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Healing of soft biological tissues is the process of self-recovery or self-repair
after injury or damage to the extracellular matrix (ECM). In this work, we
assume that healing is a stress-driven process, which works at recovering a
homeostatic stress metric in the tissue by replacing the damaged ECM with
a new undamaged one. For that, a gradient-enhanced continuum healing
model is developed for three-dimensional anisotropic tissues using the modi-
fied anisotropic Holzapfel–Gasser–Ogden constitutive model. An adaptive
stress-driven approach is proposed for the deposition of new collagen fibres
during healing with orientations assigned depending on the principal stress
direction. The intrinsic length scales of soft tissues are considered through
the gradient-enhanced term, and growth and remodelling are simulated by
a constrained-mixture model with temporal homogenization. The proposed
model is implemented in the finite-element package Abaqus by means of a
user subroutine UEL. Three numerical examples have been achieved to illus-
trate the performance of the proposedmodel in simulating the healing process
with various damage situations, converging towards stress homeostasis. The
orientations of newly deposited collagen fibres and the sensitivity to intrinsic
length scales are studied through these examples, showing that both have a
significant impact on temporal evolutions of the stress distribution and on
the size of the damage region. Applications of the approach to carry out in
silico experiments of wound healing are promising and show good
agreement with existing experiment results.
1. Introduction
Soft biological tissues, such as arteries, skin and tendons, have the ability to
grow and change through the formation of new constituents and removal of
existing constituents [1]. Prediction of the underlying mechanisms of healing
in damaged soft tissues through computational models is an important topic
of research with a large number of potential applications.

Healing of soft biological tissues is the process of self-recovery or self-repair
of the injured or damaged extracellular matrix (ECM), involving a complex inter-
play of components, and is usually divided into four stages, which overlap in time
and which can last for several months or years [2]. These stages are haemostasis,
inflammation, proliferation and remodelling [2,3]. It was reported that the first
three stages (from haemostasis to proliferation) may last several weeks, and the
final stage of remodelling may take from weeks to years. The description of
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healing can be found in appropriate references such as
Comellas et al. [4] and Cumming et al. [5].

Computational modelling can provide insight into healing
of soft tissues from both short-term and long-term perspec-
tives. The first mathematical models of wound healing were
developed in the 1990s [6–8]. Tepole & Kuhl [9] and Valero
et al. [10] comprehensively reviewed computational models
of dermal wound healing. Numerical approaches to healing
can be divided into two types:

—One focusing on the underlying cellular and biochemical
mechanisms, including the simulation of wound con-
traction [11,12] and angiogenesis [13,14], inflammation
and proliferation using discrete/continuum approaches
[5,15,16]. For instance, Tepole [16] presented a continuum
healing model by combining growth and remodelling
(G&R) and systems biology.

—Amore phenomenological approach focusing on the change
of material properties during the remodelling phase [17–20].
G&R can be modelled with collagen fibre reorientation
[21–24] or continuous turnover of constituents [1,25,26].

The constrained-mixture computational method was first
introduced by Humphrey & Rajagopal [25] and has been
widely employed by others. Cyron et al. [27] introduced a tem-
porally homogenized model that can significantly reduce the
computational cost of the G&R approach. More recently,
Latorre & Humphrey [28] developed a new rate-independent
G&R approach, speeding up the numerical resolution com-
pared with the general constrained-mixture theory.

Continuum damage mechanics (CDM) [29] provides
another phenomenological approach suited for healing, as the
loss or reduction of material or mass can be described with a
damage function. However, it is known that local continuum
damage models are significantly mesh dependent [30], and,
more importantly, the physically inherent intrinsic length
scale, such as the length of collagen fibres, cannot be considered
in local damage models. The difficulty caused by the local
damage model can be overcome by integral-type or gradient-
type non-local damage models. Wafenschmidt et al. [30] first
proposed a gradient-enhanced large-deformation continuum
damage model based on the previous work of Dimitrijevic &
Hackl [31,32]. Ferreira et al. [33] also presented an integral-
type non-local averaging damagemodel for anisotropic hyper-
elasticmaterials. But these damagemodels have not considered
the healing process in the long term. To simulate remodelling in
bone tissue, Fernández et al. [34] also proposed a model with
diffusion terms to address localization problems.

Comellas et al. [4] first developed a homeostasis-driven
remodelling model for healing in soft tissues based on CDM.
In their approach, the healing process was simulated by a
continuously recoverable damage variable [4]. In our previous
work [35], a two-dimensional non-local continuum healing
model was presented. It combined a gradient-enhanced
damage model and a temporally homogenized G&R model. It
considered the intrinsic length scales of soft tissues through
the gradient-enhanced approach. However, our previous work
only addressed two-dimensional cases and a neo-Hookean
hyperelastic model was used, so three-dimensional and aniso-
tropic effects were not considered. This did not permit the
healing of soft biological tissues with collagen fibre deposition
to be simulated. Moreover, studies addressing the effect of
intrinsic length scales for soft-tissue healing are scarce.
To address this lack, we present a three-dimensional gradient-
enhanced anisotropic healing model resulting from the
extension of our former two-dimensional isotropic model.

