]; thus the rate of
death due to O6-meG (Φ6) is assumed to decrease exponentially
as MGMT expression increases, with c2 representing sensitivity
to intracellular MGMT. On the other hand, high levels of
N3-meA and N7-meG trigger apoptosis [29]; thus the rate of
death due to this type of damage (Φ7) is assumed to be a decreas-
ing function of N7-meG, with c3 representing sensitivity to A�7.

The various model variables and parameters, together with
their values, meaning and units, are listed in the electronic
supplementary material, tables S1 and S2.
2.2. Structural identifiability and estimation of model
parameters

Our model has 31 parameters that need to be estimated from avail-
able experimental data (see the electronic supplementary material,
section S2 for a description of the experimental data used for
model parametrization). With such a large number of unknowns,
it is crucial to check whether the estimation problem is well
posed [30]. This question is addressed by conducting a structural
identifiability analysis, a process which determines whether indis-
tinguishable outputs of the model imply uniqueness of parameters,
disregarding issues related to data quantity or quality [31]. This
analysis reveals the maximum possible information about par-
ameters a given type of data contains and is therefore essential if
we are to have any degree of confidence in parameter estimates
and, by extension, model predictions.

We use the Matlab toolbox GenSSI 2.0, which uses a series
approach to determine structural identifiability and presents
the results using identifiability tableaus (for details, see [32]).
Briefly, Lie derivatives are employed to arrive at a system of
equations for model parameters in terms of model variables.
The analysis has three possible outcomes for each parameter. A
given parameter is deemed globally identifiable if the resulting
system can be solved uniquely for it, that is, the parameter can
be uniquely determined from the system output. A parameter
is locally identifiable if the above result holds in a neighbour-
hood of it. Finally, a parameter is unidentifiable if infinitely
many values of it yield the same model output [31]. All model
parameters were found to be globally or locally structurally
identifiable, thus validating the structure of our proposed model.

We next extensively calibrated parameters using available clini-
cal data from awide array of experiments. Moreover, model output
was found to match experimental data that were excluded from the
fitting process, thus validating our model formulation. A detailed
description of the structural identifiability analysis, clinical data,
parameter estimates and model validation is provided in the elec-
tronic supplementary material. Identifiability tableaus for this
analysis are presented in electronic supplementary material,
figure S1 F–H; best fits are shown in electronic supplementary
material, figure S2; model validation in electronic supplementary
material, figure S3; with the parameter value estimates recorded
in electronic supplementary material, tables S3 and S4.
2.3. Sensitivity analysis and energy constraints yield
phenotypically diverse virtual GBM cell lines

Predicting optimal treatment protocols requires not only a validated
mechanistic model but also a phenotypically diverse population
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of cells that is representative of different responses to treatment.
We generate such a cohort of virtual cell lines by first identify-
ing, by means of local and global sensitivity analyses, which
features—or model parameters—are critical drivers of resist-
ance to TMZ. Next, diverse cell phenotypes are generated by
allowing these features to vary randomly, keeping in mind
that all cellular processes require energy, only a limited amount
of which is available to each cell.

Significant variance has been observed across cell populations
in proliferation rates (or doubling times) [33] and repair enzyme
expression levels [34]. Furthermore, repair enzyme turnover
time scales may affect how fast DNA damage repair is completed.
Therefore, in our sensitivity analysis, we focus on the rates of: cell
proliferation (α); repair enzyme expression (SMGMT, SAPNG); and
repair enzyme degradation (λAPNG, λMGMT).

