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Pattern formation from homogeneity is well studied, but less is known
concerning symmetry-breaking instabilities in heterogeneous media. It is
non-trivial to separate observed spatial patterning due to inherent spatial
heterogeneity from emergent patterning due to nonlinear instability. We
employWKBJ asymptotics to investigate Turing instabilities for a spatially het-
erogeneous reaction–diffusion system, and derive conditions for instability
which are local versions of the classical Turing conditions. We find that
the structure of unstable modes differs substantially from the typical
trigonometric functions seen in the spatially homogeneous setting. Modes of
different growth rates are localized to different spatial regions. This
localization helps explain common amplitude modulations observed in
simulations of Turing systems in heterogeneous settings. We numerically
demonstrate this theory, giving an illustrative example of the emergent instabil-
ities and the striking complexity arising from spatially heterogeneous reaction–
diffusion systems. Our results give insight both into systems driven by exogen-
ous heterogeneity, as well as successive pattern forming processes, noting that
most scenarios in biology do not involve symmetry breaking from homogen-
eity, but instead consist of sequential evolutions of heterogeneous states. The
instability mechanism reported here precisely captures such evolution, and
extendsTuring’s original thesis to a farwiderandmore realistic class of systems.
1. Introduction
Since Alan Turing’s celebrated work on morphogenesis [1], reaction–diffusion
systems have been a paradigm of pattern formation throughout chemistry
and biology [2–7]. The most striking aspect of this theory is the emergence of
heterogeneity from homogeneity. However, even Turing himself recognized
this as an idealization when he wrote, ‘Most of an organism, most of the
time is developing from one pattern into another, rather than from homogeneity
into a pattern.’ Here, we concern ourselves with this heterogeneous setting, and
determine the generalization of the Turing conditions to a reaction–diffusion
system with explicit spatial dependence. We derive conditions for the instability
of a heterogeneous steady state into a Turing-type pattern, with both the local-
ization and structure of the pattern depending on the heterogeneity. Under a
necessary hypothesis of a sufficiently slowly varying heterogeneous base
state, our results clearly differentiate between spatial structure due to inherent
spatial heterogeneity, and emergent patterns due to Turing-type instabilities.
This then elucidates successive pattern formation in distinct stages.

This transition from one pattern into another has been noted as key in reconcil-
ing seemingly divergent theories inmorphogenesis [6]. Turing’s original theorywas
that his reaction–diffusion mechanism laid down a prepattern of heterogeneous
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Figure 1. Different interactions of pattern formation mechanisms in development. (a) Generic schematic of Turing pattern formation from homogeneity, with
different pattern characteristics shown in (b), and, in (c), a biological example of a developing mouse paw in the presence of altered levels of Hox gene
action. Positional information feeding into reaction–diffusion is shown in (d–e), consistent with observed structural characteristics of mouse whisker placodes
in ( f ). Finally, successive reaction–diffusion patterning is shown in (g–h), with the example of Jaguar spots demonstrating large and small-scale pattern formation
in (i). In particular, the schematic in (g) shows a sinusoidal prepattern (left peaks) feeding into a wave mode 3 Turing pattern (right peaks) with, here for illustrative
example, the Turing pattern only able to form within the peaks of the prepattern. Thus, each peak forms a disjoint interval. Mouse paw images from Sheth et al.
[8]. Reprinted with permission from AAAS. Mouse whisker placode image used with permission from Denis Headon. Jaguar picture by Jean Beaufort used under a
CC0 Public Domain license from http://bit.ly/JaguarPicture. (Online version in colour.)
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morphogen concentration, which then drove cellular differen-
tiation and morphogenesis directly (figure 1a–c). This is in
contrast to theories of positional information (colloquially
‘French-flag’ models) whereby cells a priori are assigned
locations relative to some developmental coordinate system,
and perform different functions based on this positional
information [9] (figure 1d). Spatial heterogeneity provides a
way to reconcile these competing theories by allowing positional
information to influence reaction–diffusion processes, leading to
modulated patterns that are ubiquitous in nature (figure 1d–f).
Additionally, heterogeneity permits successive reaction–
diffusion patterning in stages, whereby patterning at different
scales can arise (figure 1e–g). This is in linewithwork implicating
chemical and cellular pre-patterns in developmental biology
[10–12], such as in the context of organizing different regions
along cell boundaries based on sharp variations in gene
expression [13,14].

Beyond theories of morphogenesis in developmental
biology, models involving reaction–diffusion systems with
spatial heterogeneity have been considered in many contexts.
Examples include environmental heterogeneity in collective
animal dispersal [15–19], reaction–diffusion in domains
with non-isotropic growth [20,21], as well as spatial invasion
modelling [22,23], and models with differential diffusion
leading to spatial inhomogeneity in plant root initiation
[24,25]. Spatial heterogeneity has been (numerically)
observed to change local instability conditions for pattern for-
mation [26,27], modulate size and wavelength of patterns
[28], and localize (or pin) spike patterns in space [29–31].
We also note that the presence of even simple spatial
heterogeneity can induce spatio-temporal behaviour, such
as changing the stability of patterned states and thereby
inducing periodic movement of spike solutions [32,33].
Bifurcation structures of reaction–diffusion equations with
spatial heterogeneity have been considered for some time
[34]. There is also a large literature on reaction–diffusion sys-
tems with strongly localized heterogeneities [35], with [36]
recently considering the case of a step-function heterogeneity
in the reaction kinetics and deducing local Turing conditions
on each side of the step. While we will also deduce local
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Turing conditions, we note that this limit is different from the
case of smooth spatial heterogeneity we will consider here.

Many experimental applications of reaction–diffusion sys-
tems have exploited an intuitive idea that a patterning
instability is possible depending on the local environment,
and, hence, one can think of local pointwise Turing conditions
in order to determine where patterning will occur [37–41].
This research has also given rise to various multiscale
approaches for analysis of mode coupling between spatial
forcing and emergent Turing patterns [42–44]. However, as
far as we are aware, no justification for this localization, or
the use of canonical (trigonometric) unstable eigenmodes,
has been given in the literature. Several authors have
attempted to deduce Turing conditions in spatially forced
reaction–diffusion equations [45–47], but these results are
limited to special cases regarding asymptotic assumptions
and nonlinear kinetics, and even the case of varying diffusion
coefficients is not perfectly understood [48]. We note that
Dewel & Borckmans [45] in particular analyse the case of
slowly varying heterogeneity and employ a WBKJ-like
ansatz, as we do below. However, their approach is substan-
tially different from our own as they neglect the finite size of
the domain, and do not recover the local Turing conditions
that we seek, or the form of unstable modes.

Turing instabilities leading to pattern formation are typi-
cally considered to be induced due to the addition of
diffusion (diffusion-driven instability) [5] and due to an
increase in the domain-size [49]; below a certain critical
domain size, patterns cannot be formed but above a minimal
size, any small spatial perturbation of a reference homo-
geneous steady state will grow. The classical case focusing
on spatially homogeneous systems is a textbook analysis and
typically proceeds via a dispersion relation tying the Laplacian
eigenmodes with the perturbation’s growth rate [5,50–52].
However, as we shall show, justifying such a relationship
between the growth rate and the operator’s spectrum is
much harder in the case of arbitrary spatial heterogeneity.

A major difficulty in analysing instabilities in systems
with spatial heterogeneity is that there is no simple generaliz-
ation of Sturm–Liouville theory to multiple-component
systems [49]. One can make use of the scalar theory when
the heterogeneity appears in the same way in each com-
ponent and is scaled such that the spatial operator,
including diffusion, is identical in each equation. However,
more generally, such a theory is difficult to use and, at best,
one finds existence results, or must resort to numerical
approaches [53,54]. On the other hand, the WKBJ approxi-
mation has been employed in many optical and semi-
classical quantum mechanical situations involving spatial
heterogeneity [55–57], and, as we will demonstrate, has a
straightforward generalization to coupled systems.