The paper is organized as follows: §2 introduces the
material and methods, including general equations for
the gradient-enhanced model in §2.1, constitutive model in
§2.2 and the finite-element (FE) implementation in §2.3. Sec-
tion 3 shows the numerical examples. Finally, discussions
and conclusions are given in §4.
2. Material and methods
2.1. General equations for gradient-enhanced

healing model
2.1.1. Basic kinematics
Let x ¼ w(X, t) describe the motion of the body which transforms
referential placements X [ k(0) to their spatial counterparts
x [ k(t), in which κ(0) and κ(t) are the initial reference configur-
ation and current configuration, respectively. The deformation
gradient and the Jacobian which maps the referential volume
dV onto the current volume dv are defined as

F ¼ rXw (2:1)

and

J ¼ dv
dV

¼ det (F): (2:2)

Considering the G&R process, the change of volume can be
captured by an inelastic growth deformation gradient Fg describ-
ing the change of size and shape of the differential volume
element by deposition or degradation of mass. Therefore, as
the elastic deformation is denoted as Fe and the total deformation
F at any time t is decomposed multiplicatively [27],

F(t) ¼ Fe(t)Fg(t): (2:3)
2.1.2. Gradient-enhanced healing model with G&R
The general strain energy function per unit reference volume at
each G&R time is assumed to be written as

C ¼ f (d)
r0
r(t)

Q(t)C1 þ
rg(t)
r(t)

C2, (2:4)

where C1 is the original (undamaged) strain energy density and
C2 is the strain energy density for the newly deposited fibres pro-
duced through G&R [36], depending on the elastic deformation
gradient Fe(t).

In equation (2.4), ρ0 is the mass density per unit reference
volume at t = 0 in the reference configuration and ρg(t) denotes
the change of mass density caused by G&R only (inelastic defor-
mation). The total mass density ρ per unit reference volume at
time t can be computed as ρ(t) =Q(t)ρ0 + ρg(t). Q(t)∈ (0, 1] is
the mass fraction existing at t = 0 that survives until time t [37]
and f (d ) represents a function of the damage variable d that
measures the degree of material stiffness loss. It is at least
twice differentiable and satisfies the following conditions:

f (d) : <þ ! (0, 1]
n
f (0) ¼ 1, lim f(d) ¼ 0

d!1

o
: (2:5)

Following the approach of Dimitrijevic & Hackl [31,32], a
gradient-enhanced non-local free energy term is added to the
strain energy given in equation (2.4)

C ¼ f (d)
r0
r(t)

Q(t)C1 þ
rg(t)
r(t)

C2 þ cd
2
krXfk2 þ bd

2
[f� gdd]

2: (2:6)



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190708

3
In equation (2.6), cd represents the gradient parameter that
defines the degree of gradient regularization and the internal
length scale. Physically, this parameter is related to the average
length of microstructural components in the soft tissue. Three
other variables are introduced:

— the field variable ϕ, which transfers the values of the damage
parameter across the element boundaries to make it non-local
by nature,

— the energy-related penalty parameter βd, which approximately
enforces the local damage field and the non-local field to
coincide,

— parameter γd, which is used as a switch between the local and
enhanced model.

2.1.3. Total potential energy and variational form
Thegeneral totalpotential energy for thenon-localdamagemodel is

P ¼
ð
V

CdV �
ð
V

�B � wdV �
ð
@V

j�T � wdV, (2:7)

where �B is the body force vector per unit reference volume ofΩ and
�T are the tractions on the boundary @Ω.

Minimization of the potential energy with respect to the
primal variables w and ϕ results in a coupled nonlinear system
of equations, which may be written asð

V

P :rXdwdV �
ð
V

�B � dwdV �
ð
@V

�T � dwdV ¼ 0 (2:8)

and ð
V

Y :rXdfdV �
ð
V

YdfdV ¼ 0, (2:9)

where P is the first Piola–Kirchhoff stress and Y is the scalar
damage quantity defined as

P ¼ @FC, �B ¼ �@wC (2:10)

and

Y ¼ @rXfC, Y ¼ �@fC: (2:11)

Corresponding spatial quantities in equation (2.10) and (2.11)
are given by

s ¼ P � cof(F�1), �b ¼ J�1�B (2:12)

and

y ¼ Y � cof(F�1), y ¼ J�1Y, (2:13)

where cof(F) ¼ JF�T .
Substituting equations (2.2), (2.12) and (2.13) into equations

(2.8) and (2.9), the variational forms in spatial description areð
V

s :rxdwdv�
ð
V

�b � dwdv�
ð
@V

�t � dwdv ¼ 0 (2:14)

and ð
V

y :rxdfdv�
ð
V

ydfdv ¼ 0: (2:15)

2.2. Constitutive model
2.2.1. Hyperelastic part of the free energy
As introduced in §2.1.2, the local part of the strain energy function
in equation (2.4) includes the undamaged (original) part C1 and
the G&R produced part C2. The turnover time of the isotropic
part is assumed to be much longer than that of the anisotropic
part. Therefore, G&R is only considered in the anisotropic part
and the growth of the isotropic part is ignored in this paper.
For the undamaged part C1, the modified anisotropic
Holzapfel–Gasser–Ogden (MA-HGO) hyperelastic constitutive
model [38] is used. It is written as

C1 ¼ C iso
1 þC aniso

1 , (2:16)

in which C iso
1 and C aniso

1 are the isotropic and anisotropic parts,
respectively, and can be expressed as

C iso
1 ¼ 1

2
m0J

�2=3(I1 � 3)þ 1
2
k0(J � 1)2 (2:17)

and

C aniso
1 ¼ k1

2k2

X
i¼1,2

n
exp [k2(Ii � 1)2]� 1

o
, (2:18)

where μ0 and κ0 are the shear and bulk moduli of the soft isotro-
pic matrix, respectively. I1 ¼ tr(C) is the first invariant of C,
where C is the right Cauchy–Green tensor, which is defined as
C ¼ FT

e Fe. k1 and k2 are the positive material constants, which
can be determined from experiments. Ii is the anisotropic invar-
iant describing the deformation of the reinforcing fibre and can
be defined as Ii ¼ a0i � (Ca0i), in which a0i is a unit vector aligned
with the reinforcing fibre in the reference configuration.