We first conducted a local sensitivity analysis, the results of
which are presented in figure 2 (and in electronic supplementary
material, figure S4). Following the experimental protocol in [35],
cell growth inhibition assays were simulated, with 105 cells cul-
tured in the presence of 500 μM TMZ for one week, and
surviving cells counted at the end of the experiment. Figure 2a
reveals that cell survival increases as repair enzyme expression
rates are increased, this effect being more pronounced as
MGMT expression is varied for a fixed level of APNG expression.
Interestingly, cells expressing high levels of MGMT show simi-
larly high survival rates even if APNG expression is
suppressed. We next investigate the effect of varying the rates
of cell proliferation and repair enzyme turnover on cell survival.
For each parameter, four distinct cell phenotypes are considered,
based on whether or not MGMT and APNG are expressed. From
figure 2b, we observe that, in cells expressing at least one repair
enzyme, increasing the rate of cell proliferation—or, equivalently,
decreasing cell doubling time—is associated with improved cell
survival, and hence greater resistance to TMZ. Further, as can
be seen in figure 2c, whenever cells express MGMT, cell survival
increases as the rate of MGMT turnover increases. On the other
hand, figure 2d reveals that the rate of APNG turnover has little
impact on cell survival. This is because we account for the
experimentally observed [29] pro-survival effect of MGMT on
TMZ-treated cells. In all cases, cells not expressing either repair
enzyme are most sensitive to TMZ and their survival is minimally
affected by varying any of the considered parameters.

Local sensitivity analysis ignores the effect of any correlation
between various parameters, and, hence, the biological processes
they represent. Therefore, we also performed a global sensitivity
analysis with all parameters being varied simultaneously, using
the eFAST and Sobol methods [36]. Figure 2e,f plots eFAST
first- and total-order indices and Sobol’s first-order and total
effect indices, respectively, for the various parameters considered.
We see that resistance to TMZ is maximally affected by MGMT
expression, followed by APNG expression and, to a lesser extent,
cell proliferation rate. The rates of turnover of both enzymes have
a minimal impact on cell survival, with their sensitivity indices
indistinguishable from that of a dummy variable (figure 2e).

From the above analyses, we conclude that the rates of MGMT
and APNG expression and cell proliferation may be significant
determinants of tumour cell sensitivity to TMZ. Therefore, virtual
cell lines with phenotypes capable of capturing diverse responses
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to TMZ are created by allowing SMGMT, SAPNG and α to vary ran-
domly, keeping all other model parameters fixed. However,
cellular activities such as proliferation and repairing DNA
damage require energy, and tumour cells have to balance the
allocation of limited resources towards such activities. Motivated
by the approach of Nagy & Armbruster [37], we derive an
energy constraint inequality to which all cells must adhere. This
places bounds on how SMGMT, SAPNG and α may vary relative to
each other.

Specifically, tumour cells perform the following activities: cell
division; APNG and/or MGMT expression; and maintenance of
normal physiological function (inclusive of all other cellular pro-
cesses). Each activity requires the production of relevant cellular
material, for which energy—provided by ATP—is consumed.
Based on data relating to ATP reserves maintained in a cell,
and typical rates of glycolysis and ATP hydrolysis, an upper
bound for the energy available to a cell (MEC ) is derived, result-
ing in the following energy constraint inequality. We define
energy as the effort required to create 1 μM material in 1min,
where effort relates to the rate of ATP consumption (see electronic
supplementary material for details):

hPSP þ hASAPNG þ hMSMGMT þ hbSb � MEC : (2:5)

Here ηP, ηA , ηM and ηβ are efforts related to proliferation, APNG
production, and MGMT production and maintenance, respect-
ively, and are assumed to be constant across all cell lines. SP
(taken to be proportional to α) and Sβ are the production rates
of cellular material needed for division and maintenance,
respectively. Virtual cell lines are generated by allowing SP,
SAPNG and SMGMT to vary, while ensuring the above inequality
is satisfied. Thus, for instance, if a particular cell line over-
expresses APNG, SAPNG would have a high value. This would
result in a correspondingly high energy investment towards pro-
ducing APNG, given by the product ηA SAPNG, and the above
inequality would limit how fast the cell divides or how much
MGMT it can produce by constraining the possible choices for
SP and SMGMT. We remark that, in the absence of such a con-
straint, cells with the least doubling time and maximum repair
enzyme expression would dominate. However, such cells would
consume biologically unrealistic amounts of energy.
3. Results
3.1. MGMT and APNG expressions levels, rather than cell