Here, we use WKBJ methods [58] in order to compute
instability criteria for a reaction–diffusion system with explicit
spatial heterogeneity in the kinetics, under the assumption
that the heterogeneity is sufficiently smooth and not rapidly
varying comparedwith the diffusive length scales. Our analysis
also shows several novel aspects of these instabilities in the pres-
ence of heterogeneity, such as modes supported in different
regions of the domain depending on their growth rates. This
phenomenon invalidates some heuristics commonly employed
in homogeneous Turing pattern formation, such as restricting
analysis to the mode with the fastest growth rate, which in the
heterogeneous case varies across the domain. These structural
results can help explain size and wavelength modulation in
the presence of heterogeneity observed both in simulations
and heterogeneous environments in experiment.

We begin by setting up the system and reviewing con-
ditions for a Turing instability in the homogeneous case, and
stating the corresponding conditions in the spatially hetero-
geneous setting in §2. This section is a roadmap of our results
and is intended to state the conditions without detailed deri-
vation. Such a derivation is presented in §3, with the classical
results in the homogeneous case in electronic supplementary
material, S1.We end this sectionwith a discussion of properties
of these solutions, and how their form implies the instability
conditions, with some technical details in electronic sup-
plementary material, S2. In §4, we illustrate our results in the
case of the Schnakenberg system, demonstrating both that
our conditions for instability correspond to full numerical
solutions, as well as showing various structural properties
regarding the emergent unstable modes in line with our analy-
sis. Finally, we discuss our results in §5, highlighting both
applications of ourmethod and future directions for extensions.
Someone interested primarily in our results, rather than the
technicalities of theWKBJ calculations, can skip §3, and instead
just read §§2 and 4–5 to understand the implications of our
results, as well as how to apply them to different systems.
2. Homogeneous and inhomogeneous instability
conditions

Here, we state instability conditions for both homogeneous and
heterogeneous two component reaction–diffusion systems that
lead to emergent spatial patterning. In the heterogeneous set-
ting, we exploit asymptotically small diffusion coefficients,
and so pose the general problem first. We consider a
dimensional two component system in one spatial dimension,

ut ¼ Ddimuxx þ Fdim(u, x), t . 0, x [ (0, L),

Ddim ¼ D1 0

0 D2

� �
,

where D1 >D2 > 0 are the diffusion coefficients and L is the
domain length. We prescribe Neumann boundary conditions
(ux = 0 for x∈ {0, L}) and the initial condition u(x, 0) = u0(x). We
non-dimensionalize length scales with respect to L, timescales
with respect to a reaction timescale T, and concentrations with
respect to a typical concentration scale U for both components
and diffusion coefficients by D1. Reusing u, t and x to now rep-
resent non-dimensional quantities for brevity we have

ut ¼ 12Duxx þ F(u, x), t . 0, x [ [0, 1],

12 ¼ D1T
L2

, D ¼ 1 0

0 d

� �
, d ¼ D2

D1
� 1,

(2:1)

where F(u, x) = ( f(u, x), g(u, x)) is now a non-dimensional vector
of kinetic functions. Belowweassume0 < ε≪ 1.This asymptotic
assumption is not physiologically unreasonable in developmen-
tal settings. Consider kinetic timescales of T∼ 10 min, the
shortest that would allow for gene expression [59,60], a
domain length of L∼ 1mm and a diffusion coefficient of D1∼
9.4 × 10−9 cm2 s−1, as measured in a synthetic biology exper-
iment for the protein Lefty, the most mobile of the prospective
developmental Turing morphogen pair Nodal and Lefty, as
part of an investigation analysing Turing’s mechanism in
depth [61]. One then has ε2∼ 5.6 × 10−4 and hence ε∼ 0.024.
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Let u*(x) denote a steady state, so that

0 ¼ 12Du�
xx þ F(u�,x), x [ [0,1],

with boundary conditions u�
x ¼ 0. To generalize the notion of a

homogeneous steady state, we only consider the possibility
that u* oscillates with spatial derivatives of scale O(1), or smal-
ler, specifically excluding spatial oscillations on the scale of
O(1/ε), or larger. Hence, u* is independent of ε and we have

0 ¼ F(u�, x)þO(12), (2:2)

as long as the spatial heterogeneity in F permits u�
x ¼ 0 at x= 0, 1.

If instead u�
x = 0 at either boundary then a boundary layer with

concomitant large derivatives will form, a possibility that we
neglect in the subsequent analysis. However, note that when
the underlying heterogeneity is the result of prior patterning,
as is the motivating background here, the steady state u* will
automatically be subject to the same zero flux boundary con-
ditions unless the boundary fluxes change as one patterning
mechanism progresses into the next. However, zero flux bound-
ary conditions are ubiquitous in models of biological pattern
formation [5] and hence requiringu�

x ¼ 0 at x= 0, 1 does not con-
stitute a particularly demanding constraint, at least in the context
of hierarchical self-organization in developmental biology.

We proceed by linearizing about this steady state via w =
u− u*, which is assumed small component-wise even relative
to the scale of ε, to yield

wt ¼ 12Dwxx þ J(x)w, (2:3)

where J(x) is the Jacobian matrix of F evaluated at u*(x). System
(2.3) inherits homogeneous Neumann boundary conditions
and the initial conditionw(x, 0) =u(x, 0)−u*(x). The fundamen-
tal impact of spatial heterogeneity in the kinetics is that the
Jacobian Jpossesses an explicit spatial dependence (and formally
an additional O(ε2) dependence, though we can neglect this via
the asymptotic analysis going forward). The standard derivation
in the homogeneous setting proceeds by assuming the ansatz
w∝ eλtq(x), justified by linearity. One then uses eigenvalues of
the Laplacian to find λ(n), where n is a spectral parameter, result-
ing in conditions which imply <(l) . 0 and, hence, instability.

This approach does not generalize to the heterogeneous
setting due to the explicit spatial dependence of J, and so
instead we think of varying λ as a parameter and searching
for eigenvalues consistent with the form of the solution when
<(l) . 0. We first state a reformulation of the classical homo-
geneous conditions before generalizing to the heterogeneous
case. We give a detailed rederivation in the homogeneous
case in electronic supplementary material, S1, arriving at the
following formulation of the Turing conditions:

Instability criterion 2.1 (homogeneous). Let 0 < ε≪ 1, and J a
constant matrix for all x∈ [0, 1]. If we assume stability to
homogeneous perturbations, i.e.

tr(J) , 0, det(J) . 0, (2:4)

then there exists a non-homogeneous perturbation w satisfying
(2.3) which grows exponentially in time in the interval x∈ [0, 1] if

tr(D�1J) . 0, [tr(D�1J)]2 � 4 det(D�1J) . 0: (2:5)

We find an analogous result in the spatially heterogeneous
setting involving a much more complicated form of unstable
modes explicitly depending on the growth rate λ, so that, to
leading order, we have unstable solutions of the form w∝
eλtq(x, λ). Additionally, for different growth rates λ, the instabil-
ity may be restricted to different subsets of the spatial domain
(asymptotically at leading order). We will denote the largest
of these regions, within which we anticipate patterns to be con-
fined, as T 0, which can consist of multiple disjoint intervals (as
in figure 1h). We denote the interior of this region as T i

0. Con-
ditions for instability in the heterogeneous case then follow
from criterion 3.9, and proposition 3.8, which are stated and
derived in the next section. These conditions can be stated as

Instability criterion 2.2 (heterogeneous). Let 0 < ε≪ 1, and
assume that the quantity [tr(D−1J(x))]2− 4 det(D−1J(x)) has
only simple zeros for x∈ [0, 1]. If we assume stability to pertur-
bations in the absence of diffusion, i.e.

tr(J(x)) , 0, det(J(x)) . 0, for all x [ [0, 1], (2:6)

then there exists a non-homogeneous perturbation w satisfying
(2.3) ( for sufficiently small ε and to leading order in ε) which
grows exponentially in time for all x [ T i

0 if

tr(D�1J(x)) . 0,

[tr(D�1J(x))]2 � 4det(D�1J(x)) . 0,

for all x [ T i
0

(2:7)

where T i
0 is the largest set for which conditions (2.7) hold.