For the G&R produced partC2, the direction of newly depos-
ited fibres may change during the healing process. For simplicity,
the fibre directions (the fibre families are defined in §2.2.3) are
expressed through a finite number of fibre families in which
the strain energy of each fibre family can be written as

C i
2 ¼

k1
2k2

n
exp [k2(Ii � 1)2]� 1

o
(i ¼ 1, 2, . . . , n): (2:19)

Substituting equations (2.17), (2.18) and (2.19) into equation
(2.6), the final expression of the total strain energy function can
be written as

C ¼ r0
r(t)

f (d)Q(t)(C iso
1 þC aniso

1 )

þ 1
r(t)

Xn
i¼1

rigC
i
2 þ

cd
2
krXfk2 þ bd

2
[f� gdd]

2

¼ r0
r(t)

f (d)Q(t)

(
1
2
m0J

�2=3(I1 � 3)þ 1
2
k0(J � 1)2

þ k1
2k2

X
i¼1,2

{exp [k2(Ii � 1)2]� 1}

)

þ 1
r(t)

k1
2k2

Xn
i¼1

rig(t){exp [k2(Ii � 1)2]� 1}

þ cd
2
krXfk2 þ bd

2
[f� gdd]

2 (2:20)

and the corresponding Cauchy stress is

s ¼ r0
r(t)

f (d)Q(t)(siso
1 þ saniso

1 )þ 1
r(t)

Xn
i¼1

rigs
i
2, (2:21)

where

siso
1 ¼ k0(J � 1)I þ m0J

�3=5 B� 1
3
I1I

� �� �
F�1
g , (2:22)

saniso
1 ¼ 2J�1k1

X
i¼1,2

exp[k2(Ii � 1)2](ai � ai)

" #
F�1
g (2:23)

and si
2 ¼ [2J�1k1exp[k2(Ii � 1)2](ai � ai)]F�1

g

(i ¼ 1, 2, . . . , n), (2:24)

in which B ¼ FeFeT is the left Cauchy–Green tensor, ai is defined
as ai ¼ Fea0i (i ¼ 1, 2) and I is the identity matrix. s i

2 is the
Cauchy stress for newly deposited fibres.
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To describe the evolution of damage and healing, a time-
dependent healing parameter H(d,t) is defined as

H(d,t) ¼ r0
r(t)

f (d)Q(t)þ 1
r(t)

Xn
i¼1

rig(t): (2:25)

The healing parameter H(d,t) takes values between 0 and 1.
WhenH(d,t) = 0 the tissue is completely damaged and its local stiff-
ness is null, whereaswhenH(d,t) = 1 the tissue is completely healed
with newly produced tissue replacing the previously damaged one.

2.2.2. Damage evolution
The detailed evolution of the damage variable d can be found in
the work of Dimitrijevic & Hackl [31,32] and Waffenschmidt et al.
[30]. In the following, we give a brief description of some basic
and essential formulations.

Following standard thermodynamic considerations [31,32],
the damage conjugate driving force q is defined as

q ¼ � @C

@d
: (2:26)

The damage condition at any time of the loading process is
based on an energy release rate threshold condition [39],

wd ¼ q� r1 � 0, (2:27)

where r1 represents the threshold value which triggers damage
evolution.

The differential equation of damage evolution is subjected to
Kuhn–Tucker optimality conditions [31,32],

_d ¼ _k
@wd

@q
, _k � 0, wd � 0, _kwd ¼ 0: (2:28)

2.2.3. Adaptive fibre growth model during healing
We assume that the direction of newly deposited fibres depends on
the direction of the first principal PK-2 stress. Although the depo-
sition of new fibres in healing may occur in any possible direction,
for the sake of simplicity, a finite number of possible directions are
used to approximately describe the new fibres. Then the increase of
mass is distributed across the pre-arranged different fibre families,
depending on the angle of newly deposited fibres. These finite
numbers of fibre families consist of uniformly pre-arranged
fibres with directions in the range θ (0°≤ θ≤ 180°) for the polar
angles and w (−90° < w≤ 90°) for the azimuthal angles in the
local spherical coordinate system, as shown in figure 1a. The
angle intervals between two neighbouring fibres in the polar and
azimuthal directions are defined as

Du ¼ 180�

nfibre � 1
and Dw ¼ 180�

nfibre � 1
, (2:29)

where nfibre is the number of fibre families defined in both the polar
and azimuthal directions.

If the direction of the first principal PK-2 stress is us and
ws, the interval which contains the current us and ws can be
found as

us [ [ui, uiþ1] and ws [ [wi, wiþ1]: (2:30)

In that general situation, the mass of newly deposited fibre is
divided among the two pre-arranged directions (θi, wi) and (θi+1,
wi+1), and the corresponding mass in each direction is derived as
shown in figure 1b,

ri ¼
rg

2
uiþ1 � u

Du
þ wiþ1 � w

Dw

� �
and riþ1 ¼

rg

2
u� ui
Du

þ w� wi

Dw

� �
:

(2:31)

According to this scheme, new fibres will be adaptively
deposited in directions depending on the local stress state.

