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Abstract

Inverse treatment planning in radiation therapy is formulated as solving optimization problems. 

The objective function and constraints consist of multiple terms designed for different clinical and 

practical considerations. Weighting factors of these terms are needed to define the optimization 

problem. While a treatment planning optimization engine can solve the optimization problem with 

given weights, adjusting the weights to yield a high-quality plan is typically performed by a 

human planner. Yet the weight-tuning task is labor intensive, time consuming, and it critically 

affects the final plan quality. An automatic weight-tuning approach is strongly desired. The 

procedure of weight adjustment to improve the plan quality is essentially a decision-making 

problem. Motivated by the tremendous success in deep learning for decision making with human-

level intelligence, we propose a novel framework to adjust the weights in a human-like manner. 

This study used inverse treatment planning in high-dose-rate brachytherapy (HDRBT) for cervical 

cancer as an example. We developed a weight-tuning policy network (WTPN) that observes dose 

volume histograms of a plan and outputs an action to adjust organ weighting factors, similar to the 

behaviors of a human planner. We trained the WTPN via end-to-end deep reinforcement learning. 

Experience replay was performed with the epsilon greedy algorithm. After training was 

completed, we applied the trained WTPN to guide treatment planning of five testing patient cases. 

It was found that the trained WTPN successfully learnt the treatment planning goals and was able 

to guide the weight tuning process. On average, the quality score of plans generated under the 

WTPN’s guidance was improved by ~8.5% compared to the initial plan with arbitrarily set 

weights, and by 10.7% compared to the plans generated by human planners. To our knowledge, 

this was the first time that a tool was developed to adjust organ weights for the treatment planning 

optimization problem in a human-like fashion based on intelligence learnt from a training process, 

which was different from existing strategies based on pre-defined rules. The study demonstrated 

potential feasibility to develop intelligent treatment planning approaches via deep reinforcement 

learning.
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1. INTRODUCTION

Inverse treatment planning is a critical component of radiation therapy (Oelfke and Bortfeld, 

2001; Webb, 2003). It is typically formulated as an optimization problem, in which the 

objective function and constraints contain several terms designed for various clinical or 

practical considerations, such as dose volume criteria and plan deliverability. The 

optimization problem is solved mathematically to determine values of the set of variables 

defining a treatment plan, e.g. fluence map in external-beam radiation therapy (EBRT) and 

dwell time in high-dose-rate brachytherapy (HDRBT). These optimized values are further 

converted into control parameters of a treatment machine, namely a medical linear 

accelerator in EBRT and a remote afterloader in HDRBT, based on which the optimized 

treatment plan is delivered.

Mathematical formulation of the optimization problem in treatment planning typically 

contains a set of parameters to define different objectives. Examples of these parameters 

include, but are not limited to, positions and relative importance of different dose volume 

criteria. When adjusting these parameters, although the general formalism of the 

optimization problem remains unchanged, the resulting plan quality is affected. A modern 

treatment planning system can effectively solve the optimization problem with given 

parameters using a certain mathematical algorithm (Bazaraa et al., 2013), such as simulated 

annealing (Morrill et al., 1991; Webb, 1991) and BFGS (Lahanas et al., 2003). Nonetheless, 

tuning these parameters for a clinically satisfactory plan quality is typically beyond the 

capability of the algorithm. In a typical clinical setup, a human planner adjusts these 

parameters in a manual fashion. Not only does this prolong the treatment planning process, 

the final plan quality is affected by numerous factors, such as the experience of the planner 

and the available time on planning. Hence, there is a strong desire to develop automatic 

approaches to determine these parameters.

Over the years, extensive studies have been conducted to solve this parameter tuning 

problem (Xing et al., 1999; Wu and Zhu, 2001; Yang and Xing, 2004; Lu et al., 2007; Wahl 

et al., 2016; Chan et al., 2014; Boutilier et al., 2015; Tol et al., 2015; Lee et al., 2013; Wang 

et al., 2017). The most common approach is to add an additional iteration loop of parameter 

adjustment on top of the iteration used to solve the plan optimization problem with a fixed 

set of parameters. In a seminal study, Xing et. al. (Xing et al., 1999) proposed to evaluate the 

plan quality in the outer loop and determine parameter adjustment using Powell’s method 

towards optimizing the plan quality score. Similar approaches were taken by Lu et. al. using 

a recursive random search algorithm in intensity modulated radiation therapy (Lu et al., 
2007) and by Wu et. al using the genetic algorithm in 3D conformal therapy (Wu and Zhu, 

2001). This two-loop approach was recently generalized by Wang et. al. to include guidance 

from prior plans designed for patients of similar anatomy. They also implemented the 

method in a treatment planning system to allow an automated planning process (Wang et al., 
2017). In the case with a large number of parameters in the optimization problem, e.g. one 

parameter per voxel, a heuristic approach was developed to adjust voxel-dependent 

parameters based on dose values of the intermediate solution (Yang and Xing, 2004; Wahl et 
al., 2016) or based on the geometric information of the voxel (Yan and Yin, 2008). Other 
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methods were also introduced to solve this problem. Yan et. al. employed a fuzzy inference 

technique to adjust the parameters (Yan et al., 2003a; Yan et al., 2003b). A statistical method 

was used by Lee et. al. (Lee et al., 2013), which built the relationship between the 

parameters and the patient anatomy. Chan et. al. analyzed previously treated plans and 

developed a knowledge-based methods to derive the parameters needed to recreate these 

plans (Boutilier et al., 2015; Chan et al., 2014; Babier et al., 2018).

Parameter tuning in the plan optimization is essentially a decision making problem. 