doubling time, are indicators of resistance to TMZ
Next, we simulate xenograft treatment assays to determine the
relative contribution to TMZ resistance of the key features ident-
ified above. Briefly, 500 ‘virtual’ mice received intracranial
implantations of 105 GBM cells. This initial tumour size reflects
the experimental protocol followed in [38–42]. Each such
implantation comprised equal numbers of 10 randomly chosen
cell lines, thereby ensuring phenotypic heterogeneity in the
resultant xenografts. At day 0, each animal was treated with a
single dose of 500 μM TMZ, and tumour volume and compo-
sition were recorded one week later. Cell phenotypes were
classified by the percentage of the tumour they occupied at the
end of the experiment, with those cell lines assigned to quartile
1 that occupy between 0% and 25%of the tumour, those to quar-
tile 2 thatoccupybetween25%and50%of the tumour, andsoon.
Thus, cell lines belonging toquartile 4, for instance, dominate the
tumour and represent phenotypes most resistant to TMZ.

The resultant tumour composition profiles are shown in
figure 3a–c as RDI (raw data, descriptive statistics and inferen-
tial statistics) plots. Figure 3a reveals that faster proliferating
cells are more resistant to TMZ, with the smoothed density of
cells in quartile 4 showing a top-heavy distribution. However,
the differences in the central tendencies of cell proliferation
rates across the various quartiles are minimal. Indeed, for cell
lines occupying quartiles 1–3, these differences are not statisti-
cally significant. Therefore, we conclude that cell doubling
time alone cannot guarantee resistance to TMZ.

The expression levels of repair enzymes reveal more
differentiating attributes (figure 3b,c). As expected, cell lines
most sensitive to TMZ (quartile 1) express the least amounts
of both APNG and MGMT, with clear bottom-heavy distri-
butions and narrow 95% highest density intervals (HDIs)
around the central tendency. Interestingly, figure 3b reveals
that, although the central tendency of APNG expression
increases from quartile 1 to 3, the most resistant cell lines
(quartile 4) show a significant decrease in the most credible
values of APNG expression. The reason for such an unex-
pected decline becomes clear when we look at the expression
of MGMT in figure 3c. We observe that resistance to TMZ
increases with MGMT expression monotonically. Furthermore,
the smoothed density of cells in quartile 4 is top heavy, indicat-
ing that the most resistant cell lines invest maximally in
MGMT expression. This comes at the cost of APNG expression
because of the imposed energy constraint. Thus, we conclude
that MGMT expression and, perhaps to a lesser extent, APNG
expression are reliable predictors of TMZ resistance.

Further verification of our conclusion comes from looking
at scatter plots of APNG versus MGMT expression in the most
sensitive (quartile 1) and most resistant (quartile 4) cell lines,
shown in figure 3d,e, respectively. Linear regressions, shown
in yellow, reveal that rates of APNG and MGMT expression
correlate poorly in TMZ-sensitive cell lines (adjusted R2:
0.03), while resistant cell lines maximize their efforts towards
repairing cell damage. In these cells, a clear linear trend in
APNG versus MGMT expression is observed (adjusted R2:
0.94), with high values of MGMT expression favoured. Dots
represent individual cell lines, with darker colours corre-
sponding to cells with higher proliferation rates, and vice
versa. Neither plot shows a discernible pattern in the colour
distribution of dots, indicating a lack of correlation between
resistance to TMZ and cell proliferation rate.

