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Abstract

Genetic etiologies of chronic mucocutaneous candidiasis (CMC) disrupt human IL-17A/F-

dependent immunity at mucosal surfaces, whereas those of connective tissue disorders (CTD) 

often impair the TGF-β-dependent homeostasis of connective tissues. The signaling pathways 

involved are incompletely understood. We report a three-generation family with an autosomal 

dominant (AD) combination of CMC and a novel CTD that clinically overlaps with Ehlers-Danlos 

syndrome (EDS). The patients are heterozygous for a private splice-site variant of MAPK8, the 

gene encoding c-Jun N-terminal kinase 1 (JNK1), a component of the MAPK signaling pathway. 

This variant is loss-of-expression and loss-of-function in the patients’ fibroblasts, which display 

AD JNK1 deficiency by haploinsufficiency. These cells have impaired, but not abolished, 

responses to IL-17A and IL-17F. Moreover, the development of the patients’ TH17 cells was 

impaired ex vivo and in vitro, probably due to the involvement of JNK1 in the TGF-β-responsive 

pathway and further accounting for the patients’ CMC. Consistently, the patients’ fibroblasts 

displayed impaired JNK1- and c-Jun/ATF2-dependent induction of key extracellular matrix 

(ECM) components and regulators, but not of EDS-causing gene products, in response to TGF-β. 

Furthermore, they displayed a transcriptional pattern in response to TGF-β different from that of 

fibroblasts from patients with Loeys-Dietz syndrome and mutations of TGFBR2 or SMAD3, 

further accounting for the patients’ complex and unusual CTD phenotype. This experiment of 

Nature indicates that the integrity of the human JNK1-dependent MAPK signaling pathway is 

essential for IL-17A- and IL-17F-dependent mucocutaneous immunity to Candida, and for the 

TGF-β-dependent homeostasis of connective tissues.
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Introduction

Chronic mucocutaneous candidiasis (CMC) is characterized by recurrent lesions of the skin, 

nails, oral and genital mucosae caused by Candida albicans (1). Patients with profound and 

broad inherited T-cell immunodeficiencies present CMC as one of their many infections (2). 

Most patients heterozygous for dominant-negative STAT3 mutations (3) or gain-of-function 

STAT1 mutations (4), and most patients with autosomal recessive (AR) RORγT (5) or 

ZNF341 deficiency (6, 7) present CMC among the infections suffered, the range of which is 

smaller than for patients with severe T-cell deficiencies. Patients with these various forms of 

syndromic CMC (SCMC) share a paucity of circulating TH17 cells (5–13). Patients with AR 

AIRE deficiency display not only autoimmunity but also CMC as their only infection, due to 

the production of neutralizing autoantibodies against IL-17A and/or IL-17F (14, 15). Finally, 

isolated forms of CMC (ICMC), in which CMC is the predominant or only clinical 

manifestation in otherwise healthy individuals, can be due to autosomal dominant (AD) 

IL-17F deficiency, or inborn errors of the IL-17-responsive pathway, such as AR IL-17RA, 

IL-17RC, and ACT1 deficiencies (16–20). Fibroblasts and keratinocytes derived from these 

patients display impaired (AD IL-17F deficiency) (16) or abolished (AR IL-17RA, 

IL-17RC, or ACT1 deficiency) responses to IL-17A and IL-17F (16–19).

Patients with inherited ICMC do not, however, display any overt signs of connective tissue 

disorders (CTD), as their skin, joints, bones, and blood vessels are unaffected. Conversely, 

patients with CTDs, such as Ehlers-Danlos syndrome (EDS), Loeys-Dietz syndrome (LDS), 

and Marfan syndrome (MS), do not suffer from CMC (21). Whilst the genetic basis of 

hypermobile EDS (hEDS) is unknown (22), the other 13 subtypes of EDS are caused by 

various inborn errors of genes, many of which encode collagen or collagen-modifying 

enzymes (e.g. COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, ADAMTS2, PLOD1) 

(22, 23). LDS is caused by inborn errors of the TGF-β signaling pathway (TGFBR1, 

TGFBR2, SMAD2, SMAD3, TGFB2, and TGFB3) (24), and MS by inborn errors of FBN1, 
which encodes fibrillin-1 (25). In these disorders, the homeostasis and integrity of 

connective tissues are impaired by dysfunctional extracellular matrix (ECM) proteins, the 

production of which is controlled by TGF-β in fibroblasts (24, 26).