Although it is difficult for a computer to automate this process, the task seems less of a 

problem for humans, as evidenced by the common clinical practice of manual parameter 

adjustment: a planner can adjust the parameters in a trial-and-error fashion based on human 

intuition. It is of interest and importance to model this remarkable intuition in an intelligence 

system, which can then be used to solve the parameter-tuning problem from a new angle. 

Recently, the tremendous success in deep-learning regime demonstrated that human-level 

intelligence can be spontaneously generated via deep-learning techniques. Pioneer work in 

this direction showed that a system built as such is able to perform certain tasks in a human-

like fashion, or even better than humans. For instance, employing a deep Q-network 

approach, a system can be built to learn to play Atari games with a remarkable performance 

(Mnih et al., 2015).

In fact, a human planner using a treatment planning system to design a plan is conceptually 

similar to a human playing computer games. Motivated by this similarity and the 

tremendous achievement in the deep learning area across many different problems (Mnih et 
al., 2015; Silver et al., 2016; Silver et al., 2017), we propose in this paper to develop an 

artificial intelligence system to accomplish the parameter-tuning task in an inverse treatment 

planning problem. Instead of tackling the problem in the EBRT context, we focus our initial 

study on an example problem of inverse planning in HDRBT with a tandem-and-ovoid (T/O) 

applicator for the purpose of proof of principles. This choice is made because of the 

relatively small problem size and therefore low computational burden. More specifically, 

based on an in-house optimization engine for HDRBT, we will build an intelligent system 

called Weight Tuning Policy Network to adjust organ weights in the optimization problem in 

a human-like fashion. The validity and generalization of this approach to the EBRT context 

will be discussed at the end of the paper.

2. METHODS AND MATERIALS

2.1 Optimization model for T/O HDRBT

Before presenting the system for organ weight tuning, we will first briefly define the 

optimization problem for T/O HDRBT. In this study, we considered an in-house developed 

optimization model:

mint∑i

λi
2 DOAR

i t 2
2 + 1

2 ∇t 2
2, (1)
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s . t . dCTV = DCTVt,

dCST = DCSTt,

dCTV(90%) = dp,

dCST ∈ [0.8 dp,  1.4 dp],

t j ∈ 0,   tmax ,    j = 1, 2, …,  n .

In this model, DOAR
i ∈ R

mi × n
 and DCTV ∈ R

mCTV × n
 are dose deposition matrices for the i-

th organs at risk (OARs) and the clinical target volume (CTV). They characterized the dose 

to voxels in corresponding volumes of interest contributed from each dwell position at a unit 

dwell time. mi, mCTV, and n are number of voxels in the OAR, that of the CTV, and the 

number of dwell positions, respectively. t ∈ Rn×1 is a vector of dwell time. The first term of 

the objective function was formulated to minimize the dose to OARs. ∇t 2
2 is the 

regularization term with ∇ being the differential operator, evaluating the dwell time 

difference between adjacent dwell positions. The regularization term enforced smoothness 

of the dwell time to ensure robustness of the resulting plan with respect to geometrical 

uncertainty of source positions. In addition, we imposed the constraint to CTV, such that 

90% of CTV volume should receive dose not lower than the prescription dose dp. Moreover, 

according to the treatment planning guideline at our institution, a control structure (CST) 

was defined as two line segments that are parallel to the ovoid central axes and are on the 

outer surface of the ovoids. Dose in CST dCST should be within [0.8dp, 1.4dp]. The last 

constraint of the problem ensured that dwell time should be non-negative and less than a pre-

defined maximum value. In this study, four OARs were considered, namely bladder, rectum, 

sigmoid and small bowel. λis are the weights controlling trade-offs among them. These 

organ weights determined the quality of the optimized plan, turning which is the interest of 

this paper.

For a given set of weights, we solved the optimization problem using the alternating 

direction method of multiplier (ADMM)(Boyd et al., 2011; Liu et al., 2016; Gao, 2016). The 

main idea was to split the original optimization problem into multiple easy sub-problems. 

The ADMM tackled the optimization problem via its augmented Lagrangian:
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L t,  x, Γ = ∑i

λi
2 DOAR

i t 2
2 + 1

2 ∇t 2
2 +  β

2 Dt − x 2
2 + Γ,  Dt − x + δ1 x

+ δbox t ,
(2)

where D =  
DCTV
DCST

 and x =   dCTV

dCST
. Γ indicates the Lagrangian multiplier and β is the 

algorithm parameter to control the convergence. δ1(x) and δbox(t) are index functions that 

give 0 if constraints on x and t are satisfied, or +∞ otherwise. The iterative process of the 

algorithm is summarized in Algorithm 1.

Algorithm 1.

ADMM algorithm solving the problem in Eq. (1) with a given set of organ weights.

Input: DOAR
i

, D, x(0), Γ(0), λi, β and tolerance σ

Output: t*

Procedure:

1. Set k = 0;

2. Compute t
k + 1

2 = ∑i λiDOAR
i T

DOAR
i + ∇T ∇ + βDTD

−1
βDTx k − DTΓ k

3. Compute t j
k + 1

2 =  

0,          i f  ti
k + 1

2 <  0

tmax,   i f  ti
k + 1

2 > tmax

ti
k + 1

2 ,  otherwise

;

4. Compute x
k + 1

2 = Dt k + 1 + Γ x

β ,   dCTV

dCST
  =  x

k + 1
2 ;

5. Compute s = dCTV(90%), d j
CTV =

dp,         d j
CTV ≥ s and d j

CTV < dp

d j
CTV,      otherwise

,

 Compute d j
CST =

0.8dp,          if d j
CST < 0.8dp

1.4dp,          if d j
CST > 1.4dp

d j
CST,                   otherwise

,

 Compute x k + 1 = dCTV

dCST
;

6. Compute Γ k + 1 = Γ k + β Dt k + 1 − x k + 1
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7. If 
t k + 1 − t k

2
t k + 1

2
< σ, set t* = t(k+1);

 Otherwise, set k = k + 1, go to Step 2.