3.2. Optimizing TMZ administration with APNG and
MGMT inhibition

We now predict optimal drug dosing and scheduling protocols
when small molecule inhibitors of APNG andMGMT are co-
administered with TMZ. Briefly, 500 phenotypically diverse
GBM cell lines were generated and cell growth inhibition
assays initiated as described previously. A single cycle of
‘standard TMZ’ treatment was simulated, with drug admin-
istration possible on days 1–5, followed by a rest period from
day 6 to day 28. This is consistent with typical clinical proto-
cols for TMZ administration [43]. A genetic algorithm [44]
was employed to arrive at optimal treatment strategies specific
to individual cell lines, with variability allowed in the daily
TMZ dosage, and a decision madewhether or not to co-admin-
ister APNG and/or MGMT inhibitors. Genetic algorithms
mimic the principles of genetic evolution to find the solution
to an optimization problem—in our case, tumour response to
treatment—with tumour burden taken as the fitness function
we minimize. Our choice of fitness function follows current
guidelines for treating patients with GBM. These seek to
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reduce tumour burden, which is directly related to increased
intracranial pressure, responsible for most GBM symptoms
and patient death [22,43,45]. The genetic algorithm was
implemented as follows. An initial pool of treatment strategies
was created randomly. These strategieswere then ranked based
on their reduction of tumour burden at the end of the treatment
cycle. The top 20% of strategies were paired to create offspring.
As in evolution, the offspring strategies inherit different proper-
ties from each of their parents. The resulting offspring were
also allowed a small chance of mutation, thus creating a new
generation of treatment protocols that were sorted once again
based on fitness, and the process repeated until convergence.
Further details of this algorithm are provided in the electronic
supplementary material.

An analysis of the optimal protocols thus obtained reveals a
natural grouping which is based on tumour cell phenotype.
Specifically, we can classify the cell lines into four cohorts dis-
tinguished by the expression of each enzyme. For instance, cells
expressing high levels of both repair enzymes are assigned to
the ‘APNG+/MGMT+’ cohort, and so on. The ‘optimal’ proto-
col for each cohort is then obtained by averaging the TMZ
dosage across cell lines in that cohort and finding the mode
of the decision whether or not to inhibit APNG and/or
MGMT. The resultant protocols are summarized in table 1.

In all cases, alternating the daily dose of TMZ, with a high
dose followed by a low dose, is predicted to be optimal (see
insets in figure 4b,c). This is in contrast with typical clinical
practice, where a fixed dose is administered daily, referred
to here as standard TMZ. Indeed, the experiments of Wick
et al. [46] provide indirect validation for this prediction,
where it was observed that cells over-expressing MGMT
were more susceptible to an alternating TMZ dose.



Table 1. Description of treatment strategies. Standard and optimal treatment strategies identified by GBM cell phenotype. Note that the specific daily dose of
TMZ varies between strategies. Here, SMI stands for small molecule inhibitor. Standard TMZ refers to a TMZ protocol as it is typically administered in the clinic
[43]. Optimal TMZ refers to an alternating high/low dosage schedule with no APNG/MGMT inhibitors administered.