More generally, the conditions of criterion 2.2 are exactly a
local version of the homogeneous results, so that the same con-
ditions satisfied on a subset of the full spatial domain imply a
pattern forming instability on that subset. Both homogeneous
and heterogeneous conditions hold for sufficiently small ε,
which can be thought of as a sufficiently large spatial domain.
In this case, one can neglect the discrete wave mode selection,
thoughwedogive discrete dispersion relations in electronic sup-
plementarymaterial, S1, for thehomogeneous case, and criterion
3.9 for the heterogeneous case. These discrete conditions give
concrete ways to determine precisely which modes become
unstable, and their associated growth rates, for a fixed value
of ε. In the next section, we will describe how to derive criterion
2.2 and these results mentioned above, and also further struc-
tural details about such instabilities which emerge from the
form of unstable modes. One can skip these details on a first
reading and see an illustration of the results in §4.
3. Deriving the spatially inhomogeneous
conditions

We start our analysis of the heterogeneous Turing instability
by analysing the stability of the steady state in line with the
usual Turing instability analysis. We seek solutions to
equation (2.3) in the form w(x, t) = eλtq(x) (as linearity
permits separability in t and x) to find

0 ¼ 12Dqxx þ Jl(x)q, (3:1)

with Jl ¼ J� lI. We then proceed in direct analogy to the
scalar WKBJ expansion [57,58], with

q ¼ exp
iw(x)
1

� �
p(x) and

p(x) ¼ p0(x)þ 1p1(x)þ 12p1(x)þ . . . :
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Thus, with 0 denoting the ordinary derivativewith respect to x,

qxx ¼ exp
iw
1

� �
iw0

1
pþ p0

� �0
þ iw0

1

iw0

1
pþ p0

� �� �

¼ exp
iw
1

� �
�w

02

12
pþ 1

1
(2iw0p0 þ iw00p)þ p00

� �
,

and, hence,

0 ¼ [�w02Dþ Jl]pþ 1[2iw0Dp0 þ iw00Dp]þO(12),

where the O(ε2) terms from J were neglected, as we will not
need to consider the second order problem below. At leading
order in ε, we have

0 ¼ [�w02Dþ Jl]p0 ¼ D[�w02Iþ Bl]p0,

where we define the matrix Bl ¼ D�1Jl ¼ D�1(J� lI) and at
next to leading order

0 ¼ [�w02Dþ Jl]p1 þ [2iw0Dp0
0 þ iw00Dp0]

¼ D{[�w02Iþ Bl]p1 þ [2iw0p0
0 þ iw00p0]}:

We solve the leading-order equations by setting w02 equal
to an eigenvalue of Bl and set p0 ¼ Q0(x)p�(x) where p�(x) is
the unit magnitude eigenvector of [�w02Iþ Bl] with zero
eigenvalue andQ0(x) is an undetermined scalar function. Then

�[�w02Iþ Bl]p1 ¼ [2iw0p0
0 þ iw00p0]

¼ i[2w0Q0
0 þ w00Q0]p� þ 2iw0Q0p0

�:

The matrix premultiplying p1 has zero determinant and hence
the existence of a solution requires a solvability condition.

Let sT� (x) be the zero left eigenvector of unit magnitude of
[�w02Iþ Bl]. Then we have the solvability condition
sT� (x)[�w02Iþ Bl] ¼ 0 by Fredholm’s alternative, and thus
multiplying by sT� (x) we have

[2w0Q0
0 þ w00Q0]s�Tp� þ 2w0Q0s�Tp0

� ¼ 0, (3:2)

which yields

Q0
0

Q0
¼ � w00

2w0 �
s�Tp0

�
s�Tp�

:

Thus

Q0(x) ¼ Q00ffiffiffiffiffi
w0p exp �

ðx
a

s�(�x)Tp0
�(�x)

s�(�x)
Tp�(�x)

d�x

" #
, (3:3)

whereQ00 is a constant, not necessarily real, w0 is given by either
the positive or the negative square root of the eigenvalues of Bl,
and a is an arbitrary real constant before any constraints of con-
sidering real solutions and the boundary conditions are
imposed. Hence, for each eigenvalue of Bl(x), denoted

m+
l (x) ; w02(x),

we have a possible mode which, at leading order, can be
written as

w(x, t) ¼ elt exp �
ðx
a

s�(�x)Tp0
�(�x)

s�(�x)
Tp�(�x)

d�x

" #
1

[m+
l ]1=4(x)

� C+
0 cos

1
1

ðx
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x

� ��

þS+0 sin
1
1

ðx
a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x

� ��
p�(x), (3:4)

whereC+
0 , S+0 are arbitrary constants.Wenote that the reciprocal
of ε from the trigonometric functions will dominate in spatial
derivatives given our asymptotic assumptions.

In the usual Turing analysis, we assume that the steady
state is stable to homogeneous perturbations, which are
associated with the zero mode. By analogy, we therefore
seek stability to perturbations which have spatial derivatives
of, at most, the same O(1) scale as the steady state, in
contrast to the WKBJ modes in equation (3.4), where spatial
derivatives scale with 1/ε, due to the 1/ε factors in the
trigonometric contributions. Solutions with the required be-
haviour are found by setting w = 0 in the WKBJ expansion
or, equivalently by considering w(x, t) = eλtq(x) with a regular
perturbation expansion for q(x). One finds Jl(x)q(x) ¼ 0 at
leading order and hence the derivatives of q(x) are indepen-
dent of ε and thus order unity at this level of approximation.
Hence, for such solutions, substituting w(x, t) = eλtq(x) into
equation (2.3) reduces to

wt ¼ 12Dwxx þ J(x)w � J(x)w, (3:5)

since |wxx|∼O(1) for this kind of perturbation. Stability of
the equilibrium to such perturbations is required for all x
and thus, to asymptotic accuracy, we require

tr(J(x)) ¼ fu þ gv , 0,

det(J(x)) ¼ fugv � fvgu . 0,

for all x [ T i
0

(3:6)

a set of two constraints that we shall assume throughout the
text below. These conditions generalize the notion of stability
against homogeneous perturbation in the spatially homo-
geneous setting, and imply that any unstable mode of the
form (3.4) will lead to emergent spatial patterning that is not
strictly dictated by the spatial heterogeneity in the kinetics.

The above expression for the leading-order solutionw is well
defined with the exception of zeros of m+

l (which we will show
can be excluded in proposition 3.6 below) and potential singular
points x� [ [0, 1] where s�Tp� ¼ 0. These singular points will in
fact determine the subsets of the spatial domain in which a pat-
terning instability will occur. We first consider properties of λ
and m+

l , independently from the solution structure given by
(3.4), in an arbitrary interval (a, b), [0, 1], and then discuss
how to choose such an interval so that solutions can be defined.
After this, we discuss how solutions behave near these singular
points in order to define solutions globally in space. Note, in par-
ticular, that wewill restrict attention to the open interval (a, b), as
we will eventually choose these boundaries to (possibly) be
singular points.
3.1. Local Turing conditions
Motivated by the form of solution (3.4), we now consider
the quantities λ and m+

l in their own right, and deduce
properties that these quantities must have to make sense of
such a solution. If the WKBJ solution, (3.4), is defined every-
where on the domain x∈ [0, 1], Neumann boundary
conditions at the domain edges entail, at leading order in ε,
that the integral ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x (3:7)

is a multiple of πε/2 and, without loss, a ¼ S+0 ¼ 0 so that
only cosine solutions remain. Furthermore, given the choice of
a sufficiently small ε, the above constraint can be ensured
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simply by imposingð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x [ R n {0}: (3:8)

However, we are not guaranteed that the WKBJ solution,
(3.4), is defined everywhere on the domain x∈ [0, 1]. In gen-
eral, the region of validity for the WKBJ solution will be
restricted to one or more intervals of the form (a, b) where a
and b are constants satisfying 0≤ a < b≤ 1. The pathological
case of a region of validity that is restricted to a point is neg-
lected, as this requires mathematical precision in the
parameter values. As discussed in §3.2, when the WKBJ sol-
utions are not valid everywhere, homogeneous Dirichlet
boundary conditions will be required (i.e. whenever a, b
satisfy a > 0 or b < 1). Given sufficiently small ε, as discussed
immediately above, then we may accommodate both cases of
homogeneous boundary conditions, Neumann or Dirichlet,
by requiring (i) without loss a restriction of the WKBJ sol-
ution to either a sine or a cosine by setting either C+

0 ¼ 0 or
S+0 ¼ 0 to guarantee the boundary condition at x = a and (ii)ðb

a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x [ R n {0}, (3:9)

for 0≤ a < b≤ 1 so that the integral in (3.9) can be guaranteed
to be a multiple of either πε or πε/2 for a suitable, sufficiently
small, choice of ε to guarantee the homogeneous boundary
condition at x = b.