2.2 Weight tuning methodology

We proposed an automatic weight adjustment method for the aforementioned optimization 

engine by an artificial intelligence system that sequentially selected a weight and adjusts it. 

The system operated in a way analogous to the human-based treatment planning workflow: a 

planner repeatedly observes the plan obtained under a set of weights and makes a decision 

about weight adjustment, until a satisfactory plan quality is achieved (Fig. 1(a)). We aimed 

at developing a Weight-Tuning Policy Network (WTPN) that serves the same purpose as a 

human planner in this workflow (Fig. 1(b)).

More specifically, WTPN adjusted the organ weighting factors in an iterative fashion (the 

loop in Fig. 1(b)) to improve the plan quality. Let us use l to index the weight-tuning steps. 

At the step l, WTPN took the dose-volume histograms (DVHs) of the plan as inputs and 

output a decision of weight adjustment: the organ weight to tune, and the direction and 

amplitude of the adjustment. Then, we updated the weight and solved the optimization 

problem with the Algorithm 1. This process repeated, until plan quality cannot be further 

improved.

To realize the proposed WTPN, we incorporated the Q-learning framework (Watkins and 

Dayan, 1992) that tried to build the optimal action-value function defined as:

Q* s, a = max
π

rl + γrl + 1 + γ2rl + 2 + ⋯|sl = s,  al = a, π] . (3)

s is the current state, i.e. plan DVHs, and sl stands for the state at the l-th weight tuning step. 

a is the action, i.e. which weight to adjust and how to adjust, and al indicates the selected 

action. rl is the reward obtained at step l. In this study, the reward was calculated based on a 

pre-defined reward function related to clinical objectives. A positive reward was given, if the 

clinical objectives were better met by applying the action al on the state sl, and negative 

otherwise. γ ∈ [0, 1] is a discount factor. π = P(a|s) denotes the weight tuning policy: taking 

an action a based on the observed state s. The goal of automatic weight tuning was to build 

the Q* function. Once this was achieved, the policy was determined as choosing the action 

that maximizes the Q* function value under the observed state s, i.e. a = arg max
a′

Q* s, a′ .

The form of the Q* function is generally unknown. In this paper, we proposed to 

parametrize Q* via a deep convolutional neural network (CNN), denoted as Q(s, a; W). W = 

{W1, W2,…, WN} indicates the network parameters. The network consists of N independent 

subnetworks (see Fig. 2(a)), each for an OAR weight. The subnetworks shared the same 

structure as displayed in Fig. 2(b). We defined five possible tuning actions for each weight: 

increase or decrease the weight by 50%, increase or decrease the weight by 10%, and keep 
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the weight unchanged. The values 50% and 10% were arbitrary chosen, as we expected they 

would not critically affect the capability of weight tuning but only the speed to reach 

convergence. Each subnetwork had five outputs. The network took observed state s, i.e. 

DVHs as inputs, and output values of the Q function at each output node, corresponding to 

an action. The parameters Wi of each network will be determined via the reinforcement 

learning strategy presented in the next section.

2.3 Deep reinforcement learning

2.3.1 General idea of network training—The main idea of the training process was to 

seek for a solution satisfying Bellman equation (Bellman and Karush, 1964), a general 

property of the optimal action-value function Q*(s, a):

Q* s, a = r + γmax
a′

Q* s′, a′ , (4)

where r is the reward after applying action a to the current state s and s′ is the state after 

taking the action a. Using a CNN Q(s, a; W) as an approximation of the Q function, we 

defined a quadratic loss function with respect to the network parameter W:

H(W) = r + γ maxa′ Q s′, a′; W −  Q s, a; W 2 . (5)

Our goal was to determine W through a reinforcement learning strategy to minimize this loss 

function, which hence ensured Eq. (4) and therefore Q(s, a; W) would approach Q*(s, a; W). 

It was difficult to minimize the loss function in Eq. (5) due to the term maxa′ Q(s′, a′; W), 

e.g. to compute its gradient with respect to W. To avoid this problem, we employed a 

process consisting of a sequence of stages. Within each training stage, we fixed the CNN 

parameters in maxa′ Q(s′, a′; W) as W. Then the loss function with respect to W became:

L W = r + γ maxa′ Q(s′,  a′;  W) −  Q s,  a;  W 2 . (6)

At each stage, W was calculated to minimize L(W) with the stochastic gradient descent 

method. The gradient of the loss function L(W) can be simply derived as

∂L W
∂W = Q s,  a;  W − r − γ max

a′
 Q s′, a′; W     ∂Q s, a; W

∂W , (7)

where the last term ∂Q s,  a;  W / ∂W was computed via the standard back-propagation 

strategy (LeCun et al., 1998). With the gradient of loss function ready, W at each step was 

updated by a gradient descent form:

W j + 1 = W j − δ∂L W
∂W W j , (8)

where δ is the step size and j is the index of gradient descent steps. We used stochastic 

gradient descent that computed the gradient and updated W with a subset of the training data 

randomly selected from the training data set. After finishing each stage of training, W was 
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updated by setting W  =W and was then fixed for the next stage of training. Eventually, W and 

W were expected to converge at the end of the learning process.