treatment strategy TMZ SMI APNG SMI MGMT

standard TMZ constant dose days 1–5 none none

rest days 6–28

optimal TMZ high dose days 1, 3 and 5 none none

low dose days 2 and 4

rest days 6–28

cell phenotype APNG−/MGMT− A high dose days 1, 3 and 5 days 1–5 days 1 and 5

low dose days 2 and 4

rest days 6–28

APNG+/MGMT− B high dose days 1, 3 and 5 days 1–5 days 2, 3 and 4

low dose days 2 and 4

rest days 6–28

APNG−/MGMT+ C high dose days 1, 3 and 5 days 1–5 days 1, 2, 3 and 4

low dose days 2 and 4

rest days 6–28

APNG+/MGMT+ D high dose days 1, 3 and 5 days 1–5 days 1–5

low dose days 2 and 4

rest days 6–28
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Interestingly, optimal protocols in every case require
APNG inhibition to be applied on all treatment days. This is
surprising since N7-meG and N3-meA typically contribute
minimally to the cytotoxicity of TMZ [9]. However, our
model accounts for the fact that high levels of N7-meG adducts
trigger apoptosis [29]. Furthermore, APNG is predicted to be
highly expressed in cell lines with a greater than average
degree of TMZ resistance (figure 3b, quartile 3). Together,
these features explain the predicted optimal schedule of
APNG inhibitors. In fact, it is the scheduling of MGMT inhibi-
tors that distinguishes the four cohorts, with cell lines in the
APNG+/MGMT+ cohort—and, hence, most resistant to
TMZ—requiring MGMT inhibition on all treatment days. It is
worth noting that the optimal scheduling of MGMT inhibition
is not dictated exclusively by its expression (compare rows 3
and 4 or 5 and 6 in table 1), but seems to also depend on
APNG expression. This highlights a key advantage of our
approach, namely that the mechanistic model of subcellular
response to TMZ that underpins our simulations captures
unexpected and potentially nonlinear interdependencies
between the two DNA damage-repair pathways.

A comparison of how cell lines in each cohort respond
to standard and optimal TMZ monotherapy, and optimal
combination therapy, is shown in figure 4. For each cohort
and for each treatment strategy, surviving tumour cell
number together with 95% confidence intervals are plotted
versus time. In each panel, the response under standard
TMZ treatment is shown in red (solid line), under optimal
TMZ without inhibitors in blue (dotted line), and strategies
A, B, C, or D are shown in yellow in the corresponding panel
(dashed line). In general, optimal TMZ performs marginally
better than standard TMZ. Maximum cell growth inhibition,
driven by a high degree of apoptosis early on, is achieved
when TMZ is combined with APNG and MGMT inhibitors.
Cell survival 7 days after treatment initiation is comparable
across strategies when cell lines express low levels of MGMT
(figure 4a,b). However, combination therapy is most effec-
tive when treating cells expressing high levels of MGMT
(figure 4c,d ).

3.3. Treatment strategy D outperforms all others in a
virtual pre-clinical trial

When treating GBM in situ, the expression levels of MGMT
and APNG may not be known a priori. Indeed, these may
vary significantly even within a tumour. Therefore, we identify
the protocol with maximum inhibitory potential when treating
tumours comprising a heterogeneous population of cells. For
this, a pre-clinical trial was conducted in silico as follows.
Five hundred virtual mice, with heteroclonal tumour xeno-
grafts established as described previously, were randomly
assigned to one of the optimal treatment strategies (A, B, C
or D listed in table 1). Each mouse received a single cycle of
treatment, and tumour volumes were recorded periodically.
The resulting averages of the fold change in tumour volume
relative to pre-treatment, together with 95% confidence
intervals, are shown as a waterfall plot in figure 5.

Even at week 1, strategy A, optimal for APNG−/MGMT−

cells, has failed to induce a significant reduction in tumour
volume. By contrast, strategies B, C and D, optimal for
APNG+/MGMT−, APNG−/MGMT+ and APNG+/MGMT+

cells, respectively, show comparable inhibition of tumour
volumes at week 1. Remarkably, tumour volumes continue
to shrink under these protocols even after treatment has
ceased, with the maximum reduction in volume predicted
for strategy D. This behaviour can be understood in terms
of the long half-life of extracellular TMZ (48 h, estimated
from [47]) and the time spent by DNA-damaged cells in an
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arrested state and consequent delay in their apoptosis. How-
ever, by the end of the treatment cycle, xenografts treated
with strategy B have recovered to attain their maximum poss-
ible volumes. In the long term, only strategies C and D are
predicted to have a significant impact on tumour growth,
with strategy D outperforming all others by week 4. Thus,
in the absence of any information regarding repair enzyme
expression by tumour cells, we propose strategy D as the
optimal protocol when treating heteroclonal tumours.