Results

A private heterozygous MAPK8 variant in a kindred with AD CMC and CTD

We studied three patients (P1, P2, and P3) from three generations of a French family with 

AD CMC and a CTD overlapping with hEDS (Fig. 1A; fig. S1A; table S1; and the “Case 

reports” section). We performed whole-exome sequencing (WES) and found no rare non-

synonymous coding variants in any of the known CMC-, EDS-, LDS-, and MS-causing 

genes, all of which were well covered by WES (table S2). Under a complete penetrance 

model, we found 18 heterozygous non-synonymous variants common to the three patients 

and private to this family, i.e. not previously reported in the 1000 Genomes Project, the 

Single-Nucleotide Polymorphism Database, the NHLBI GO Exome Sequencing Project, the 

Exome Aggregation Consortium Genome Aggregation Database, the NHLBI’s TOPMed 

program (Bravo), or our in-house database of over 6,000 exomes from patients with various 

infectious diseases (fig. S1B and table S3). The most plausible candidate was a splice-site 
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mutation in the MAPK8 gene, for which the biological distance to six of the eight known 

SCMC- and ICMC-causing genes other than AIRE (IL17F, IL17RA, ACT1, STAT1, STAT3, 

and RORC) was shortest in the human gene connectome (HGC), and the distance to the 

other two (IL17RC and ZNF341) ranked second-shortest (27, 28). The familial segregation 

of this private mutant MAPK8 allele was consistent with a fully penetrant AD trait (Fig. 1, A 

and B). This nucleotide substitution (c.311+1G>A), one base pair downstream from exon IV 

(Fig. 1C), was predicted to affect splicing by altering the donor splice site (29). The c.

311+1G>A mutation has a combined annotation-dependent depletion (CADD) score of 26 

(30), which is above the mutation significance cutoff (MSC) threshold of 19.034 for 

MAPK8 (31) (fig. S1C). Moreover, three of the four nonsense or frameshift mutations in 

MAPK8 present in public databases have a minor allele frequency (MAF) < 10−5, whereas 

the fourth, with a MAF of 0.0000114, has a CADD score below the MSC threshold (fig. 

S1C). Consistent with these findings, MAPK8 has a gene damage index (GDI) of 0.32 (32), 

a neutrality index of 0.06 (33), and a SnIPRE f parameter of 0.329 (within the top 11% of 

genes within the genome subject to the greatest constraints) (34) (fig. S1D), indicating that 

this gene is highly conserved in human populations and has evolved under purifying 

selection. Finally, MAPK8 has a probability of loss-of-function intolerance (pLI) score of 

0.98, which is greater than the threshold of 0.9, above which genes are considered to be 

extremely intolerant to loss-of-function variants (35). The MAPK8 mutation found in this 

kindred was therefore probably deleterious, with the potential to cause an AD disease.

A loss-of-expression mutant MAPK8 allele

The MAPK8 gene encodes JNK1, one of the three members of the JNK family. This protein 

is a component of the mitogen-activated protein kinase (MAPK) pathway that converts 

extracellular stimuli into cellular responses (36, 37). JNK1 is phosphorylated by upstream 

MAPK kinases (MAPKK), and in turn phosphorylates downstream activator protein-1 

(AP-1) transcription factors, including c-Jun and ATF-2 (37). There are two long (JNK1α2 

and JNK1β2, 54 kDa) and two short (JNK1α1 and JNK1β1, 46 kDa) isoforms, generated by 

alternative usage of exon VII or VIII and alternative splicing of exon XIII (38) (Fig. 1C). We 

amplified a cDNA fragment extending from exons III to V from Epstein-Barr virus (EBV)-

transformed B cells and simian virus 40 (SV40)-transformed fibroblasts from the patients. In 

addition to the wild-type (WT) transcript (band 4), we detected four aberrant products 

(bands 1, 2, 3, and 5) (Fig. 2A). TA cloning and subsequent sequencing identified two 

aberrantly spliced transcripts: one in which intron IV was retained (band 2) and one in which 

exon IV was skipped (band 5) (Fig. 2A). Bands 1 and 3 were artifacts of heteroduplex 

formation (39). We then inserted a genomic fragment containing the WT or mutant intron IV 

together with the surrounding exons (IV and V) into an exon-trapping vector (Fig. 2B). The 