2.3.2. Reward function—One important issue is to quantitatively evaluate the plan 

quality. In general, this is still an open problem and different evaluation metrics can be 

proposed depending on the clinical objectives. In our case, since the plan was always 

normalized to dCTV (90%) = dp in the optimization algorithm (Algorithm 1), we considered 

OAR sparing to assess the plan quality, as quantified by d2cc in the HDRBT context 

(Viswanathan et al., 2012). For simplicity, we measured the plan quality as ψ = ∑iωid2cc
i

where ωi are the preference factors indicating the radiation sensitivity of the i-th OAR. the 

lower ψ was, the better plan quality was. In principal, a larger ωi should be assigned to a 

more radiation sensitive OAR. We then formulated the following reward function regarding 

the change of from state s to s′:

Φ s,  s′ = ψ s − ψ s′ = ∑
i

ωi d2cc
i s − d2cc

i s′ . (9)

s indicates the state (DVHs) prior to weight adjustment, while s′ is that after. The reward 

Φ(s, s′) explicitly measured the difference in plan quality between the two states. Φ(s, s′) 

was positive if plan quality was improved, and negative otherwise.

2.3.3 Training strategy—The training process was performed in a number of Nepisode 

epochs. Each epoch contained a sequence of Ntrain steps indexed by l. At each step, we 

selected an action to adjust an OAR’s weight using the ∈-greedy algorithm. Specifically, 

with a probability of ∈, we randomly selected one of the OARs and one action to adjust its 

weight. Otherwise, the action a that attained the highest output value of the network Q(s, a; 

W) was selected, i.e. al = arg maxa Q sl,  a;  W . After that, we applied the selected action to 

the corresponding OAR’s weight and solved the plan optimization problem of Eq. (1) using 

the Algorithm 1, yielding a new plan with DVHs denoted as sl+1. sl and sl+1 were then fed 

into the reward function Φ defined in Eq. (9) to calculate rl.

At this point, we collected {sl, al, rl, sl+1} into the pool of training data set for the network Q. 

W was then updated by the experience replay strategy. Specifically, we used a number of 

Nbatch training samples randomly selected from the training data pool at each training step to 

update W via Eq. (8). During DRL, the state-action pairs sequentially generated are highly 

correlated. The main purpose of the experience replay strategy was to overcome the strong 

correlation (Mnih et al., 2015). Once the maximum number of training step Ntrain was 

reached, we moved to the next patient and applied the above training process again. Within 

this process, W was updated by letting W  =W at every Nupdate steps. The complete structure 

of the training framework is outlined in Algorithm 2.
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Algorithm 2.

Overall algorithm to train the WTPN.

Initialize network coefficients W;

for epoch = 1, 2, …, Nepoch

 for k = 1, 2, …, Npatient do

  Initialize λ1, λ2, …, λN;

  Run Algorithm 1 with {λ1, λ2, …, λN} for s1;

  for l = 1, 2, …, Ntrain do

   Select an action al:

    Case 1: with probability ∈, select al randomly;

    Case 2: otherwise al = arg maxa Q sl, a; W ;

   Based on selected al, adjust corresponding organ’s weight;

   Run Algorithm 1 updated weights for sl+1;

   Compute reward rl = Φ(s, sl+1);

   Store reward {sl, al, rl, sl+1} in training data pool;

   Train W:

    Randomly select Nbatch training data from training data pool;

    Compute gradient using Eq. (7);

    Update W using Eq. (8);

   Set W  =W  every Nupdate steps;

  end for

 end for

end for

Output W

The WTPN framework was implemented using Python with TensorFlow (Abadi et al., 2016) 

on a desktop workstation equipped with eight Intel Xeon 3.5 GHz CPU processors, 32 GB 

memory and two Nvidia Quadro M4000 GPU cards. We used five patient cases in training 

and another five patient cases as testing. All patients had cervical cancer and were 

previously treated at our institution with external beam radiotherapy followed by HDRBT 

with a T/O applicator. HDRBT plans of these cases produced by clinical physicists were 

collected for comparison purpose. Note that the data to train the WTPN were in fact {sl, al, 

rl, sl+1} generated in the process outlined above. With five patient cases, we generated a 

large number of training samples. The initial weights for all OARs were set to unity. Other 

major hyperparameters to configure our system are summarized in Table 1.

2.4 Validation studies

The WTPN was developed to adjust organ weights to gain a high reward Φ, which would 

improve the plan quality, as quantified by reduction of ψ = ∑iωid2cc
i . To validate the WTPN, 

we used the trained WTPN to adjust OAR weights in those five cases used in training and 

five additional independent testing cases. Without loss of generality, we set ωbladder = 0.2 

while ωrectum = ωsigmoid = ωsma = 1 in ψ, as bladder is more radiation resistant compared to 
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the other OARs. In each case, we performed the weighting adjustment process using the 

trained WTPN as shown in Fig. 1(b). Evolution of the plan quality in this process was 

examined in detail.

In addition, it is mathematically possible to directly solve an optimization problem to 

minimize ψ, although the highly non-convex nature of this problem would make it hard to 

ensure optimality of the result. We minimized ψ using an algorithm in the Appendix and 

compared the resulting ψ values with those obtained by the proposed approach.

The proposed framework does not have any restrictions on the plan quality metrics and is 

applicable to any metrics. To demonstrate this fact, we also trained and tested another 

WTPN using the preference factors ωi = 1, for i = 1, …, 4. The plan quality metric in this 

case was denoted as ψ . Clinically, different plan quality metrics can be interpreted as 

different preference of organ trade-offs, probably among different physicians. Being able to 

accommodate different plan quality metrics is an important aspect to ensure practicality of 

WTPN. Additionally, we compared the performances of the two WPTNs trained with ψ and 

ψ  functions.