3.4. In a virtual human clinical trial, strategy D predicts
a 30% improvement in patient survival

Finally, we predict the potential survival benefit of treating
human GBM patients with the identified optimal combi-
nation of TMZ and APNG/MGMT inhibitors (strategy D)
by conducting a clinical trial in silico. Briefly, 100 virtual
patients with GBM were created, with each cancer compris-
ing a heterogeneous population of cells. We remark that in
this case the range over which proliferation rates vary was
adjusted so that the mean doubling time was 49.6 days
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[48]. Each patient was treated with standard TMZ, optimal
TMZ and combination strategy D. We remark that, were
this an actual clinical trial, the patients would be randomized
into one of the three treatment protocols and their pro-
gression monitored. However, the in silico experimentation
proposed here has the advantage that a virtual patient may
be treated with as many strategies as desired. Thus, response
to treatment may be compared without having to account for
the confounding factor of inter-patient variability. Treatment
was initiated once tumours reached a size of 1 cm in diameter
(corresponding to approx. 5� 108cells), the average size of
GBM at diagnosis in a clinical setting [49], and continued
for a maximum of seven 28-day cycles. This follows typical
clinical protocol wherein TMZ is administered once (concomi-
tant with focal radiotherapy, not considered here) followed by
six cycles of TMZ alone [50]. Simulations were carried out
until patient ‘death’, which was assumed to occur once
tumours reached a critical size. This size was determined by
the observation that, left untreated, patients with GBM die
within three to four months [51]. Details of modifications
to the model necessary to simulate GBMs growing in situ
are presented in the electronic supplementary material.

A Kaplan–Meier survival analysis was conducted on our
simulations, the results of which are summarized in figure 6.
Under standard and optimal TMZ monotherapy, patient
survival is predicted to decrease similarly (figure 6a) with
comparable mean survival times of about eight months. In
particular, optimal TMZ improves mean survival by only
one week as compared with standard TMZ. In contrast,
under treatment with strategy D, all patients are expected
to survive—barring adverse events not considered in our
model—for up to three months after cessation of treatment.
The mean survival under strategy D is over 10 months, an
approximate 30% improvement over treatment with TMZ
alone. A steep decline in survival is predicted thereafter
(figure 6a, inset), owing to the rapid growth of tumour
cells left unaffected by therapy administration.

With the development of targeted therapeutics such as
those considered here, an important question is: how do
tumours evolve under the selection pressures created by the
treatment? To answer this, we recorded the composition of
each patient’s tumour periodically, under each treatment
strategy. Given the diversity in cell lines across all patients,
the data were first quantile-normalized to make the distri-
butions identical in statistical properties [52], and the
resulting parameter distributions scaled by their respective
maxima. The results are shown in figure 6b–d, which plot
time courses of the mean values and 95% confidence intervals
of the scaled average tumour compositions.

Standard and optimal TMZ monotherapy exert similar
selection pressures, resulting in tumours that have an overall
bias towards cell lines with faster doubling times and high
MGMT expression. Cellular investment in MGMT expression
is compensated for by expressing lesser APNG, as observed
in the case of heteroclonal xenograft response to TMZ
(figure 3a–c). In particular, TMZ administration induces
death in slow proliferating cells with low repair enzyme
expression, leaving an abundance of space and resources
for those cells over-expressing MGMT. Subsequent cycles of
TMZ become less effective since they are targeting a popu-
lation of cells capable of efficient DNA damage repair,
underscoring the role played by MGMT in mediating TMZ
resistance. The emergent tumour phenotype is markedly
different under strategy D, which favours cell lines that
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invest less in proliferation, less in MGMT expression, and
more in APNG expression. Furthermore, the emergent phe-
notype has very narrow 95% confidence intervals,
indicating that tumours evolve to a more homogeneous phe-
notype under strategy D. This could explain the steep decline
in patient survival after therapy cessation (figure 6a, inset).
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4. Discussion
GBM lethality is driven, in part, by resistance to TMZ, the
most commonly used chemotherapeutic drug for treating
this disease [5]. TMZ-induced DNA damage is efficiently
repaired by the APNG-mediated BER repair pathway or by
the MGMT pathway. Therefore, it has been hypothesized
that combining TMZ with novel small molecule inhibitors
of APNG and/or MGMT may improve patient survival.
Indeed, several such drugs are in various stages of clinical
trials [8,18]. The mechanistic models studied here provide
counterintuitive results, which could be crucial in the success
or failure of TMZ-adjuvant clinical trials. First, in an emer-
gent result, optimal scheduling across tumour phenotypes
includes continuous inhibition of APNG-mediated DNA
repair, even though MGMT repairs damage which is more
lethal to the cancer cell. Second, only in MGMT over-expressing
cancers is continuous MGMT inhibition optimal, whereas, even
in tumours with low APNG expression, APNG inhibition is
vital to cell-killing potential.