WT minigene was normally spliced, whereas the mutant minigene generated two aberrant 

splicing products; one in which exon IV was skipped and another in which intron IV was 

retained (Fig. 2B). This assay confirmed the direct impact of the c.311+1G>A mutation on 

MAPK8 mRNA splicing, with no detectable leakiness. Both aberrant mRNAs were 

predicted to result in the creation of premature stop codons (Fig. 2C). Consistent with this 

prediction, the levels of WT MAPK8 mRNA and JNK1 protein in the patients’ cells were 

about half those in control cells (Fig. 2, D and E). Moreover, no truncated proteins were 

detected in the patients’ cells (Fig. 2E) or in HEK293T cells transfected with the 
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corresponding mutant constructs, with or without the N-terminal Myc tag (Fig. 2F). The 

three patients were, therefore, heterozygous for a private loss-of-expression MAPK8 allele.

Impaired IL-17A/F signaling in patients’ fibroblasts

Human IL-17A, IL-17F, and IL-17A/F (referred to collectively as IL-17A/F) can activate 

JNK1 after binding to IL-17RA/IL-17RC, which is mostly expressed in various non-

hematopoietic cells, thereby inducing the production of pro-inflammatory cytokines, 

chemokines, and antimicrobial peptides (40, 41). Upon stimulation with IL-17A/F, SV40-

fibroblasts from the patients produced abnormally small amounts of growth-regulated 

oncogene-α (GRO-α) and IL-6, whereas SV40-fibroblasts from an IL-17RA-deficient 

patient did not respond at all (Fig. 3A). Similar results were obtained with primary 

fibroblasts (fig. S2A). The patients’ cells had subnormal-to-normal responses to tumor 

necrosis factor-α (TNF-α) and IL-1β (Fig. 3B and fig. S2B). Moreover, the activation of 

AP-1 (c-Jun/ATF-2), unlike that of ERK1/2, p38, and NF-κB, was impaired in the patients’ 

SV40-fibroblasts following stimulation with IL-17A, as shown by western blotting (fig. 

S2C). By contrast, AP-1 was normally activated by TNF-α and IL-1β (fig. S2D). 

Fibroblasts and leukocytes from the patients also responded normally to lymphotoxin α1β2 

(LTα1β2) (IL-8 production) and Toll-like receptor (TLR) agonists (IL-6 and IL-8 

production), respectively (fig. S2, E to G). Peripheral blood mononuclear cells (PBMCs) 

responded normally to IL-2 in combination with IL-17E (IL-5 production) (fig. S2H). 

Lentiviral transduction of the patients’ SV40-fibroblasts with cDNAs encoding WT JNK1 

isoforms, JNK1α1 and JNK1β1 in particular, but not with any of the mutant isoforms, 

restored the response to IL-17A (Fig. 3C and fig. S2I). This finding is consistent with the 

predominant protein expression of JNK1α1 and JNK1β1 in control SV40-fibroblasts (Fig. 

2E). Moreover, the induction of GRO-α and IL-6 in control SV40-fibroblasts was not 

affected by the overexpression of any mutant JNK1 isoform, suggesting that the mutant 

allele is not dominant-negative (Fig. 3C and fig. S2I). This is consistent with the purifying 

selection exerted on the MAPK8 locus (34) (fig. S1D). By contrast, the RNAi-mediated 

knockdown of MAPK8 impaired the response to IL-17A in control fibroblasts (Fig. 3D and 

fig. S2, J and K). Finally, we performed RNA-Seq to delineate the range of IL-17A-

responsive genes in primary fibroblasts. The number of upregulated or downregulated genes 

in response to IL-17A was much lower in the patients (fig. S2L). Several IL-17A/F target 

genes, including CXCL1, CXCL2, IL6, IL8, C3, and ICAM1, were less induced in the 

patients’ cells (fig. S2M). Approximately 60% of IL-17RA/IL-17RC-dependent genes were 

JNK1-dependent (fig. S2N). Collectively, these findings indicate that heterozygosity for the 

private MAPK8 c.311+1G>A loss-of-expression variant underlies a distinctive AD cellular 

phenotype, with impaired responses to IL-17A/F in fibroblasts, by haploinsufficiency. 