3. RESULTS

3.1 Training process

It took around four days to complete the training of WTPN. The recorded reward and Q-

values along training epochs are displayed in Fig. 3. Note that reward reflects the plan score 

obtained via automatic weight tuning using WTPN, while the Q-value indicates output of 

WPTN approximating future rewards to be gained via weight adjustment. It can be observed 

in Fig. 3 that the reward and Q-value both showed increasing trends, indicating that the 

WTPN gradually learnt a policy of weight tuning that can improve the plan quality.

3.2 Weight tuning process

In Fig. 4, we present how the trained WTPN performed weight adjustment in an example 

case 3 that was used in training. Fig. 4(a) shows evolution of the weights. Corresponding 

d2cc values of different OARs are displayed in Fig. 4(b), which provide insights of how the 

proposed WTPN decided weight adjustment. In the initial eight steps, WTPN first increased 

the rectum weight, resulting in a successful reduction of d2cc
rectum at the expense of increasing 

d2cc
sigmoid and d2cc

small bowel. d2cc
bladder was first reduced and later increased. The ψ function value 

was greatly reduced. From step 8 to 12, the bladder weight was reduced, allowing reduction 

of other organ doses and slightly reduction of ψ. Starting from step 12, WPTN decided to 

increase the small bowel weight probably due to the observed large d2cc
smallbowel. Overall, the 

ψ function value showed an decreasing trend, indicating that the plan quality was improved 

under the guidance of WTPN. The final ψ value was lower than that of the clinical plan that 

was used in our clinic to treat this patient. In addition, we plot the DVHs at tuning steps 0 

(initial), 5, and 25 in Fig. 4(d), while DVHs plotted with absolute volume around 2cc are 

shown in 4(e).
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Similarly, we show in Fig. 5 the weight-tuning process for the testing case 3 that was not 

included in the training of the WTPN. For this case, WTPN decided to first increase rectum 

weights, causing reduced d2ccs for bladder, rectum, and sigmoid. Starting from step 15, 

WTPN increased small bowel weight. Dose to small bowel was successfully reduced 

without affecting too much dose to rectum and sigmoid. d2cc
bladder increased a little, which was 

reasonable, as it is our assumption that bladder is more radiation resistant (with a lower 

preference factor of 0.2). In general, the ψ function value, as well as dose to OARs for this 

testing case were successfully reduced in this process.

Given input DVHs, WTPN was able to predict the weigh-tuning action very efficiently 

(within 1 second). The major computational burden along the weight-tuning process was to 

solve the inverse optimization problem repeatedly. On average, it took ~10 seconds to 

complete the optimization process once. In this study, we performed 25 steps of weight 

adjustment for each patient case and the total time was 4–5 minutes.

3.3 All training and testing cases

We report the performance of WTPN on the five training and five testing cases in Table 2. 

Consistent improvements were observed for all the cases compared to those plans generated 

with initial weights. The plans after weight tuning were also better than those manually 

generated by the planners in our clinic. For all the training cases, on average the ψ function 

values after automatic weight tuning were reduced by 0.63 Gy (~7.5%) compared to the 

initial plans, and 0.50 Gy (~6%) compared to clinical plans. In the testing cases, average ψ 
values under WPTN guidance were 0.76 Gy (~8.5%) and 0.97 Gy (~10.7%) lower than 

those of the initial plans and those of the clinical plans, respectively. Comparing with plans 

obtained by directly optimizing the ψ function, the plans after weight tuning achieved lower 

ψ values in most cases. These numbers clearly demonstrate the effectiveness of the 

developed WTPN.

To get a better understanding on the plan quality, we use the testing patient 5 as an example 

and show its DVH curves of the initial plan, clinical plan and automatically tuned plan in 

Fig. 6. It is clear that doses to rectum, sigmoid and small bowel were effectively reduced by 

the WTPN. Among them, the DVH curves for sigmoid and small bowel obviously 

outperformed those of the clinical plan. The dose to bladder was higher than that under the 

initial organ weight setup. Due to the assumption that bladder is more radiation resistant 

compared to the other OARs (ωbladder = 0.2), WTPN decided to sacrifice bladder to reduce 

ψ and hence increase plan quality.

The advantage of WTPN can be also observed directly on isodose lines. Using the testing 

patient 2 as an example, the OARs were spared successfully, especially in the highlighted 

areas indicated by pink circles in Fig. 7. More specifically, it is shown in coronal view that 

the dosages to small bowel, sigmoid and rectum using WTPN were apparently the lowest 

among the three plans. Similarly, in sagittal view, sigmoid and small bowel received lower 

dose in the weight-adjusted plan than the other two plans. Note that all these cases had the 

same CTV coverage of dCTV (90%) = dp because of the constraint in the optimization 

problem.
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3.4 Impact of preference factors in reward function

Table 3 reports weight tuning results using ψ  in the reward function, in which the preference 

factors for all the OARs are set to unity. After training the WTPN with the new reward 

function, WPTN was again able to successfully adjust OAR weights of the objective 

function, so that the values ψ  were reduced through the planning process. The resulting ψ  at 

the end were lower than those in the clinical plan, indicating better plan quality.

Table 4 compares plan results generated by WTPN with two different reward functions using 

ψ and ψ . Note that the difference between the two setups was that bladder was considered to 

be more important in ψ   ωbladder = 1 . In response to the increased preference factor for 

bladder, the resulting plan had a lower bladder d2cc. At the same time, other OARs were 

affected to different degrees. d2cc of them were mostly increased when ψ  was used because 

of the consideration of bladder sparing.