From the fundamental constraint (3.9), we can deduce
properties of λ and m+

l that are necessary for a solution to
exist within an arbitrary region of validity, (a, b), with
<(l) . 0, therefore resulting in a perturbation that grows
in amplitude. An analogous derivation in the spatially
homogeneous setting is given in electronic supplementary
material, S1, and is the motivation for what follows. Critically,
we assume that conditions (3.6) hold for every proposition
below. We remark that here we derive implications directly
from the fundamental constraint (3.9) that will let us make
sense of solutions of the form given in (3.4), but do not
assume a priori that such solutions must be valid.

We first define permissible growth rates and eigenvalues
which satisfy (3.9).
Definition 3.1. A permissible pair (l, m+
l (x)) is such that the

value of λ entails m+
l (x) satisfies constraint (3.9) for all x in

some interval (a, b).

We will also refer to λ as permissible, or m+
l (x) as permiss-

ible, if (l, m+
l (x)) is permissible, as defined above, and

implicitly assume this is over an interval (a, b).

Proposition 3.2. The function m+
l (x) is permissible if and only if

m+
l (x) is real and non-negative for all x∈ (a, b), though not iden-

tically zero. Additionally, without loss of generality we can
consider the integral in (3.9) to be positive.

Proof. If m+
l (x) is real, non-negative and not identically zero

for x∈ (a, b) it is immediate that it is permissible. For the con-
verse, we consider a permissible m+

l (x). Note that the square
root in condition (3.9) is, without loss of generality, the posi-
tive square root. In other words, we work in the complex
plane such that any argument, denoted θ below, is in the
range θ∈ [0, 2π) and the positive square root is such that if,
for example, θ/2∈ [0, π), then

(eiu)1=2 ¼ eiu=2:

Hence, any imaginary contribution to the integrand,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (x)

q
,

in condition (3.9) is non-negative as the argument of the
square root in the complex plane is in the range [0, π). So
any imaginary contribution to the integrand cannot be can-
celled from a contribution in any other region of the
integration domain. Thus, the integrand cannot have an ima-

ginary contribution and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (x)

q
must be real for all x∈ (a, b).

Hence, m+
l (x) is real and non-negative for all x∈ (a, b). Finally,

the need for the integral to not be identically zero implies that
m+
l (x) cannot be identically zero. □

Proposition 3.3. If λ is both permissible and complex (i.e.
=(l) = 0), then <(l) , 0:

Proof. From the definition of m+
l (x), we have

det[�m+
l (x)Dþ Jl(x)] ¼ 0,

and, so,
2l ¼ �tr(m+
l (x)D� J)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[tr(m+

l (x)D� J)]2 � 4det[m+
l (x)D� J]

q
¼ [fu þ gv � m+

l (x)(1þ d)]

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(fu þ gv � m+

l (x)(1þ d))2 � 4(d(m+
l (x))2 � (dfu þ gv)m+

l (x)þ (fugv � gufv))
q

,
(3:10)
with the spatial dependence ofm+
l (x) such that the growth rate, λ,

does not have a dependence on x. Given λ is permissible, so that
m+
l (x) is permissible,wehave thatm+

l (x) is real andnon-negative
for all x∈ (a, b). In addition, tr(J) = fu+ gv< 0 for all x by equation
(3.6) implying that fu þ gv � m+

l (x)(1þ d) , 0 and, thus, if a
permissible λ is complex it has a negative real part. □

Proposition 3.4. Given <(l) � 0, the pair (l, m+
l (x)) is permiss-

ible if and only if

tr(Bl) . 0 and [tr(Bl)]
2 � 4det(Bl) � 0, (3:11)

for all x∈ (a, b).
Proof. If (l, m+
l (x)) is permissible, with <(l) � 0, then λ is real

by proposition 3.3. From permissibility and proposition
3.2 we also have m+

l (x) is real, non-negative and not identi-
cally zero for all x∈ (a, b). From det(�m+

l (x)Dþ Jl(x)) ¼ 0,
we have

m+
l (x) ¼ 1

2
tr(Bl)+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[tr(Bl)]

2 � 4det(Bl)
q� �

: (3:12)

As m+
l (x) and λ are strictly real, this enforces

[tr(Bl)]
2 � 4det(Bl) � 0,
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for all x∈ (a, b). We also have

det(Bl) ¼ det(D�1Jl) ¼ det(D�1)

det(Jl) ¼ det(Jl)=d . 0

for all x∈ (a, b), using equation (3.6) and that λ is real and non-
negative. Hence, for both the positive and negative square
root in equation (3.12), the fact that m+

l (x) cannot be negative
enforces tr(Bλ)≥ 0 for all x∈ (a, b). The possibility that tr(Bλ) =
0 is excluded as then m+

l (x) is not real, since det(Bλ) > 0.
Conversely, assuming conditions (3.11), we can see by

equation (3.12) that m+
l (x) . 0 for all x∈ (a, b), and, hence,

condition (3.9) is satisfied. □

We note that conditions (3.11) cannot be satisfied in the
case d = 1, as then tr(Bλ) = tr(J)− 2λ < tr(J) < 0, so for any
permissible λ with <(l) . 0, we must have d < 1. As the con-
ditions in (3.11) do not depend on the positive or negative
branch of m+

l , we immediately have that this proposition
implies both roots are permissible once one of them is. We
also need the following proposition, which shows that if
these conditions hold for λ > 0, then they hold for λ = 0.

Proposition 3.5. If the conditions (3.11) hold for some real per-
missible λ* with λ* > 0 for all x∈ (a, b), then they hold for all
real λ with λ*≥ λ≥ 0 for all x∈ (a, b).

Proof. First, we realize that tr(Bl) ¼ tr(B0)� l(1þ 1=d), and
the last term is strictly negative so that from tr(Bλ*) > 0 we
have tr(Bl) . 0 for all 0≤ λ≤ λ*. Next, we consider the
second condition of (3.11), which can be written as

P(l) :¼ 1�1
d

� �2

l2�2(d�1)(dfu�gv)
d2

l

þ
�
fuþgv

d

�2

�4
fugv� fvgu

d
� 0, (3:13)

where the quadratic P(λ) admits two zeros, which we can
compute as

~l
+ ¼ gv � dfu + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dfvgu
p

1� d
:

We can see that these roots are both real by signing each
term. From tr(J) < 0 while tr(Bλ*) = tr(D−1Jλ*) > 0 for λ* > 0 we
have that fu + gv < 0 while fu + gv/d > 0 and d < 1. Hence fu <
0, gv > 0 and fu− gv/d < 0.

Due to the positive coefficient of λ2 in P(λ), we can see that
this functionmust have a negativeminimum, so that it is positive
to the left of ~l

�
and to the right of ~l

þ
(and negative between

these roots). If l� � ~l
�
, then P(λ) is decreasing in λ and, so,

P(λ) > 0 for all 0≤ λ≤ λ*, meaning that we would be done.
Hence, we now assume that l� � ~l

þ
to derive a contradiction.

By linearity we have 0 , tr(Bl� ) � tr(B~l
þ ). We then compute,

tr(B~l
þ ) ¼ �(2dþ 2)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�dfvgu
p þ 2d(fu � gv)

(1� d)d
, 0,

which can be seen as the denominator is strictly positive
and the numerator has only negative terms. Therefore, we
must have l� � ~l

�
, so that P(λ)≥ 0 for all λ< λ*. □

Next we show a relationship between the positive and
negative eigenvalues of Bl, and how they depend on λ.
We will need to assume that [tr(Bλ)]

2− 4det(Bλ) > 0 for
all x∈ (a, b). If this term becomes zero (and hence
m�
l (x) ¼ mþ

l (x)), then there is a degeneracy in the associated
eigenvectors, which will lead to an internal boundary-layer
behaviour discussed in the next section, and hence the
determination of the boundary points, a and b.