2.2.4. Computation of growth deformation
According to Braeu et al. [36], the inelastic growth deformation
gradient _Fg can be written as

_Fg ¼ _r(t)
r0jFgj[(Fg)�T :Bg]

Bg, (2:32)

in which the second-order tensor Bg defines the growth
direction and is normalized without loss of generality such that
tr(Bg) ¼ 1.

The direction of growth deformation is aligned with
the direction of newly deposited fibres, which is also the



Table 1. Steps of the numerical implementation at the Gauss point level
for the gradient-enhanced continuum healing model.

0. Initialization at t = 0 and n = 0

Mechanical damage dn = 0 and healing function Hn = 0

1. Algorithm at each load increment n

1.1. Given: Total deformation gradient tensor F, elastic deformation

Fe, inelastic deformation Fg and material properties

1.2. Compute driving force from equation (2.26)

1.3. Check damage condition from equation (2.27), if

fd ¼ q� r1 � 0 go to 1.5, else go to 1.4

1.4. Update damage dn+1 = dn + Δd from equation (2.28)

1.5. Update healing function Hn+1

1.6. Compute the stress state for the present step s

1.7. Update the directions of newly deposited fibres

1.8. Update the directions of growth deformation

1.9. Compute tangent moduli ds=df,2dy/dg, dy/dϕ and

dy=drxf in equations (2.39)–(2.41)
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direction of the first principal PK-2 stress and can be denoted by
the polar angle θ and the azimuthal angle w. Therefore, the
second-order tensor Bg (in a Cartesian coordinates system) can
be written as

Bg ¼
sin2 u cos2 w 0 0

0 sin2 u sin2 w 0
0 0 cos2 u

2
4

3
5: (2:33)

In equation (2.32), the mass production rate _r(t) is governed
by the difference between the current co-rotated Cauchy stress
tensor sR ¼ R�TsR and a (typically constant) homeostatic
stress sh proposed by Braeu et al. [36]

_r(t) ¼ r(t)Ks : , sR � sh . þ _D(t), (2:34)

where 〈 · 〉 = (| · | + ·)/2 is the Macaulay bracket and Ks is a
gain-type second-order tensor, which may be written as

Ks ¼
ks 0 0
0 ks 0
0 0 ks

2
4

3
5, (2:35)

and _D(t) is a generic rate function (describing additional depo-
sition or damage processes affecting the net mass production
driven by other factors such as chemical degradation and/or
mechanical fatigue processes), which is not stress mediated and
is not considered in this paper.
2.3. Finite-element implementation
Using the FE method, the coupled nonlinear system of equations
is discretized. The tri-quadratic serendipity interpolation is used
for both the geometry X and the field variables w, and the tri-
linear interpolation is used for the non-local field ϕ. The general
process of numerical implementation is summarized in table 1.
In the following, we only give details on the FE implementation
for the healing process. For more details on general FE
implementation, readers can refer to the work by Waffenschmidt
et al. [30].
2.3.1. Finite-element discretization
Isoparametric interpolations of geometry variables X, field
variables w and non-local field ϕ are, respectively, written as

Xh ¼
Xnwen
I¼1

NI(j)XI , wh ¼
Xnwen
I¼1

NI(j)wI and fh ¼
Xnfen
I¼1

NI(j)fI ,

(2:36)

where ξ denotes the coordinates in the reference element and nwen
and nfen are the nodal displacements and nodal non-local damage
variables, respectively.

The FE interpolations of equation (2.36) are introduced into
the coupled nonlinear system of equations (2.14) and (2.15).
In order to solve the coupled nonlinear system of equations, an
increment-iterative Newton–Raphson-type scheme is adopted,

Rw

Rf

� �i
þ Kww Kwf

Kfw Kff

� �i
� Dw

Df

� �iþ1

¼ 0
0

� �
, (2:37)

where

Kww ¼
ð
V

rT
xN � [Ch(d,t)]�rxNdv

þ
ð
V

[rT
xN � s � rxN]I dv, (2:38)

Kwf ¼
ð
V

rT
xN � ds

df
�N dv, (2:39)

Kfw ¼
ð
V

NT � 2 dy
dg

� rT
xN dv (2:40)

and Kff ¼
ð
V

NT � dy
df

�N dvþ
ð
V

rT
xN � dy

df
� rT

xN dv: (2:41)

In the above equations, the tangent terms ds=df, 2dy/dg, dy/
dϕ and dy=df are similar to the ones derived by Waffenschmidt
et al. [30] and Ch(d,t) is a new time-dependent tangent stress–strain
matrix in the damage and healing process given by

Ch(d,t) ¼ f (d)Q(t)
r0
r(t)

4
@2C1(C)
@C@C

þ
Xn
i¼1

rig

r(t)
4
@2C2(C)
@C@C

, (2:42)

where the detailed expression of (@2C1(C))=(@C@C) and
(@2C2(C))=(@C@C) can be found in Nolan et al. [38].

2.3.2. Computation of G&R parameters
The mass density of a given family of collagen fibres ρ(t) at time
increment n + 1 is obtained by the finite difference scheme,

rg(tnþ1) ¼r(tnþ1)� r0 �Q(tnþ1)

¼ r(tn)Ks : hsR � shi � Dtþ r(tn)� r0 �Q(tnþ1), (2:43)

in which Q(t) describes the continuous degradation of existing
collagen, which may be written as

Q(t) ¼ exp � (t� t)
Tt

� �
, (2:44)

where Tt describes the average turnover time, that is, the period
within which a mass increment is degraded and replaced by a
new mass increment, and τ is the time when growth occurs.