4. DISCUSSIONS

4.1 Motivations and study focus

The proposed study was motivated by the tremendous success achieved by deep learning 

across a wide range of applications (LeCun et al., 2015; Mnih et al., 2015; Silver et al., 
2016; Wang, 2016; Shen et al., 2018; Ma et al., 2018; Iqbal et al., 2017). In particular, deep 

learning techniques have recently been incorporated to tackle many important tasks for 

radiation therapy, such as image quality enhancement (Brosch and Tam, 2013; Chen et al., 
2017; Iqbal et al., 2018; Liang et al., 2018), target/organ segmentation (Chen et al., 2018; 

Ibragimov and Xing, 2017; Balagopal et al., 2018; Chen et al., 2019), dose prediction/

calculation (Landry et al., 2019; Nguyen et al., 2017; Nguyen et al., 2018), treatment 

planning (Kim et al., 2009), adaptive therapy (Tseng et al., 2017), and outcome prediction 

(Nie et al., 2016; Zhen et al., 2017). To the best of our knowledge, our study is the first time 

to autonomously encode intelligent treatment planning behaviors in an artificial intelligence 

system. The WTPN system was developed under the motivation to represent the clinical 

workflow, in which a planner repeatedly tunes the organ weights based on human intuition 

to improve the clinical objective. The WTPN, once trained, could assume the planner’s role 

in this workflow (Fig. 1). We would also like to emphasize that the focus of this study was 

not to propose a new method specifically for inverse treatment planning of T/O HDRBT of 

cervical cancer. In fact, manual forward planning is still used widely in current clinical 

practice of T/O HDRBT. We chose the this problem as a proof-of-principle study for the 

consideration of using a relatively small-size problem to reduce the computational burden.

4.2 Relationships with existing works and alternative approaches

As mentioned in the introduction section, a representative approach in existing efforts to 

adjust weighting factors in the treatment planning optimization problem is to add a second 

loop on top of the iteration of solving the plan optimization problem. In each step, the 

weights are adjusted based on certain mathematical rules aiming at improving the plan 

quality, as quantified by a certain metric (Xing et al., 1999; Wu and Zhu, 2001; Lu et al., 
2007; Wang et al., 2017). Compare to these approaches, our method attained a similar 
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structure, in the sense that the OAR weights were adjusted in an iterative fashion in the outer 

loop. Nonetheless, a notable difference is that, in contrast to previous approaches adjusting 

weights by a certain rigorous or heuristic mathematical algorithms, our system was designed 

and trained to develop a policy that can intelligently tune the weights, akin to the behavior of 

a human planner. The reward function involving the plan quality metric was only used in the 

training stage to guide the system to generate the intelligence. When WTPN was trained, the 

goal of treatment planning, i.e. to improve plan quality metric, was understood and 

memorized by the system. The subsequent applications of the WTPN to new cases did not 

explicitly operate in a way aiming at mathematically improving the plan quality metric. 

Instead, WTPN behaved with the learnt intention to improve the plan.

Another, but more straightforward way to determine the weights using a deep learning 

method is to use a large number of optimized cases to build a connection between patient 

anatomy and the weights. This is in fact the mainstream of current applications of deep 

learning techniques in medicine. Yet one drawback is the requirement on the number of 

training cases. The number necessary to build a reliable connection is typically very large, 

posing a practical challenge. In contrast, our study was motivated by mimicking human 

behaviors. In fact, the key behind the reinforcement learning process was to let the WTPN to 

try different parameter tuning strategies in the ∈-greedy algorithm, differentiate between 

proper and improper ways of adjustment, and memorize those proper ones. This was similar 

to teaching a human planner to learn how to develop a high-quality plan. As demonstrated in 

our studies, one apparent advantage is that, with a relatively low number of patient cases, 

successful training can be accomplished. We emphasize that the actual data to train WTPN 

were not the patient cases, but the state-action pair {sl, al, rl, sl+1} generated in the 

reinforcement learning process from these patient cases. If we count the paired state-action 

data, the number of training data was in fact large: Ntrain(25) × Npatient(5) × Nepisode(100) = 

12500. Of course, given the small number of patients involved in training, generality of the 

trained WTPN to different patient cases needs to be further investigated by testing it in more 

patient cases.

4.3 Potential advantages

One advantage of the proposed method is that it naturally works on top of any existing 

optimization systems. Similar to the study by Wang et. al. (Wang et al., 2017), the developed 

system can be partnered with an existing treatment planning system (TPS). The only 

requirement is that the TPS has an interface to allow querying a treatment plan and inputting 

updated weights to launch an optimization, which is already feasible in many modern TPSs, 

for instance Varian Eclipse API (Varian Medical Systems, Palo Alto, CA). In addition, one 

notable fact in the proposed approach is it takes a plan that is generated by an optimization 

engine as input. This could be the plan after all required processing steps by the TPS, for 

instance after leaf sequencing operations in an EBRT problem. This fact is has practical 

benefits, as it can address the subtle quality difference in a plan caused by the leaf 

sequencing operations. In contrast, if we were to directly add a layer of weight optimization 

to the plan optimization by solving the problem from a mathematically rigorous way, it 

would be difficult to derive operations to account for this difference. Heuristic approach 

would likely have to be used.
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In principle, once a planning objective is defined, e.g. the ψ function in this study, it can be 

directly optimized, e.g. using the algorithm in the Appendix. Nonetheless, the optimization 

problem is often complicated and the non-convex nature makes it difficult to justify the 

solution optimality. On the other hand, the proposed method was trained to learn to 

manipulate the optimization process and derive a high-quality plan. Although it is not 

possible to rigorously prove the advantages of this method over the direct optimization 

approach, at least in the cases studied in this paper, effectiveness of the proposed method has 

been observed.

4.4 Limitations of this study and future directions

The current study is for the purpose of proof of principle and has the following limitations. 