Proposition 3.6. Given (l, m+
l (x)) is permissible, <(l) . 0, and

[tr(Bλ)]
2− 4det(Bλ) > 0 for all x∈ (a, b), we then have the ordering

0 , m�
0 (x) , m�

l (x) , mþ
l (x) , mþ

0 (x) for all x∈ (a, b). Further-
more, at the edges of the domain, x = a, or x = b, we still have the
ordering 0 , m�

0 (x) � m�
l (x) � mþ

l (x) � mþ
0 (x):

Proof. Using @l to denote differentiation with respect to λ, we
have that @ltr(Bl) ¼ �tr(D�1) ¼ �(1þ 1=d) and @ldet(Bl) ¼
�tr(Jl)=d ¼ (2l� fu � gv)=d. Then, by equation (3.12),
(m+

l (x))2 � tr(Bl)m+
l (x)þ det(Bl) ¼ 0, so, upon taking the

derivative and rearranging we have,

@lm
+
l (x) ¼ �dtr(D�1)m+

l (x)þ tr(Jl)
d(2m+

l (x)� tr(Bl))

¼ �dtr(D�1)m+
l (x)þ tr(Jl)

+d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[tr(Bl)]

2 � 4det(Bl)
p : (3:14)

We can then see that each term in the numerator is always
negative for both roots, whereas the denominator will change
sign. Hence, we have @lm

�
l (x) . 0 and @lm

þ
l (x) , 0, so that

the ordering follows by continuity. Finally, we note that the
possibility of m�

0 � 0 is excluded using equation (3.12)
along with proposition 3.2 and tr(B0) > 0, the latter of which
is true by virtue of proposition 3.5.

For the second part, all of the ordering can be deduced as
a limit of the above argument (with the new potential equal-
ity m�

l ¼ mþ
l if [tr(B0)]

2− 4det(B0) = 0 by equation (3.12))
except the definite inequality m�

0 . 0: To rule out m�
0 ¼ 0,

we consider λ = 0. If [tr(B0)]
2− 4det(B0) > 0 at the boundary

point as well, the above proof holds. Hence we need now
only consider the case with [tr(B0)]

2− 4det(B0) = 0. Now sup-
pose, for contradiction, that m�

0 ¼ 0. By (3.12) we have
tr(B0) = 0 and hence det(B0) ¼ det(J)=d ¼ 0, but we have
det(J) . 0 throughout, and hence the contradiction. □

Propositions 3.5 and 3.6 together give a range of permiss-
ible values of λ and associated eigenvalues m+

l , as soon as the
conditions (3.11) are satisfied for some positive λ* > 0. Finally,
we show that for a permissible λ with <(l) � 0, and the same
assumption as above, we can sensibly define the left and
right eigenvectors s� and p� which are not orthogonal.

Proposition 3.7. Given (l, m+
l (x)) is permissible and <(l) � 0,

then [tr(Bλ)]
2− 4det(Bλ) > 0 for all x∈ (a, b) if and only if

sT�p� = 0 for all x∈ (a, b), where s� and p� are the left and
right unit eigenvectors of [�m+

l Iþ Bl]:

Proof. We will demonstrate both implications via contraposi-
tion. We first assume that sT�p� ¼ 0 at some point x� [ (a, b).
By elaborating possibilities on a case by case basis for a general
2 × 2 matrix with zero determinant, we note the left and right
eigenvectors of zero eigenvalue can only be perpendicular if
the matrix is proportional to one of the following:

0 0
0 0

� �
,

1 1
�1 �1

� �
,

1 �1
1 �1

� �
:
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In all three cases, we have that the trace is zero. Therefore,
tr(�m+

l Iþ Bl) ¼ �2m+
l þ tr(Bl) ¼ 0: However, by equation

(3.12), this implies that [tr(Bλ)]
2− 4det(Bλ) = 0, contradicting

the assumption that this quantity remains positive.
For the converse, we assume that [tr(Bλ)]

2− 4det(Bλ) = 0 at
some point x� [ (a, b) (noting that if this term were negative,
then, by proposition 3.4, λ would not be permissible and we
would have an immediate contradiction). By using equation
(3.12) again we see that tr(�m+

l Iþ Bl) ¼ 0, so this matrix
then has repeated zero eigenvalues. Any real 2 × 2 matrix
with zero determinant and trace can be written as either,

c1 c2
� c21

c2
�c1

 !
, or 0 0

0 0

� �
,

for real c1, c2, with c2≠ 0. The first of these has one left and one
right eigenvector, given by s� ¼ (c1=c2, 1) and p� ¼ (�c2=c1, 1),
which are orthogonal. The second of these would imply fv =
gu = 0, and, along with the assumption that det(J) > 0, we
would have fugv > 0, so these terms must have the same
sign. But noting that tr(J) < 0 and tr(Bl) . 0, by assumption
on the stability of the zero mode, permissibility of λ, and
proposition 3.4, we have fu + gv < 0 and fu + gv/d− λ/d > 0,
thus, we see that they must have opposite signs, demonstrat-
ing that this case is not possible. Therefore, if [tr(Bλ)]

2−
4det(Bλ) = 0 at some point x� [ (a, b) for permissible λ, then
sT�p� ¼ 0 at this point. □

Given propositions 3.4, 3.6 and 3.7, which all follow
from the definition of permissible growth rates, we can now
consider where solutions of the form given in equation (3.4)
for permissible λ≥ 0 are valid. We will assume throughout
that [tr(Bl)]

2 � 4det(Bl) only has simple zeros, noting that
non-simple zeros would require mathematical fine tuning of
parameters. When [tr(Bl)]

2 � 4det(Bl) � 0, we have by the
first part of proposition 3.6 that the reciprocal of [m+

l ]1=4 with
permissible λ≥ 0 is non-singular and thus equation (3.4)
with permissible λ≥ 0 might only possess a singularity at
points where left and right eigenvectors are orthogonal,
that is sT�p� ¼ 0. Then, for a region with tr(Bl) . 0, and
[tr(Bl)]

2� 4det(Bl) � 0 we have that λ is permissible by prop-
osition 3.4 and that the reciprocal of [m+

l ]1=4 is non-singular,
even at the domain edges by the additional use of the second
part of proposition 3.6. We define the closure of the maximal
open set where the associated WKBJ solution for this λ is non-
singular by T l. By the above reasoning and proposition 3.7
each boundaryof this regionmust either be a domainboundary,
or where [tr(Bl)]

2 � 4det(Bl) ¼ 0 as sT�p� = 0 on the interior of
T l.Whenever the latter case occurs,T l = [0, 1] andwehave to
determine what happens to the WKBJ solution on approaching
the point where sT�p� = 0 and beyond.

3.2. Behaviour near singular points
If T l ¼ [0, 1], for a given permissible λ≥ 0, then we can take
a ¼ S+0 ¼ 0 in (3.4) to find a non-trivial solution that satisfies
the homogeneous Neumann boundary conditions. If instead
T l is a proper subset of the whole interval [0, 1] then we
assume for simplicity that T l is a single contiguous interval,
implying that [tr(Bl)]

2 � 4det(Bl) has at most two zeros for
x∈ [0, 1], and note that generalizing beyond a single interval
is straightforward. At a zero of [tr(Bl)]

2 � 4det(Bl), by (3.12)
we have the double eigenvalues, m�

l ¼ mþ
l , of Bl and we

recap that by proposition 3.7 we have sT�p� ¼ 0 at such a
point, denoted x�, and thus anticipate a singularity in the sol-
ution given by equation (3.4). In electronic supplementary
material, S2, we explicitly show that for y . x . x� the integral

exp
ðy
x

s�(�x) � p0
�(�x)

s�(�x) � p�(�x)
d�x

� �
, (3:15)

will blow up as x d x�, with analogous behaviour when
approaching such a singular point from the left. However, in
this electronic supplementary material section, we also show
that this integral will scale such that by imposing effective
Dirichlet conditions at the singular point, we can retain a
bounded solution. In this way, we can construct leading-
order solutions which are bounded and defined on T l.