The mechanistic modelling approach employed here is
central to the predictive power of the models. Crucially, this
model includes TMZ-induced DNA methylation and its sub-
sequent repair. Our model was extensively parametrized and
validated with available experimental data, resulting in a
computational framework ideally suited to testing the anti-
cancer potential of various drug combinations. GBM cells
are known to vary highly at a molecular level, even within
the same tumour [53]. Therefore, we needed to generate a
phenotypically diverse population of GBM cell lines that is
representative of different potential responses to treatment.
For this, sensitivity analyses (summarized in figure 2) were
performed on model parameters, revealing rates of cellular
proliferation and APNG and MGMT expression as critical
drivers of TMZ resistance. Pre-existing variation in the simu-
lated cell populations was subject to constraints reflecting
limited cellular capacity to both replicate rapidly and repair
DNA damage with high fidelity. We remark that we do not
account for mutations in cellular DNA that would result in
a cell switching phenotypes in terms of repair enzyme
expression. In particular, resistant phenotypes that emerge
under selection pressures created by treatment were already
present at the time of treatment initiation in our framework.
Over the course of these simulated experiments, selection
on replicative potential and DNA-repair capacity of cell
lines affected the proportions of different clones. Simulations
of the response to treatment of polyclonal xenografts further
elucidated determinants of resistance to TMZ (figure 3). In
these single-dose studies, repair enzyme expression is
found to affect cell survival more strongly than doubling
time, consistent with the literature [11,13].

Next, cell growth inhibition assays were simulated and a
genetic algorithm employed to arrive at optimal dosing and
scheduling protocols for each virtual cell line when TMZ
was administered together with APNG and MGMT inhibitors.
The protocols thus obtained revealed a natural grouping based
on cell phenotype, as determined by expression levels of
APNG and MGMT. In all cases, alternating the dosing of
TMZ, with high doses administered on days 1, 3 and 5 and
low doses on days 2 and 4, was predicted to be optimal.
Indeed, there is experimental evidence that cells over-expres-
sing MGMT are more susceptible to such a schedule, which
may have the additional advantage of reducing dose-limiting
haematological toxicity [46]. Against our expectations, APNG
inhibition was necessary for maximizing cell kill even in
experiments lacking high-APNG-expressing subclones.

Finally, in a virtual pre-clinical trial, strategies optimal for
cell lines over-expressing MGMT were predicted to be most
successful in treating heteroclonal tumour xenografts when
the overall phenotype of the cancer is unknown. We ident-
ified the strategy that was optimal for cells over-expressing
both MGMT and APNG (strategy D) as the protocol with
maximum tumour inhibition potential. A virtual clinical
trial was then conducted wherein patients were enrolled in
three treatment arms: standard TMZ monotherapy; alternat-
ing TMZ monotherapy; and strategy D combination
therapy. Kaplan–Meier estimates showed that patients treated
with strategy D continue to survive up to three months after
treatment has ceased, with an overall improvement of 30% in
mean survival time compared with those treated with TMZ
alone. Both TMZ monotherapies had similar predicted survi-
val curves, and, therefore, the benefit of alternating TMZ may
simply be mitigating side-effects [46]. We note that our model
ignores adverse events in patients which may impact predicted
survival times. Furthermore, we infer cancer dynamics in
human patients from a model calibrated to xenograft data.
Byrne et al. [54] noted limitations in this approach. However,
owing to ethical constraints, these experiments cannot be car-
ried out in humans. Where parameter values are known in a
human context (for example, cancer cell doubling times),
human parameter estimates were used.