First, the reward function may not be clinically realistic. The choice of Eq. (8) was a simple 

one that reflects physician’s idea to a certain extent in HDRBT. By no means it should be 

interpreted as the one used in a real clinical situation. However, we also point out that the 

reward function in our system can be changed to any quantities based on clinical or practical 

considerations. In essence, the system was developed to mimic the human planner’s 

behavior in the clinical treatment planning workflow. Hence, the reward function here is akin 

to a metric to quantify the physician’s judgement of a plan. In the past, there have been 

several studies aiming at developing such a metric (Moore et al., 2012; Zhu et al., 2011). In 

principle, these metrics can be used in our system. In addition, recent advancements in 

imitation learning and inverse deep reinforcement learning (Wulfmeier et al., 2015) allow 

learning the reward function based on human behavior. In the treatment planning context, it 

may be possible to learn the physician’s preference as represented by the reward function. It 

is our ongoing work to perform studies as such.

The weight adjustment steps of 50% and 10% in WTPN were arbitrary chosen, as we expect 

they would not critically affect the capability of weight tuning but only the speed to reach a 

good plan. For instance, a proper action of increasing a weight by 21% can be achieved by 

two steps with each one increasing by 10% (1.12=1.21). In general, we can set a larger 

number of possible actions in WTPN for finer adjustments each time. If trained successfully, 

this setup would likely increase the efficiency of the weight tuning process. However, this 

would make the training of the network more challenging (Dulac-Arnold et al., 2015). In the 

future, we would like to tackle this problem by employing the continuous actions (Lillicrap 

et al., 2015).

Another limitation is that WTPN only takes DVH as input, which hence neglects other 

aspects of a plan. For instance, in an EBRT problem, DVH cannot capture position-specific 

information such as locations of hot/cold spots, which a physician often pays attention to. 

Again, at this early stage of developing an human-like intelligence system for weight tuning, 

we made the decision to start with a relatively simple setup to illustrate our idea. Further 

extending the system to include more realistic and clinically important features will be down 

the road.

One apparent issue is that the developed WTPN is a black box. It is difficult to interpret the 

reasons for weight adjustments and to justify the rigor of the approach. All that can be 

shown is that the trained WTPN appeared to work in a human-like manner. In fact, it is a 
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central topic in the deep learning area to decipher the underlying intelligence in a trained 

system (Zhang et al., 2016; Zhang et al., 2018; Che et al., 2016; Sturm et al., 2016). It will 

be our ongoing work to pursue this direction, which is essential for a better understanding of 

the developed system, for further improving its performance, and for its safe clinical 

implementation.

Despite these limitations, it is conceivable that the proposed approach is generalizable to the 

optimization problem in EBRT. In fact, the method described in Section 2 has a rather 

generic structure that takes an intermediate plan as input and outputs the way to change 

parameters in the optimization problem. It does not depend on the specific optimization 

problem of interest. Nevertheless, we admit that generalization of the proposed method to 

the EBRT regime will encounter certain difficulties. Not only will the optimization problem 

itself be substantially larger in size, which will inevitably prolongs computation time each 

time solving the optimization problem, the number of parameters to tune will also be much 

larger in an EBRT problem. The latter issue will lead to a much larger WTPN to train, which 

will hence cause a larger computational burden to train the network. We also envision that, 

in the EBRT regime, justifying a plan quality is a much complex problem than in that of 

HDRBT. This will yield the challenge of properly defining the reward function, i.e. a 

counterpart of Eq. (8) in EBRT. It will be our future study to extend the proposed approach 

to EBRT, as well as to overcome the aforementioned challenges.

5. CONCLUSION

In this paper, we have proposed a deep reinforcement learning-based weight tuning network 

WTPN for inverse planning of radiotherapy. We chose the relatively simple context of T/O 

HDRBT to demonstrate the principles. The WTPN was constructed to decide organ weight 

adjustments based on observed DVHs, similar to the behaviors of a human planner. The 

WTPN was trained via an end-to-end reinforcement learning procedure. When applying the 

trained WTPN, the resulting plans outperformed those plans optimized with initial weights 

significantly. Compared to the clinically accepted plans made by human planers, WTPN 

generated better plans with same CTV coverage in all the testing cases. To our knowledge, 

this was the first time that an intelligent tool is developed to adjust organ weights in a 

treatment planning optimization problem in a human-like fashion based on intelligence 

learnt from a training process, which is fundamentally different from existing strategies 

based on pre-defined rules. Our study demonstrated potential feasibility to develop 

intelligent treatment planning approaches via deep reinforcement learning.

APPENDIX

Algorithm to directly optimize planning objective Ψ
We consider the following optimization problem to directly minimize the planning objective 

ψ = ∑iωid2cc
i :

mint ψ + λ
2 ∇t 2

2, (A.1)
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s . t . d2cc
i = DOAR

i
2cc

t,

dCTV = DCTVt,

dCST =  DCSTt,

dCTV 90% = dp,

dCST ∈ 0.8 dp ,   1.4 dp  ,

t j ∈ 0,   tmax ,    j = 1, 2, …,  n .

Again we employ ADMM to solve the optimization problem. The augmented Lagrangian 

function of the optimization problem is given as

L t,  x, Γ = ∑iwi DOAR
i t 2cc

+ λ
2 ∇t 2

2 +  β
2 Dt − x 2

2 + Γ,  Dt − x

+ δ1 x + δbox t ,
(A.2)

where D =  
DCTV
DCST

 and x =   dCTV

dCST
. The optimization scheme to tackle this problem is 

similar to that of optimization problem in Eq. (1) and we summarize it in Algorithm 3.

Algorithm 3.