With the previously stated assumption that any zero of
[tr(Bl)]

2 � 4det(Bl) is simple, so that [tr(Bl)]
2 � 4det(Bl)

monotonically passes through zero at such a singular point
and by proposition 3.7 we thus have that [tr(Bλ)]

2− 4det(Bλ) < 0
outside of T l. By proposition 3.4, this implies that this value
of λ is not permissible outside of this interval, and hence if
any WKBJ solutions exist, they cannot simultaneously satisfy
homogeneous Dirichlet or Neumann conditions at boundaries
on both the left and right. However, the scaling of the integral
(3.15) requires a solution that is zero at the singular point,
while a zero derivative is always required at a domain bound-
ary. Thus the only WKBJ solution outside of T l associated with
the growth rate λ is the zero solution. We can then extend the
non-trivial WKBJ solution defined on T l by the zero solution
to obtain a leading-order solution across the whole domain
for a mode with fixed growth rate λ.

We can now match these different sets of boundary con-
ditions depending on the number of singular points
appearing in the domain. Thesewill then lead to differentwave-
number selection conditions. We note in particular that in
matching Neumann boundaries, we only differentiate the trig-
onometric functions in (3.4), as only terms involving these
derivatives will be retained to leading order. We then have
the following leading-order solutions (modes) associated with
each eigenvalue m+

l of Bl ¼ D�1Jl(x), depending on the
number of singular points:

— no singular points, so T l ¼ [0, 1] and the solution is

w+(x, t) ¼ elt exp �
ðx
0

s�(�x)
Tp0

�(�x)
s�(�x)

Tp�(�x)
d�x

" #

� C+
0

[m+
l (x)]1=4

cos
1
1

ðx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x

� �
p�(x)

and
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x ¼ n+p1;

9>>>>>>>>>>=
>>>>>>>>>>;

(3:16a)

— one singular point x�(l) . 0, so without loss of generality,
(x�, 1) ¼ T l, with solution

w+(x, t) ¼ elt exp
ð1
x

s�(�x)
Tp0

�(�x)
s�(�x)

Tp�(�x)
d�x

" #
S+0

[m+
l (x)]1=4

� sin
1
1

ðx
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x

� �
p�(x)

and
ð1
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x ¼ n+ þ 1

2

� �
p1,

9>>>>>>>>>>=
>>>>>>>>>>;

(3:16b)

for x [ T l, and zero otherwise;
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— two singular points x�(l), x��(l) [ (0, 1) delimiting the
T l set, i.e. T l ¼ (x�, x��), with solution

w+(x, t) ¼ elt exp
ðx��
x

s�(�x)Tp0
�(�x)

s�(�x)Tp�(�x)
d�x

" #
S+0

[m+
l (x)]1=4

� sin
1
1

ðx��
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x

� �
p�(x)

and
ðx��(l)
x�(l)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x ¼ n+p1,

9>>>>>>>>>>=
>>>>>>>>>>;

(3:16c)

for x [ T l, and zero otherwise;

where C+
0 , S+0 are arbitrary real constants. We remark that the

mode selection constraint is defined over T l, and so will
depend on λ through both the eigenvalues m+

l and any singu-
larities, as highlighted in the integral bounds. In this way, the
latter two solutions given by equations (3.16b)–(3.16c) are
continuously extended by zero outside of T l, and equal to
zero at the singular points.

We remark that these WKBJ solutions applied to systems
without heterogeneity in the reaction kinetics collapse in both
components to functions of the form

elt(C0 cos (npx)þ S0 sin (npx)):

However, the meaning of n (denoted as n±) in the hetero-
geneous case does not correspond to the spatial frequency
of a given mode, as we will see in an example. We can now
describe some additional structural features of the spaces
T l and how they change for different growth rates λ. In par-
ticular, the set T l is monotonic in λ in the following sense.

Proposition 3.8. If T l2 = ; and 0≤ λ1 ≤ λ2 then T l2 # T l1 . If
T l1 = [0, 1], and 0≤ λ1 < λ2, then we have the stricter inclusion
T l2 , T l1 :

Proof. The first part of this for 0≤ λ1≤ λ2 follows from prop-
osition 3.5. We then need to show that if λ1 < λ2, then
T l1 � T l2 . We note that at least one of the boundaries of
T l, a(λ) and/or b(λ), are zeros (in the spatial variable x) of
tr(Bl(x))

2 � 4det(Bl(x)). At such a boundary, we compute
the derivative with respect to λ, finding

@l[(tr(Bl(x))
2 � 4det(Bl(x))]

¼ �2tr(Bl)tr(D�1)þ 4tr(Jl) det (D
�1) , 0, (3:17)

which follows by signing each term. As tr(Bl(x))
2

�4det(Bl(x)) . 0 for a(λ) < x < b(λ), we have that if a(λ1) > 0
then a(λ1) < a(λ2) and if b(λ1) < 1 then b(λ1) > b(λ2), so the
strict inclusion T l2 , T l1 follows. □

Hence, the onset of instability (the boundary of T 0 ) is
given by zeros of [tr(B0)]

2− 4det(B0) = 0, for which tr(B0) > 0.
More generally, the onset of instability with a growth rate
λ≥ 0 is given by the location of zeros of sT�p� ¼ 0, i.e. zeros
of [tr(Bl)]

2 � 4det(Bl) ¼ 0 while tr(Bl . 0). Therefore, this
boundary shifts with λ, while monotonicity of the T l with
respect to λ holds. Hence, the sufficient condition for (the
onset of) instability can be identified with T 0, which is a
good approximation of where we will find Turing patterns,
as it corresponds to the region of support of a mode with
positive value of λ for sufficiently small ε. This also justifies
considering the fundamental constraint (3.9) in this regime,
which does not depend on ε.

In summary, we have the following conditions for instability:

Instability criterion 3.9 (λ-dependent heterogeneous case).
Let λ > 0, 0 < ε≪ 1, and assume that the quantity
[tr(Bl(x))]

2 � 4det(Bl(x)) has no more than two simple zeros for
x∈ [0, 1], and is positive between these two zeros. If we assume
stability to perturbations in the absence of diffusion, i.e.

tr(J(x)) , 0, det(J(x)) . 0, for all x [ [0, 1], (3:18)

then there exists a non-homogeneous perturbation w satisfying
(2.3) (to leading order in ε) which grows as eλt in the interval
x∈ (a(λ), b(λ)) if

tr(Bl(x)) . 0, [tr(Bl(x))]
2 � 4det(Bl(x)) . 0,

for all x [ (a(l), b(l)),
(3:19)

and if there exists an integer n± > 0 such that

ðb(l)
a(l)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m+
l (�x)

q
d�x ¼ n+ þ K

2

� �
p1, (3:20)

where a(l) ¼ max (0, min ({x : [tr(Bl(x))]
2 � 4det(Bl(x)) ¼ 0})),

b(l) ¼ min (1, max ({x : [tr(Bl(x))]
2 � 4det(Bl(x)) ¼ 0})) and

K = 0 if either a(λ) = 0 and b(λ) = 1, or if 0 < a(λ) < b(λ) < 1; other-
wise K = 1.

Proof. We assume without loss of generality that (a(λ), b(λ)) has
one of the forms given in (3.16). By proposition 3.3 we have no
loss in specializing to strictly real λ. Assuming conditions (3.19)
are satisfied, propositions 3.2 and 3.4 imply that m+

l is permiss-
ible, real, and positive. From this and proposition 9 (electronic
supplementary material, S2), we have that the functions given
by (3.16) are real and bounded for all x∈ (a(λ), b(λ)). To leading
order in ε, such solutions satisfy (2.3), alongside the zero sol-
ution. By the scaling arguments in electronic supplementary
material, S2, we can see that the solutions given by (3.16)
meet this zero solution at any internal boundary (i.e. any
zero of [tr(Bl(x))]

2 � 4det(Bl(x)) in the interval (0, 1)). So to
leading order, such a piecewise solution satisfies (2.3) and the
Neumann boundary conditions at {0, 1}. □

Analogous criteria for the other possibilities for T l,
depending on the sign pattern of [tr(Bl(x))]

2 � 4det(Bl(x))
across the domain, are readily determined. Furthermore, we
note that the integers n± play an analogous role to the wave-
number n in the homogeneous setting, but that they will not
correspond to spatial frequency, and the two roots will have
quantitatively different properties, so must be considered as
distinct. For sufficiently small ε, these conditions predict
that a pattern will form in the interval (a, b), and intervals
for which no value of λ exists will return to the heterogeneous
steady-state u* after a small perturbation (up to leading order
in ε). We will confirm this numerically in §4. Additionally, the
fact that unstable modes do not share the same support is
shown explicitly in proposition 3.8, and employed to explain
some properties of patterns in heterogeneous domains.