Moreover, impaired cellular responses to IL-17A/F in fibroblasts, and possibly in other cells, 

contribute to CMC (42, 43).

Low proportions of ex vivo or in vitro differentiated TH17 cells

Given that mouse JNK1 is important for T-cell activation and differentiation (44–46), and 

that human TGF-β activates JNK1 (47) and is essential for TH17 differentiation in vitro (48–

50), we also investigated the development and function of T cells in the patients, testing the 

hypothesis that impaired TH17 development in the patients might also contribute to their 
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CMC. The frequencies of naïve and CD45RA+ effector memory (EMRA) CD4+ and CD8+ 

T cells in the patients were slightly higher, whereas those of central (CM) and effector 

memory (EM) CD4+ and CD8+ T cells were correspondingly slightly lower than those in 

healthy controls (Fig. 4A). The patients had higher proportions of TH1 cells and lower 

proportions of TH17 cells than controls, but normal proportions of the TH2, TH1*, TFH, and 

Treg subsets among circulating CD4+ T cells, as shown by flow cytometry (51) (Fig. 4B). 

Normal amounts of IL-17A and IL-22 were secreted by whole blood stimulated with PMA 

plus ionomycin (Fig. 4C). Ex vivo memory CD4+ T cells also expressed IL-17A and IL-17F, 

albeit in the lower part of the control range, and IFN-γ after stimulation with T-cell 

activation and expansion beads (TAE; anti-CD2/CD3/CD28 mAbs-conjugated beads) and 

PMA plus ionomycin (Fig. 4D). The patients’ naïve CD4+ T cells produced less IL-17A and 

IL-17F than control cells when cultured under TH17-polarizing conditions (Fig. 4, E and F). 

This difference was more pronounced when memory CD4+ T cells were tested under the 

same conditions (Fig. 4G). Finally, the percentages of transitional, naïve, and memory B 

cells, and of class-switched memory B cells were normal in these patients (fig. S3, A and B). 

The abilities of naïve and memory B cells to differentiate into antibody-secreting cells were 

also intact (fig. S3, C and D). Overall, the ability of T cells to produce IL-17A and IL-17F 

was 50% lower (ex vivo) and 75% lower (in vitro) in patients heterozygous for the MAPK8 
mutation. The ex vivo development of Treg cells was largely unaffected, consistent with the 

absence of overt autoimmunity in the patients. The CMC in these patients is, thus, a 

combined consequence of lower proportions of TH17 cells and impaired cellular responses 

to IL-17A/F. Both human IL-17A/F- and IL-17RA/IL-17RC-dependent mucocutaneous 

immunity to C. albicans are, therefore, dependent on JNK1.

Normal extracellular matrix organization but poor migratory capabilities of patients’ 
fibroblasts

We subsequently investigated the pathogenesis of the novel and complex CTD phenotype of 

the patients. Previous studies have proposed an in vitro fibroblast phenotype common to 

most EDS patients, but apparently not observed in other inherited CTDs (52–55). This 

phenotype is characterized by generalized fibronectin-ECM (FN-ECM) disarray, low levels 

of expression of the canonical integrin receptor α5β1, and the recruitment of αvβ3 integrin 

(52–55). EDS fibroblasts also seem to display little or no type III collagen deposition in the 

ECM (COLLIII-ECM) and a variable disorganization of type V collagen (COLLV-ECM) 

(52–55). A specific myofibroblast-like phenotype of hEDS has also been proposed, based on 

the organization of α-smooth muscle actin (α-SMA), cadherin-11 (CAD-11) expression, and 

enhanced cell migration (56). Unlike cells from EDS patients, the primary fibroblasts of P2 

displayed no FN-ECM disarray, and α5β1 integrin was organized as in control fibroblasts 

(Fig. 5A). Despite the low levels of COLLIII-ECM and a barely detectable organization of 

COLLV-ECM, P2’s fibroblasts expressed the canonical collagen receptor, α2β1 integrin, 

normally, unlike EDS cells (Fig. 5A). The myofibroblast-specific markers α-SMA and 

CAD-11 were absent from the cells of P2, whereas they were present on hEDS fibroblasts 

(Fig. 5A). Consistent with this finding, the fibroblasts of P2 did not have the enhanced 

migratory capability reported for some hEDS fibroblasts, as shown by in vitro scratch and 

Transwell assays (Fig. 5, B and C). Instead, the fibroblasts of P2, like some cEDS cells, 

migrated poorly (Fig. 5, B and C), probably accounting for the poor wound healing observed 
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in the patients (see the “Case reports” section). Overall, these data suggest that, even though 

the clinical presentation in these patients overlaps with EDS, and despite the 2017 EDS 

diagnostic criteria for hEDS being met (22), the in vitro fibroblast phenotype of these 

patients is apparently different from that proposed for EDS in general, and for hEDS in 

particular (52–56).