Bringing equation (2.43) into equation (2.25)

H(d,tnþ1) ¼ r0
r(tnþ1)

f (d)Q(tnþ1)

þ r(tn)Ks : hsR � shi � Dt þ r(tn)� r0 �Q(tn þ 1)
r(tnþ1)

:

(2:45)

The total deformation obtained from equation (2.37) can be
further split into

F(tnþ1) ¼ Fe(tnþ1) � Fg(tnþ1), (2:46)
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Figure 2. Geometry and displacement used in the uniaxial tensile case study. (a) Geometric model and (b) loading curve. (Online version in colour.)

Table 2. Hyperelastic, damage and healing parameters used in uniaxial tension.

type description symbol value unit

hyperelastic shear modulus μ0 0.05 MPa

bulk modulus κ0 1 MPa

anisotropic material constant k1 1 MPa

anisotropic material constant k2 0.1 —

fibre orientation angles θi [± 30, ± 20, ± 10] deg

damage damage threshold r1 [0.1, 0.14, 0.2] MPa

degree of regularization cd 1 MPa−1 mm2

penalty parameter βd [0.1, 1.0, 10] MPa−1

(non-) local switch γd 1 —

healing turnover time Tt 101 days

gain parameter kσ [0.05, 0.10, 0.15]/Tt days−1

angle interval Δθ/Δw 45 deg

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190708

6

where the growth deformation Fg(tnþ1) can be calculated based
on its rate from equation (2.32).
3. Results
The gradient-enhanced healing model is implemented within
the commercial FE software Abaqus/Standard by means of a
user subroutine UEL. Three different numerical examples are
shown below to illustrate damage and healing effects in soft
tissues with this model. In each example, an exponential
damage function f (d ) = e−d is adopted but any other
damage function satisfying equation (2.5) could also be used.
3.1. Uniaxial tension
The first example is shown in figure 2a. A cube with 10mm
edge subjected to a uniaxial tensile loading is defined. As
shown in figure 2b, the displacement increases continuously
during 0–100 days and is maintained constant after the 100th
day. The healing process is assumed to begin from time
t ¼ 100 days. Only one FE is used in this first example. The
hyperelastic parameters are from Nolan et al. [38], reinforced
fibres are assumed to lie in the x− y plane and the initial
fibre orientation angle is θ = ± 30°. The parameters for
damage and healing are shown in table 2.
Here, we set the values of homeostatic stress lower than
the maximum stress reached after damage [39,40], so that
G&R works at reducing this stress by converging towards
the homeostatic stress, consequently inducing healing.

First, the sensitivity analysis of damage parameters includes
the penalty parameter βd and the damage threshold r1, as
shown in figure 3a,b, respectively. Figure 3a shows the influence
of different penalty parameters βd on the damage behaviour.
The results highlight that a larger βd leads to a smoother vari-
ation of stress after damage. Moreover, there is a
discontinuous jump of the Cauchy stress at around 100 days
for βd = 0.1, and this jump vanishes as βd increases. Obviously,
βd has some influence on the evolution of damage. Figure 3b
shows the influence of the damage threshold r1. It can be seen
that, as r1 increases, the stress value at the beginning of
damage is increased too; this indicates that r1 reflects the
ability of the soft tissue to sustain damage initiation.

The effect of homeostatic stress is tested by trying three
different homeostatic stresses: σh = 0.44 MPa (t ¼ 30 days),
σh = 0.77 MPa (t ¼ 40 days) and σh = 1.21 MPa (t ¼ 50 days).
The gain parameter is set to kg = 0.10/Tt. The Cauchy stress in
the x-direction is shown in figure 4a. In figure 4a, it can be
observed that σx first increases while the tissue stiffens at the
beginning of the healing process and finally converges to the
homeostatic stress for the three different homeostatic stresses.
Figure 4b shows the influence of the gain parameter. Results
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Figure 3. Results for the uniaxial tensile test with different parameter values. (a) Temporal variations of the stress for different values of the penalty parameter βd
and (b) temporal variations of the stress for different values of the damage threshold r1. (Online version in colour.)
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show that larger gain parameters lead to a faster convergence to
the homeostatic stress, indicating a faster healing speed.

Figure 5 illustrates the variations of displacement uy and the
deformation in the y− z plane for different values of homeo-
static stress σh and gain parameter ks. Figure 5b,d shows a
cross section of the cube after t ¼ 800 days and t ¼ 300 days
of healing, respectively. As no loading is applied in the
y- and z-directions, all the deformations induced by healing are
volume changes. Figure 5a,b shows that a larger growth defor-
mation is produced with a lower σh, which means a larger
value of stress difference is required to be recovered. Figure 5c,d
indicates that, with a large gain parameter, the healing rate is
faster and the homeostatic stress is reached faster. Moreover, a
larger inelasticdeformation isobtained for the samehealingtime.

Furthermore, we investigate the effect of new fibre
deposition by comparing two models.