We remark that (3.20) depends on a given λ both in the inte-
grand and the bounds of the integral, but in principle for a
given ε and n±, one can use this condition to find at most
two values of λ indicating an instability, one for each eigen-
value. Hence, any instability will permit a discrete number of
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unstable modes, each with a possibly different support, and the
growth rate of any instability will, thus, depend locally on the
permissible growth rates. We give further structural details
regarding n± and λ in electronic supplementary material, S3.

Further, it should be noted that criterion 3.9 can be gener-
alized to obtain criterion 2.2 by relaxing the restriction to a
single interval, and considering a suitable choice of arbitrarily
small ε. The use of the interior of T 0 in this limit for criterion
2.2 is further supported by proposition 3.8, and noting that
instabilities need not grow on the edges of T 0 for the
WKBJ solutions at leading order (in particular this is the
case when the homogeneous Dirichlet boundary conditions
are imposed to retain bounded solutions there). However,
although linked, we highlight that criterions 2.2 and 3.9 are
different. Criterion 3.9 gives conditions for the presence of a
specific unstable WKBJ Turing mode, which is subject to
the wavemode selection relation of equation (3.20). Aside
from a trivial relaxation of the requirement that the WKBJ
Turing mode may only have support within a single interval,
criterion 2.2 gives conditions that ensure that there is at least
one destabilizing WKBJ Turing mode with a positive growth
rate for sufficiently small ε, effectively by amalgamating cri-
terion 3.9 across all possible modes. Hence, criterion 2.2 is
the most useful in classifying whether or not there is a
Turing instability. Nonetheless, criterion 3.9 is a fundamental
stepping stone to deriving criterion 2.2 and, in addition, pro-
vides detailed information, for example, about the location of
the support of the WKBJ Turing mode solutions and the
relation between the growth rate to the non-dimensional
diffusion coefficient, via equation (3.20).
4. Illustrative example. The Schnakenberg model
To illustrate our results, we consider the Schnakenberg model
with spatially heterogeneous sources. Let

u ¼ u1
u2

� �
,

so that u1 is the nominal inhibitor and u2 is the nominal
activator. The kinetics are

F(u, x) ¼ b(x)� u22u1
u22u1 � au2 þ z(x)

� �
,

with α, β(x), ζ(x) > 0. As is typical, and to simplify the system,
we assume β(x) + ζ(x) = 1. Hence, accurate to O(ε2), the steady
state is given by

u� ¼ a2b(x)
1
a

� �
,

Note that u*(x) has no dependence on ε at this order of
approximation by construction and furthermore β(x) is
taken so that u*(x) satisfies the boundary conditions at the
domain edges, as required in the derivation of equation
(2.2) and discussed in detail in §2. We proceed by evaluating
the Jacobian, which is given by

J ¼ � 1
a2
1
a2

j �2ab(x)
a(2b(x)� 1)

� �
,

so that
tr(J) ¼ a(2b(x)� 1)� 1
a2 , det(J) ¼ 1

a
, tr(D�1J) ¼ a

d
(2b(x)� 1)� 1

a2

and [tr(D�1J)]2 � 4det(D�1J) ¼ (2b(x)� 1)2a6 þ (�4b(x)� 2)da3 þ d2

a4d2
:

)
(4:1)
We first note that the second constraint of the Turing con-
dition, equation (3.18), is automatically satisfied since
det(J) > 1. To satisfy the Turing conditions (3.19) for λ = 0
we require

4a6b(x)2 � 4(a6 þ a3d)b(x)þ a6 � 2a3dþ d2 . 0 (4:2a)

b xð Þ . 1
2

1þ d
a3

� �
, b(x) ,

1
2

1þ 1
a3

� �
: (4:2b)

Thus, inequalities (4.2b) require d < 1, as standard. Condition
(4.2a) forces β(x) to lie outside of the roots of this quadratic, i.e.

b(x) .
1
2

1þ d
a3

� �
þ

ffiffiffiffiffi
d
a3

r
or b(x) ,

1
2

1þ d
a3

� �
�

ffiffiffiffiffi
d
a3

r
:

The second of these inequalities cannot be reconciled with the
first inequality of (4.2b). We then have the conditions on the
parameters for a Turing instability (at the marginal case of
λ = 0) are that α > 0, 0 < d < 1, and for all x [ T 0,

1
2

1þ d
a3

� �
þ

ffiffiffiffiffi
d
a3

r
, b(x) ,

1
2

1þ 1
a3

� �
,

with the latter inequality also enforcing the first constraint of
the Turing condition, equation (3.18). The above inequality is
also accompanied by the need to ensure an unstable mode
satisfies condition (3.20), analogous to the a posteriori selection
of a wavenumber for the spatially homogeneous Turing
instability. This condition will be satisfied if and when the
boundary conditions are satisfied.

4.1. Direct numerical solutions
We simulated system (2.1) with the Schnakenberg kinetics.
Initial data were taken as normally distributed spatial pertur-
bations to u*. Specifically, we set ui(0) ¼ u�i (1þ ji(x)) where
i = 1, 2 and ji(x) � N (0, 10�3) independently for each x and
i. While such heterogeneous reaction–diffusion systems are
standard problems for numerical simulation software, we
carefully checked different implementations of our simu-
lations in order to be sure we resolved boundary layers and
solution structure in the spatial domain. The commercial
finite-element solver Comsol v. 5.4 was used to solve the
equations with 105 elements, a relative tolerance of 10−4,
and a final time of t = 106 by which time a steady state had
been reached up to numerical tolerances. Simulations were
also carried out using a standard three-point stencil in
MATLAB and the stiff solver ode15s, using 104 grid points
with relative and absolute tolerances of 10−9, and the same
solutions were found. WKBJ modes were reconstructed in
Mathematica and these were checked in MATLAB and Maple.
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We demonstrate our results using the following
parameter choices, unless otherwise stated. We take α = 1,
d = 1/40 = 0.025, and consider β = 3/5 + [1− cos (cπx)]/25,
where c = 1 or c = 2. For these parameters, we have a Turing
instability if 0.6706 < β(x) < 1, so for c = 1 we have
T 0 � (0:7774, 1) and for c = 2 we have T 0 � (0:3886, 0:6114).
We plot simulations for c = 1 in figure 2, and vary ε. We
observe that patterned solutions form approximately in the
region predicted by the analysis, T 0, and that they localize
to this region as ε is decreased with highly oscillatory bound-
ary regions at x� � 0:7774. We note that figures 2b–d have the
same qualitative structure in terms of the amplitudes of pat-
terns, though the internal oscillations become increasingly
finer as ε is decreased. The insets show the increasing localiz-
ation of the boundary as ε is decreased, as well as the
structure of the decaying boundary layer of the mode with
the largest support. We also show the same kind of localiz-
ation for c = 2 in figure 3 where the spike solutions are
confined to an internal region by varying the heterogeneity.
Larger values of c, as well as other kinds of heterogeneity,
were also considered with results consistent with the
analytical predictions.