Impaired TGF-β signaling in patients’ fibroblasts

We tested the hypothesis that the patients’ CTD resulted from dysfunctional TGF-β 
signaling, as this pathway controls the expression of key genes involved in the development 

and maintenance of the ECM (24). Upon TGF-β stimulation, the patients’ SV40-fibroblasts 

displayed impaired AP-1 (c-Jun/ATF-2) activation, whereas ERK1/2, p38, and SMAD2/3, 

were normally activated, as shown by western blotting (fig. S4A). Previous reports have 

suggested that TGF-β induces the expression of FN in a JNK1-dependent manner (57, 58). 

Consistent with these findings, the induction of FN production by TGF-β was impaired at 

both the mRNA and protein levels in the patients’ fibroblasts (Fig. 5D and fig. S4, B and C). 

The patients did not display spondylometaphyseal dysplasia (SMD), which can be caused by 

heterozygous FN1 mutations (59), probably because their baseline FN-ECM organization 

levels were normal (Fig. 5A). By contrast, various SMAD2/3-dependent TGF-β target genes 

(58, 60), such as COL1A1, COL1A2, COL3A1, COL5A1, and COL5A2, encoding key 

components of the ECM and mutated in patients with cEDS and other forms of EDS (22), 

were normally induced by TGF-β in the patients’ cells (Fig. 5D and fig. S4, B and C). 

Finally, we performed a transcriptomic analysis of the cellular response to TGF-β in primary 

fibroblasts. The genome-wide transcriptional response to TGF-β was impaired in the 

patients’ cells (fig. S4D). A number of TGF-β-responsive genes, including ELN, EDN1, 

IL11, and COMP were not induced in the patients’ cells (Fig. 5E and fig. S4E). Consistently, 

their induction in control fibroblasts stimulated with TGF-β was impaired by the RNAi-

mediated knockdown of MAPK8 (Fig. 5, F and G and fig. S4F). These findings are 

consistent with previous reports of the presence of AP-1-binding motifs in the regulatory 

regions of COMP and ELN (61, 62), or of the AP-1-dependent induction of EDN1 and IL11 
by TGF-β (63, 64). Mutations in these genes (59, 65–68) or in those encoding the 

corresponding receptors (69, 70) have already been reported in patients with various CTDs 

other than EDS, LDS, and MS (table S4). The study of the patients’ fibroblasts thus 

delineated the transcriptomic impact of impaired JNK1-dependent, SMAD2/3-independent 

TGF-β signaling. Moreover, fibroblasts from patients with LDS, heterozygous for mutations 

in TGFBR2 or SMAD3, also showed impaired responses to TGF-β (fig. S4D), consistent 

with previous studies showing these mutations to be loss-of-function in vitro (71–73). 

However, their impact differed from that of JNK1 haploinsufficiency, as about 40% of 

JNK1-dependent genes were TGFBR2/SMAD3-independent (fig. S4G). This is consistent 

with the clinical differences observed between our patient’s particular CTD (displaying 

some overlap with hEDS) and LDS. In addition, about 30% of TGFBR2-dependent genes 

were SMAD3-independent (fig. S4H), potentially accounting for some of the phenotypic 

differences between LDS patients with TGFBR2 and SMAD3 mutations. Our findings 

provide a molecular and cellular basis for the complex new form of CTD displayed by the 

patients, with an impairment of the TGF-β-dependent induction of key ECM components 
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and regulators different from that of patients with another CTD, LDS, who are heterozygous 

for TGFBR2 or SMAD3 mutations.