— Model 1: The proposed model in this paper with the
strain energy function

C ¼ r0
r(t)

f(d)Q(t)(C iso
1 þC aniso

1 )þ 1
r(t)

Xn
i¼1

rigC
i
2

þ cd
2
krXfk2 þ bd

2
[f� gdd]

2: (3:1)
— Model 2: The strain energy function without adaptive
deposition of new fibres

C ¼ r0
r(t)

f(d)Q(t)(C iso
1 þC aniso

1 )þ 1
r(t)

rigC
aniso
1

þ cd
2
krXfk2 þ bd

2
[f� gdd]

2: (3:2)

The comparison of σx temporal variations betweenmodel 1
and model 2 is shown in figure 6. For two models, the homeo-
static stress and gain parameters are set to σh = 0.77 MPa and
ks ¼ 0:05=Tt, respectively. There is a significantly larger σx
value with model 1. In model 2, the directions of newly depos-
ited fibres are fixed (θ = ±30° in this example). Comparatively,
in model 1, fibres are adaptively deposited in the direction of
the first principal stress (x-axis in this example) but only depos-
ited in the direction of the initial fibres (θ = ± 30° in this
example) for model 2. So larger σx are reached in model 1
under the same displacement loading.

Finally, the sensitivity to the time step Δt and fibre orien-
tation angles θ are shown in figure 7. For both cases, the
homeostatic stress and gain parameters are set to σh = 0.77
MPa and ks ¼ 0:05=Tt, respectively. Results in figure 7a show
that different Δt values do not affect the convergence of the
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results and Δt = 1 days were used for all following cases. The
anisotropic effect is tested by changing the fibre orientation
angles θ with the same value of σh, as shown in figure 7b; the
results show an obvious difference for different prescribed θ,
and convergence can be reached for all cases of θ.

3.2. Open-hole plate
The second numerical example is a rectangular plate with a
hole, subjected to displacement loading. The geometry and
the loading curve are shown in figure 8. The hyperelastic and
damage material properties are reported in table 3. Because
of symmetry, only 1/8 of the plate is analysed. The initial
fibres are laid in the x–y plane, and, in this example, the homeo-
static stress is set as the stress state obtained at t ¼ 40 days,
with an average Cauchy stress on the right-hand side of σh
equal to 0.035MPa.

First, the sensitivity analysis of the number of the pre-
arranged fibre families in each direction is investigated.
Results in figure 9 illustrate that, generally, the temporal vari-
ations in the average stress converge similarly to the
decreasing angle intervals Δθ and Δw. Moreover, a larger
difference due to the changes in Δθ and Δw can be found at
the initial stage of healing (t ¼ 100–250 days) than at the
homeostatic stage (t ¼ 250–600 days). Moreover, the compu-
tational cost increases with decreasing Δθ and Δw, as a
larger number of possible directions are included. For
instance, the CPU time (PC with Intel Xeon E5-2650, 2.40
GHz, 32 GB RAM) was 25.03 h and 4.19 h for the cases
Δθ = Δw = 10° and Δθ = Δw = 30°, respectively. The following
results are based on the case Δθ = Δw = 30°.

To characterize the non-local healing model, two different
meshes were used to check mesh dependence. The average
Cauchy stress σx on the right-hand side is shown in figure
10, and the evolution of the time-dependent healing function
H(d,t) is shown throughout the healing process in figure 11
for two different mesh sizes (594 elements and 1588
elements). The computed stress values and damage fields
show that the approach can achieve very close results with
different meshes, demonstrating mesh independence.
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Figure 8. Geometry and displacement applied for the open-hole plate. (a) Geometry and (b) loading curve. (Online version in colour.)

Table 3. Geometry, hyperelastic, damage and healing parameters in the open-hole plate.

type description symbol value unit

geometry height H 100 mm

thickness Th 10 mm

diameter R 50 mm

hyperelastic shear modulus μ0 0.5 MPa

bulk modulus κ0 1 MPa

anisotropic material constant k1 1 MPa

anisotropic material constant k2 0.1 —

fibre orientation angles θi ±30 deg

damage damage threshold r1 0.006 MPa

penalty parameter βd 0.03 MPa−1

degree of regularization cd 1 MPa−1 · mm2

(non-) local switch γd 1 —

healing turnover time Tt 200 days

gain parameter kσ 1.5/Tt days−1

angle interval Δθ/Δw [5,10,20,30] deg
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The process of deposition of new fibres in healing
is shown in figure 12, in which two points, A and B, are
selected, as shown in figure 8. The mass density with different
directions (represented by θ and w) is shown at different times.
Initially, at the beginning of healing (t ¼ 100 days), no new
fibres are produced for both point A and point B. After
the healing starts, the mass densities are continuously
increased with time for both point A and point B. Some
differences in mass density for point A and point B can be
found during the healing process, caused by different
stress states.
3.3. Simulation of wound healing
For the third numerical example, we simulate wound heal-
ing after a sudden insult produced by a concentrated load.
The geometry of the problem is shown in figure 13. Material
parameters, obtained from the literature [41,42], are reported
in table 4. The numerical implementation includes three
steps. First, the plate is stretched biaxially by 10% in both
the x- and y-directions to induce a pre-stress σpre, which is
regarded as the homeostatic stress in this example. Second,
a pressure (p ¼ (10� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

)=10 � 0:3MPa) is applied
in the 10-mm-radius central circular area (where the centre
of the circle is the coordinate origin), as shown in figure
13, producing mechanical damage (wound). Finally, the
applied pressure p is removed but the pre-stress is main-
tained, in order to investigate the long-term effect of the
healing process without the impact of the short-term
pressure producing the wound.