4.1. Future experiments in cell-based and animal
systems

The mathematical model presented here makes testable pre-
dictions on the effect of drug timing in cell lines and in
animal models. In these experimental systems, biotechnology
techniques such as RNAi [55] can be used to inhibit DNA
repair enzymes even when drugs are not available; and
pre-clinical drugs can be delivered directly to cells even
when highly toxic or lacking in bioavailability [56]. Using
such approaches, predicted optimal drug combinations and
schedules may be tested in vitro by replicating some of the
virtual cell growth inhibition assays simulated here. Follow-
ing the protocol in [35], cell cultures of human GBM cell
lines could be established with a range of APNG or MGMT
expression. These cell lines could be treated using different
schedules of APNG inhibition, MGMT inhibition and TMZ,
corresponding to one of the four optimal strategies described
above, with cell number tracked over the course of weeks.
These experiments could confirm the in silico predictions
made here, which would support the biological models of
DNA repair and chemotherapy that these models encode.
Furthermore, experimental data thus generated would
enable fine tuning of mechanistic model parameters and
relaxing of modelling assumptions. Using high-dimensional
technologies such as Luminex-bead expression assays [57],
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additional drug targets and potential adjuvant drugs could
be identified. While such high-dimensional (omics) exper-
iments are outside the mechanistic scope of the models
presented here, an ‘omics’ approach to studying relative
drug timings, such as DIGRE [58,59], becomes far more
practical when a finite combination of administrations
and timings can be proposed.

Independent of our model predictions, animal models
should be used to assess for synergistic haematological tox-
icity [46]. The mechanistic models reported here do not
address the ratio of GBM killing to haematological toxicity
of TMZ plus adjuvant therapy. Experimental results would
be of tremendous utility in developing mechanistic models
that might identify or predict such adverse synergistic effects.

4.2. Potential for clinical translation
This model also makes testable predictions that could
inform either clinical trials or expanded access (formerly
known as ‘compassionate use’) of TMZ with adjuvants.
There are several clinical trials and studies incorporating
inhibition of MGMT, but fewer clinical trials inhibiting
APNG [60,61]. While MGMT plays a bigger role than
APNG in chemotherapy resistance, we found that, in all
cases, optimal treatment always includes APNG inhibitors.
At the time of writing, we are unable to find trials that
combine both inhibitors with TMZ.

When such trials are conducted, the timing and adminis-
tration of novel drugs could mark the difference between a
successful or failed trial or expanded access intervention.
Randomized protocols for TMZ and bortezomib are actively
recruiting patients (NIH clinical trial number NCT03643549).
This trial incorporates an experimentally motivated sche-
dule, but experimental approaches cannot examine all
possible schedules as is done here. Therefore, these trials
are not using the optimal schedule identified here. Expanded
access would be justified by the lack of long-term effective
treatments for this lethal disease [62], and could employ
our optimal schedule. Even so, one limitation of our modelling
approach should be emphasized: our model incorporates
synergistic effectiveness between TMZ and MGMT/APNG
inhibition, but does not include synergistic toxicity. Further-
more, our model assumes that pharmacological inhibition
of MGMT or APNG is total, while compounds like the
MGMT inhibitor bortezomib only achieve partial inhibition
in a clinical setting [63].
4.3. Conclusion
In both experimental and clinical contexts, the development
and testing of novel treatment strategies in cancer are associ-
ated with a steep financial cost and significant human
resource investment. Educated predictions about drug
doses and schedules most likely to succeed are therefore
critical for optimizing experimental design and resource
investments on the part of the clinical investigator. In silico
experimentation, such as that proposed here, affords the
unique opportunity of simulating various treatment proto-
cols over a wide range of parameter values that is not
possible in a clinical setting. In our model of TMZ-treated
GBM, these simulations give an emergent result which sup-
ports both a novel combination therapy targeting APNG and
an intermittent schedule of TMZ.
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