Discussion

We have discovered a heterozygous loss-of-expression and loss-of-function mutation of 

MAPK8 in a three-generation multiplex kindred with a rare combination of classic CMC 

and novel CTD (Fig. 6). Human JNK1 haploinsufficiency impairs IL-17A/F immunity in 

two ways, by reducing the responses of fibroblasts to IL-17RA/IL-17RC ligation and by 

compromising the TGF-β-dependent development of TH17 cells, accounting for the 

impaired mucocutaneous immunity to C. albicans and subsequent development of CMC in 

these patients. These findings indicate that IL-17RA/IL-17RC-dependent protective 

mucocutaneous immunity to C. albicans is JNK1-dependent. We previously described CMC 

patients with biallelic mutations of ACT1 (19). The findings reported here identify JNK1 as 

a key component of this antifungal pathway acting downstream from ACT1. They also 

indicate that haploinsufficiency at the JNK1 locus has an impact on the development of 

TH17 cells, probably due to the involvement of JNK1 in the TGF-β pathway.

Our data also suggest that JNK1 haploinsufficiency impairs the c-Jun/ATF-2-dependent, and 

SMAD2/3-independent, TGF-β-responsive pathway in fibroblasts, a novel cellular 

phenotype that probably accounts for the patients’ complex and unusual CTD phenotype. 

Interestingly, the induction of collagen genes mutated in cEDS and other forms of EDS, 

such as COL1A1 and COL5A1, was intact, whereas that of other ECM proteins, such as 

COMP and ELN, mutated in patients with other types of CTD (65, 66), was impaired. The 

impaired induction of genes encoding ECM regulators, such as EDN1 and IL11, may also 

contribute to the patients’ CTD phenotype. It is also relevant that the impact of heterozygous 

mutations of MAPK8 differed from that of the TGFBR2 or SMAD3 of patients with LDS, in 

terms of the transcriptional response to TGF-β. Haploinsufficiency for JNK1 probably 

defines a novel CTD entity encompassing various clinical manifestations, some of which 

overlap with EDS, but not LDS. Cellular responses to cytokines other than IL-17A/F and 

TGF-β were apparently intact in cells from the patients. JNK1-deficient mice have defects of 

innate and adaptive immunity to various infections (74–76), but their connective tissues have 

not been studied. MAPK8-heterozygous mice have rarely been studied and seem to be 

normal (77). In conclusion, the integrity of the human JNK1 pathway is essential for 

IL-17A/F-dependent mucocutaneous immunity to Candida and for the TGF-β-dependent 

homeostasis of connective tissues.

Materials and Methods

Study design

We studied three patients from a kindred suffering from CMC and CTD. We analyzed this 

kindred by WES and found that the patients were heterozygous for a private splice-site 

mutation in MAPK8, the gene encoding JNK1. We evaluated the impact of this mutation in 

an overexpression system and in the patients’ cells. We assessed the cellular responses to 

IL-17A/F and TGF-β of the patients’ fibroblasts, the development and the differentiation 

properties of the patients’ T and B cells.
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Human subjects

The patients (P1, P2, and P3) were followed in their country of residence, France. Another 

family member (II.1) also participated to the genetic study. Informed consent was obtained 

from each patient, in accordance with local regulations and a protocol for research on human 

subjects approved by the institutional review board (IRB) of INSERM. Experiments were 

performed on samples from human subjects in the United States, France, Italy, and 

Australia, in accordance with local regulations and with the approval of the IRB of The 

Rockefeller University, the IRB of INSERM, the local ethical committee of Brescia, and the 

Sydney South West Area Health Service, respectively.

Whole-exome sequencing

Genomic DNA was extracted from whole blood and sheared with an S2 focused 

ultrasonicator (Covaris). An adaptor-ligated library was prepared with the TruSeq DNA 

Sample Prep Kit (Illumina). Exome capture was performed with the SureSelect Human All 

Exon V5 kit (Agilent Technologies). Paired-end sequencing was performed on a HiSeq 2500 

System (Illumina) generating 100-base reads. The sequences were aligned with the GRCh37 

build of the human genome reference sequence, with the Burrows-Wheeler Aligner (78). 

Downstream processing and variant calling were performed with the Genome Analysis 

Toolkit (79), SAMtools (80), and Picard tools (http://broadinstitute.github.io/picard/). All 

variants were annotated with in-house annotation software.