Similar to the second example, mesh dependence is inves-
tigated by comparing two cases (740 elements and 4230
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elements). The variations in the damage fields during the
healing process are shown in figures 14 and 15 for the top
view and the cross-sectional view, respectively. In the results
of this example, the ‘0 days’ time refers to the time when
pressure p is removed and the healing starts immediately
after the ‘0 days’ time. The healing parameter H(d,t) is similar
for both meshes. Results in figure 14 show a healing process
which is comparable to in vivowound healing of rats reported
in [43], in terms of both duration and size of the damage area,
although the gain parameter and the internal length scales
are set arbitrarily.

The effect of internal length scales in the healing process
is investigated by setting different cd values (cd is a parameter
related to the average length of the microstructural com-
ponents in the soft tissues). Healing fields H(d,t) in figure
16 (top view) and figure 17 (cross-sectional view) show that
a higher cd leads to less damage for both the damage and
healing processes. This can be explained as a larger cd value
leads to a larger area of ‘activated zone’ [31,32]; hence, the
changes in the damage variable have an influence on a rela-
tively larger region, and the concentration of damage under



Table 4. Geometry, hyperelastic, damage and healing parameters in the wound-healing problem.

type description symbol value unit

geometry height H 100 mm

thickness Th 10 mm

hyperelastic shear modulus μ0 0.2 MPa

bulk modulus κ0 10 MPa

anisotropic material constant k1 0.03 MPa

anisotropic material constant k2 3 —

fibre orientation angles θ ± 30 deg

damage damage threshold r1 0.035 MPa

penalty parameter βd 0.01 MPa−1

degree of regularization cd [0.01,1] MPa−1 mm2

(non-) local switch γd 1 —

healing turnover time Tt 28 days

gain parameter kσ 0.10/Tt days−1

angle interval Δθ/Δw 45 deg
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Figure 14. Evolution of the fields H(d,t) from the top view. (a) Results obtained with a coarse mesh of 740 elements and (b) results obtained with a fine mesh of
4230 elements. (Online version in colour.)
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mesh of 4230 elements. (Online version in colour.)
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the same applied loading will be relatively smaller, hence
damage will be reduced as well.

A residual deformation in the vertical direction at
t ¼ 0 days can be observed in figure 15. As damage
happens, the tissue stiffness in the damaged region is
decreased and deformation occurs under pre-stretched
conditions. In order to illustrate the source of residual
deformation, four cases are tested: (i) no damage without
pre-stretch, (ii) damage without pre-stretch, (iii) no
damage with pre-stretch, and (iv) damage with pre-stretch
(situation used in our model). Results shown in figure 18
highlight that the residual deformation in the vertical
direction only occurs in case (iv). The residual defor-
mation can be recovered under pre-stretch, as shown in
figure 17, because the stiffness is progressively recovered
during G&R.
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Figure 19 shows the difference between both models of
newly deposited fibres at different locations. Two points are
selected and their locations are shown in figure 20. Point A is
closer to the damage region than point B. Results show that
there is a significant difference in the directions and mass den-
sities at the two points. At the initial stage of healing from
t ¼ 0 days to t ¼ 10 days, fibres are deposited in a larger
range of directions for point A, while less scattered fibre direc-
tions are found in point B. The reason for this may be that point
A has more damage and a more complex distribution of stress.

Moreover, non-symmetric wound healing is modelled.
As shown in figure 21, an irregular region is considered to
apply a pressure p ¼ (20� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

)=20 � 0:3MPa, while
other parameters are similar to the symmetric wound-healing
example. Evolutions of non-symmetric H(d,t) patterns from a
top view and a cross-sectional view for two different meshes
are shown in figures 22 and 23, respectively. It can be seen in
figures 22 and 23 that the results of H(d,t) from 3868 elements
and 6764 elements are close in both the top and cross-sectional
views, showing that the size of mesh has little effect on H(d,t),
and the performance on mesh independence of the proposed
model is again illustrated. The ability of the proposed model
in modelling non-symmetric and complex wound healing
is demonstrated.

Moreover, the evolutions of fibre orientations for both
symmetric and non-symmetric cases are shown in the
wound regions at different times in figure 24, in which
the average directions of fibres are represented by arrows;
the average direction angle ~u can be calculated according to

cos ~u ¼
Ð p
0 rg(u) cos ud uÐ p

0 rg(u)d u
, (3:3)

where θ and ρg are the angle and mass density for individual
fibres, respectively. The results show that fibres are depos-
ited across the entire damaged area, but the directions of
the newly deposited fibres differ from one location to
another. The values of the average fibre angles for two
selected points A1 and A2 are illustrated in figure 24. For
symmetric wound healing, symmetrical deposition direc-
tions can be observed, and the changes in the directions
for newly deposited fibres are not significant during the
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A

B

Figure 20. The locations of the observation points. (Online version in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190708