In figure 4, we show short time solutions to the nonlinear
and linearized system in order to understand the structure of
growing modes due to the instability. As anticipated, for suf-
ficiently small perturbations and time intervals, the linear
and nonlinear simulations are almost identical (using the
same realization of the initial perturbations). We observe
that the instability grows fastest furthest to the right,
suggesting that there is not a single largest growth rate λ
across the domain, as anticipated in the analysis. Rather,
what we have plotted are a superposition of modes with



u1

0.85 0.90
xx

0.95 1.00

(a) (b)

0.7 0.8 0.9 1.0

–5

0

5

u1

–5

0

5

×10–4 ×10–4

Figure 4. Plots of u1 from simulations of the Schnakenberg system using α = 1, d = 1/40 = 0.025, and β = 3/5 + [1− cos (πx)]/25 with varying ε at a times
tf = 800 in (a) and tf = 700 in (b). The initial perturbation is taken as ji(x) � N (0, 10�6) in both cases. The blue solid curve is given by u1(t f )� u�1 from the
full numerical simulation, and the black dashed curve is given by w1(tf ) from simulations of the linearized system. The red dash-dotted curve is the boundary of T 0

at x≈ 0.7774, though the region shown in (b) is entirely within T 0. (a) ε = 10−2, (b) ε = 10−3. (Online version in colour.)

n± x*

(a) (b)

0

5

10

15

0 0.005 0.010

l

0.0150 0.005 0.010

l

0.015 0.020

0.80

0.85

0.90

0.95

1.00

n+
n–

Figure 5. Evaluating (3.20) reveals the possible discrete modes n± on both branches of WKBJ solutions, which are plotted using asterisks in (a). In (b), we plot the
position of singular points x�(l) demarcating the boundary of T l ¼ [x�, 1] as a function of the growth rate λ, and corresponding to a shrinking T l which
vanishes when x� ¼ 1. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190621

12
distinct growth rates and supports. Finally, for smaller ε,
these results suggest that larger values of λ (which are
more localized) become permissible, which is consistent
with the structures anticipated. We now explore these
modes in more detail.
4.2. Structure of unstable modes
We construct the unstable modes given by (3.16b) for the
example shown in figure 2a with ε = 0.01, and discuss their
properties. First, we numerically determine the discrete
plausible mode numbers n+ [ N and λ from the constraint
(3.20). Then Bl, p�, s�, ml and w all follow from their defi-
nitions. This example is indicative of the general features of
linearly unstable modes in heterogeneous reaction–diffusion
systems; the restriction to an example with modes of the
form given by (3.16b) is just for clarity of presentation, and
our qualitative observations generalize. Specifically, unstable
regions T l which are composed of many disjoint intervals
will in general have a wide variety of unstable modes
across the domain, but the analysis in any such complicated
setting will essentially reduce to the structures found here.
In this particular example there are 19 unstable WKBJ
eigenmodes on the branch corresponding to mþ

l and 15 on
the branch corresponding to m�

l , all of which follow from
computing λ from (3.20) as shown in figure 5a. Note that
the right-most value of n± (here shown as a continuous
interpolation) corresponds to λ = 0, i.e. the boundary of T 0,
and that indeed the first unstable WKBJ mode (on the nega-
tive branch in this particular example) appears near this
boundary as predicted due to the small values of ε. We
depict four of these modes from each branch in figure 6,
noting that they each have a support which increases with
n. We also see in figure 5a how the growth rate is related to
the discrete values of n, and how the support of a corre-
sponding mode changes with its growth rate λ in figure 5b.
Figure 5 directly evidences the predictions from proposition
3.8 and the results in electronic supplementary material, sec-
tion S3, as we see the support of distinct modes decrease with
increasing λ. Finally, we remark that the vector p* in equation
(3.4) (computed numerically) is negative in its first com-
ponent, and positive in its second (as expected for a cross-
kinetic system like Schnakenberg), and both components are
essentially constant in space, varying by less than 1% of
their magnitude across the domain.



0.94 0.96 0.98 1.00
–1.0

–0.5

w± w±0

0.5

–1.0

–0.5

0

0.5

0.80 0.85 0.90
xx

0.95 1.00

(a) (b)

Figure 6. We plot the first component of modes given by (3.16b), associated with u1, corresponding to parameters as in figure 2a. We plot modes for the positive
branch mþ

l (solid lines), with n+ = 1, 5, 13, 19 in red, green, purple and blue, respectively, as well as the modes corresponding to the negative branch m�
l (dashed

lines), with n− = 1, 5, 11, 15 in red, green, purple, and blue respectively. The smaller two mode numbers are shown in (a), and the larger two in (b). We remark
that the smallest and largest values of n± correspond to the maximal and minimal mode numbers along each branch, and the other two mode numbers for each
branch are chosen to have similar values of λ. Note the shrinkage of the support of each mode with increasing n, and in particular the difference in the axes for
each plot. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190621

13
5. Discussion
We have analysed two-component heterogeneous reaction–
diffusion systems in order to justify the use of local Turing
conditions which are commonly employed in the literature,
and given a deeper insight into how heterogeneity changes
the structure of patterned states. Using a WKBJ ansatz, we
have shown that local conditions are valid, provided that the het-
erogeneity is slowly varying. Additionally, we demonstrated
that these unstable modes are supported in distinct regions of
the domain with different growth rates, and without a well-
defined wavenumber; this leads to the commonly observed
amplitudevariations reported in the literature. This is in contrast
to the homogeneous case, where the patternmodes have awell-
defined wavenumber and occupy the whole space (figure 1b).
We illustrated our analytical predictions using a simple model
in §4. Much more complicated heterogeneities and reaction–
diffusion systems, such as those explored in [28] were also
used to verify the analytical predictions in more complicated
cases, such as when T 0 is no longer a single interval. Neverthe-
less, the instability criteria work well for suitably small ε such
that the heterogeneity does not vary faster than O(1/ε). While
we can enumerate the unstable modes and compute their
growth rates, we remark that there is no obvious generalization
of wavelength or frequency in this setting; unstable modes,
and fully developed patterns, tend to exhibit large varying
oscillations throughout a heterogeneous region of space.

Alongside generalizing the classical Turing conditions to
the case of spatially heterogeneous systems, our analysis
suggests several further questions to pursue. We have
assumed that the local steady state is stable in the absence
of diffusion throughout the domain, but it may be possible
that diffusion could in fact stabilize the solution of a hetero-
geneous reaction–diffusion system which is locally unstable
(in the absence of diffusion) in only part of its domain, lead-
ing to a patterned state. Additionally, it is known that rapidly
varying heterogeneities can substantially impact the ability of
a reaction–diffusion system to admit patterns, and the quali-
tative features that such patterns exhibit [36,41], and this
remains to be explored within the present framework. Finally,
while the results in electronic supplementary material, S3,
allow us to conjecture about the envelope of solutions via
the growth rate of distinct unstable modes, these remarks
have not been rigorously justified. Demonstrating properties
of these envelopes mathematically would require extending
the framework of weakly nonlinear analysis [3,62–65] to the
heterogeneous setting, and is beyond the scope of this paper.

In addition to these mathematical extensions, one could
apply these results directly to biological patterning situations,
such as successive patterning due to reaction–diffusion mech-
anisms on different timescales, or to the combination of
theories of positional information and reaction–diffusion
(figure 1). Originally, the well-known Gierer–Meinhardt
model developed in [66] contained a spatial heterogeneity
representing a precursor pattern from a previous pattern
forming event. Such a situation could be directly captured
by considering distinct reaction–diffusion processes occur-
ring at different time points in development, or on different
temporal and spatial scales. Alternatively, one can posit a
positional information framework as the origination of spatial
structure, such as in delineating different patterning fields
from one another, and let reaction–diffusion theory produce
additional periodic patterning within this heterogeneous
domain, as suggested in [6]. Hence this paper presents a
first step toward theoretically understanding the evolution
of one pattern into another, but much more work must be
done linking to experimental studies to justify such a
theory of morphogenesis.

While the WKBJ-based approach we have employed is
potentially extendable to multi-species or multi-dimensional
systems, the calculations become increasingly complicated.
Real chemical and biological systems are composed of
many different chemical species, and few developmental
phenomena are faithfully captured by a single spatial dimen-
sion. Additionally, we remark that our analysis presented
in electronic supplementary material, S2, only shows that
continuous modes can be defined across singularities at
leading order, though fully resolving the boundary-layer
structure across these singularities is beyond our present
scope. Nevertheless, the results we have presented here will
remain valid even with such refinements. We also anticipate
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that these results are indicative of Turing instabilities in het-
erogeneous systems in higher dimensions, or with three or
more species. Specifically, spatial regions which satisfy local
Turing conditions should admit patterned solutions (distinct
from the ambient heterogeneity) if these regions are suffi-
ciently large, and the spatial heterogeneity is sufficiently
smooth. Preliminary numerical investigations in two and
three dimensions suggest this is true, and a valuable exten-
sion given the biological motivations for the theory. The
framework presented here is a first step in understanding
how one patterned state arises from another, and in elucidat-
ing the more nuanced roles that reaction and diffusion play
in development and analogous systems with heterogeneous
instabilities. As Turing said, though under different circum-
stances [67], ‘We can only see a short distance ahead, but
we can see plenty there that needs to be done.’
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