ADMM algorithm solving the problem in Eq. (A.1)

Input: DOAR
i

, D, x(0), Γ(0), λi, β, t(0) and tolerance σ

Output: t*

Procedure:

1. Set k = 0;

2. Compute dOAR
i = DOAR

i t k
, compute d2cc

i
 according to dOAR

i
;

3. Identify DOAR
i

2cc
 according to d2cc

i
;
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4. Compute t
k + 1

2   =   λ∇T ∇ + βDTD
−1

βDTx k − DTΓ k − ∑iwiDOAR
i

2cc
T ;

5. Compute t j
k + 1

2   =   =  

0,          i f  ti
k + 1

2 <  0

tmax,   i f  ti
k + 1

2 > tmax

ti
k + 1

2 ,  otherwise

;

6. Compute x
k + 1

2   = Dt k + 1 + Γ k

β ,   dCTV

dCST
  =   x

k + 1
2 ;

7. Compute s = dCTV 90% ,  d j
CTV =

dp,         d j
CTV ≥ s and d j

CTV < dp

d j
CTV,      otherwise

;

 Compute d j
CST =  

0.8dp,          i f  d j
CST < 0.8dp

1.4dp,          i f  d j
CST > 1.4dp

d j
CST,                   otherwise

;

 Compute x k + 1 = dCTV

dCST
;

8. Compute Γ k + 1 = Γ k + β Dt k + 1 − x k + 1 ;

9. If 
t k + 1 − t k

2
t k + 1

2
< σ, set t* = t(k+1);

 Otherwise, set k = k + 1, go to Step 2.
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Figure 1. 
Illustration of weight tuning workflow (a) by a human planner and (b) by the WTPN.
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Figure 2. 
Network structure of the WTPN. (a) gives the overall structure of WTPN. The complete 

network consists of N subnetworks with identical structures. Each subnetwork corresponds 

to one OAR. The input is DVHs of a treatment plan. (b) Detailed structure of the 

subnetwork. Numbers and sizes of different layers are specified at the top of the layer. 

Connections between layers and number of parameters are presented at the bottom. Output 

value of each network node is the corresponding Q function value of defined action.
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Figure 3. 
Reward (left) and Q-values (right) obtained along training epochs.
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Figure 4. 
Weight-tuning process using the WTPN for a training case (training case 3). (a) Evolution of 

organ weights; (b) Corresponding d2cc of different OARs; (c) ψ function values; (d) DVHs 

of plans at weight tuning steps 0 (initial weights), 5 and 25; (e) DVHs plotted with absolute 

volume. Horizontal line shows 2cc volume.
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Figure 5. 
Weight-tuning process using the WTPN for a testing case (testing case 3). (a) Evolution of 

organ weights; (b) Corresponding d2cc of different OARs; (c) ψ function values; (d) DVHs 

of plans at weight tuning steps 0 (initial weights), 5 and 25; (e) DVHs plotted with absolute 

volume. Horizontal line shows 2cc volume.
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Figure 6. 
DVH comparison curves for testing patient case 5.
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Figure 7. 
Dose map comparison in coronal (top) and sagittal (bottom) view for patient case 2.
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Table 1.

Hyperparameters to train the WTPN.

Hyperparameter Value Description

σ 5×10−4 Stopping criteria in Algorithm 1

β 5 Penalty parameter in Algorithm 1

n 4 Number of weights (OARs) to be tuned

γ 0.5 Discount factor

∈ 0.99 ~ 0.1 Probability of ∈-greedy approach

Npatient 5 Number of training patient cases

Nepoch 100 Number of training epoch

Ntrain 25 Number of training steps in each epoch

Nupdate 10 Number of steps to update W  =W

δ 1×10−4 Learning rate (step size of gradient descent for W)
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Table 2.

ψ function value of plans obtained by using an initial weights ψinitial, adjusted weights by our method ψtuned, 

plans used in our clinic ψclinical, and those obtained by directly optimizing the ψ function. Numbers in bold 

face are the smallest values in each case.

Cases ψinitial (Gy) ψtuned (Gy) ψclinical (Gy) ψopt (Gy)

Training patient 1 6.53 6.17 6.62 6.23

Training patient 2 8.37 7.31 8.28 8.05

Training patient 3 10.55 9.35 9.78 9.48

Training patient 4 10.72 10.54 10.79 10.63

Training patient 5 6.18 5.82 6.19 5.51

Testing patient 1 6.81 6.48 6.61 6.56

Testing patient 2 5.95 5.07 6.13 5.57

Testing patient 3 11.69 10.90 12.90 11.21

Testing patient 4 9.74 8.94 10.02 9.30

Testing patient 5 10.18 9.19 9.78 9.53
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Table 3.

Weight tuning results for testing cases. Numbers in bold face are the smallest values in each case.

Cases ψ initial (Gy) ψ tuned (Gy) ψclinical (Gy)

Testing patient 1 10.03 9.40 9.75

Testing patient 2 6.85 6.45 7.17

Testing patient 3 13.60 13.31 15.47

Testing patient 4 13.39 12.79 13.94

Testing patient 5 13.80 12.75 13.21
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Table 4.

Effect of different reward functions on testing cases.

Cases Reward
d2cc

bladder

(Gy)

d2cc
rectum

(Gy)

d2cc
 sigmoid

(Gy)

d2cc
smallbowel

(Gy)

Testing patient 1 ψ 3.89 2.55 2.09 1.06

ψ 3.76 2.56 2.08 1.00

Testing patient 2 ψ 1.18 1.35 2.89 0.59

ψ 0.97 1.70 3.12 0.66

Testing patient 3 ψ 2.51 3.96 2.95 3.49

ψ 2.38 4.01 3.18 3.74

Testing patient 4 ψ 4.56 3.29 2.13 2.60

ψ 4.45 3.41 2.19 2.74

Testing patient 5 ψ 4.47 3.06 3.37 1.87

ψ 4.41 3.09 3.39 1.86
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