14
healing process. Comparatively, non-symmetric wound
healing produces more complex patterns of fibre deposition;
obviously, the damage pattern has more impact on the
fibres’ orientations in healing. The evolution of fibre orien-
tations in figure 24 with the mass change in figure 19
together provide insight into the mechanisms of scar
formation in wound healing.
4. Discussions and conclusion
Coupling damage, intrinsic length scales, anisotropic hyper-
elasticity and G&R in a three-dimensional model is
challenging. Aiming to address these challenges, a gradient-
enhanced continuum healing model has been developed for
three-dimensional soft biological tissues in this paper.
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One advantage of the model is its ability to perform three-
dimensional simulations of the healing process non-locally
owing to the introduction of a gradient-enhanced variable.
The importance of including the non-local terms is demon-
strated for both physical and numerical aspects. Physically,
the intrinsic length scales can be included in the constitutive
model, and their effects are shown through different numeri-
cal examples. For instance, in the wound-healing example, a
larger internal length scale leads to a lower level of damage in
the healing process, which can be accounted for by the theory
of the ‘activated zone’ [31,32]. Numerically, good mesh inde-
pendence is achieved in the healing simulations. Very good
agreement for the damage distribution at different times is
obtained in both the open-hole plate and wound-healing
examples, showing that the mesh-dependence issue of
traditional local models is well addressed even with this
three-dimensional anisotropic hyperelastic G&R model.
Another advantage of the proposed model is its ability
to simulate the process of adaptive fibre deposition during
healing. Models of adaptation for soft biological tissues
sometimes include possible fibre reorientation by changing
the fibre directions under mechanical stimuli [21,22].
Constrained-mixture models usually set fixed directions for
fibres [28]. In this paper, we first presented a new adaptive
fibre deposition equation and integrated it into the proposed
non-local healing approach. Compared with existing models
[21,22,28], the unique advantage is that it can simulate the
deposition of new fibres with updated directions related to
the stress computed at each time step (although some pre-
arranged directions are used for the sake of simplification
in the computational implementation). It is demonstrated
that this process of deposition of new fibres in different direc-
tions, rather than changing the directions of existing fibres,
can be significant in stress distribution.
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Figure 24. The evolution of the direction of newly deposited fibres in the x–y plane for symmetric and non-symmetric wound healing at different points. (a)
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Based on the proposed model, the effects of some impor-
tant factors in 3D healing can be considered; for instance, the
rate of healing, the value of intrinsic length scales, the value
of the homeostatic stress, etc. The deformation due to growth
can also be computed to illustrate the change of inelastic
deformation in healing [35].

Regarding applications, the two-dimensional isotropic
healing model presented previously by the same authors
was suitable for problems that can be simplified using a
plane-strain or plane-stress assumption, such as balloon
angioplasty [35]. However, in many problems, three-dimen-
sional effects have to be taken into account, such as the
three-dimensional evolution of damage and anisotropic effects
due to collagen fibres, and the three-dimensional healing
model presented in this paper appears essential to deal with
general applications involving patient-specific problems for
instance. Wound healing of soft biological tissues seems very
interesting, as shown in the last numerical example. The analy-
sis of parameter sensitivity showed significant effects of
intrinsic length scales on the region of damage. This is the
first time that a homeostasis-driven non-local continuum
model has been used to simulate wound healing in skin.
Experiments of in vivowound healing of skin in rats reported
in the literature [43] showed temporal evolutions of the
damaged zone similar to our model predictions. Numerical
simulations proposed in this paper are based on CDM; there-
fore, problems involving discontinuities, e.g. cut injury of soft
tissue, cannot be directly addressed by the proposed model.
However, the proposed model is still workable for some
complex but continuous wound patterns. For instance, non-
axisymmetric wound healing is shown in §3.3; therefore, the
potential of this model in modelling post-surgical would
healing is still highly relevant. It should be noted that
wound healing is a complex process and we only considered
the influence of mechanical stimuli in this work. More factors,
such as chemical terms, could be included in equation (2.34) to
complete the model. Computational and experimental chal-
lenges related to wound-healing studies were reviewed by
Valero et al. [10]. After further validations, our model would
be useful as a complement to healing experiments, which are
usually very long, to analyse the impacts of mechanical or
chemical factors on wound healing, for instance through the
design of in silico experiments.

A main limitation of this work is the determination of sub-
ject-specific material parameters. Generally, hyperelastic
parameters can be identified from experimental data and abun-
dant literature exists on this topic [44]. But the identification of
other parameters, for instance internal length scales, such as the
gradient parameter cd, damage threshold r1 and the penalty
parameter βd, will require inverse analyses and appropriate
experiments. For instance, the damage threshold r1, which
reflects the response of soft tissues to damage initiation, will
vary between tissues, such as skin, arteries, tendons, etc.
According to the sensitivity analysis provided in §3.1, it was
found that r1 determines the time of damage initiation but
does not have much influence on healing in the longer term.
The damage threshold can be determined by in vitro exper-
imental measurements for different kinds of tissues, and the
effects of inter-individual variability can be predicted by sensi-
tivity analyses. For instance, thewound-healing experiments in
rats reported by [43] could provide essential data about the
evolution of the area of damage to identify the healing par-
ameters. The choice of the PK-2 principal stress direction in
computing the growth directions is another limitation, as PK-
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2 stress has no physical meaning. We used the PK-2 stress only
for the sake of computational convenience. Computational
developments are currently on-going to use the Cauchy
stress in future studies. Moreover, the use of UEL presents
some limitations such as the definition of slave surfaces in con-
tact analyses. Therefore, self-contact problems cannot be
addressed with the current model.

In summary, we have coupled damage, intrinsic length
scales, anisotropic hyperelasty and G&R in a three-dimensional
model to simulate healing of soft tissues. Mesh-dependence
issues are addressed by a non-local gradient-enhanced
approach and a new adaptive fibre deposition approach has
been integrated into the non-local healing model. Important
developments are currently in progress for applying the pro-
posed model to different applications, such as balloon
angioplasty [45] or prediction of aneurysm rupture [46].
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