Cell culture and transfection

Primary fibroblasts were obtained from skin biopsy specimens and cultured in Dulbecco’s 

modified Eagle medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum 

(FBS) (Gibco). Peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood by density gradient centrifugation on Ficoll-Paque PLUS (GE Healthcare Life 

Sciences). Immortalized simian virus 40 (SV40)-transformed fibroblasts (SV40-fibroblasts) 

and Epstein-Barr virus (EBV)-transformed B (EBV-B) cells were generated as previously 

described (81). Human embryonic kidney 293T (HEK293T) (ATCC) and GP2-293 retroviral 

packaging cells (Clontech) were maintained in DMEM containing 10% FBS. HEK293T and 

GP2-293 cells were transiently transfected with the aid of X-tremeGENE 9 DNA 

Transfection Reagent (Roche). Primary fibroblasts were transfected with siRNA in the 

presence of Lipofectamine RNAiMAX Transfection Reagent (Thermo Fisher Scientific), in 

accordance with the manufacturer’s instructions.

Molecular genetics

Genomic DNA was isolated from primary fibroblasts or EBV-B cells with the QIAamp 

DNA Mini Kit (QIAGEN). A fragment encompassing exon IV and intron IV of MAPK8 was 

amplified by PCR with specific primers (table S5). The PCR products were analyzed by 

electrophoresis in 1% agarose gels and sequenced with the BigDye Terminator Cycle 

Sequencing Kit (Applied Biosystems). Sequencing products were purified by gel filtration 

on Sephadex G-50 Superfine columns (GE Healthcare Life Sciences) and sequences were 

analyzed in an ABI 3730 DNA Analyzer (Applied Biosystems).
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Plasmids and siRNAs

JNK1α1 and JNK1α2 were amplified from pCDNA3 FLAG JNK1α1 (Addgene) and 

pCDNA3 FLAG JNK1α2 (Addgene), respectively. JNK1β1 and JNK1β2 were amplified 

from the cDNA derived from SV40-fibroblasts. The full-length WT isoforms and truncated 

mutants were inserted into pTRIP-SFFV (82) and the pCMV6-AN-Myc-DDK tagged vector 

(OriGene), respectively. TA cloning and exon trapping were performed with the pCR4-

TOPO vector (Thermo Fisher Scientific) and the pET01 vector (MoBiTec GmbH), 

respectively, according to the manufacturer’s instructions. Control siRNA (D-001810-10) 

and MAPK8 siRNA (L-003514-00) were obtained from Dharmacon.

Cell stimulation and cytokine production

SV40- and primary fibroblasts were plated on 24-well plates at a density of 6×104 cells per 

well, in 0.5 mL DMEM supplemented with 10% FBS. After 24 h, cells were left 

unstimulated or were stimulated with recombinant human (rh) IL-17A (317-ILB; R&D 

Systems), rh IL-17F (1335-IL; R&D Systems), rh IL-17A/F (5194-IL; R&D Systems), rh 

TNF-α (210-TA; R&D Systems), rh IL-1β (201-LB; R&D Systems), rh lymphotoxin α1/β2 

(8884-LY; R&D Systems), LTA-SA (tlrl-slta; InvivoGen), Pam3CSK4 (tlrl-pms; InvivoGen), 

FSL-1 (tlrl-fsl; InvivoGen), Pam2CSK4 (tlrl-pm2s-1; InvivoGen), and lipopolysaccharide 

(LPS) (L9764; Sigma-Aldrich) for a further 24 h. ELISA kits were used to determine the 

levels of GRO-α (DY275; R&D Systems), IL-6 (88-7066; Invitrogen), and IL-8 (M9318; 

Sanquin) in the supernatants. SV40- and primary fibroblasts were cultured in DMEM 

supplemented with 1% FBS for 24 h and then stimulated with recombinant human TGF-β1 

(240-B-002; R&D Systems) for various time periods. Protein levels were determined by 

ELISA for fibronectin (DY1918-05; R&D Systems), procollagen I (α1) (DY6220-05; R&D 

Systems), and IL-11 (DY218; R&D Systems). Whole blood was stimulated with IL-1β, 

Pam3CSK4, heat-killed Staphylococcus aureus (HKSA) (tlrl-hksa; InvivoGen), FSL-1, 

Pam2CSK4, LPS, R848 (tlrl-r848; InvivoGen), and PMA (P1585; Sigma-Aldrich) plus 

ionomycin (I3909; Sigma-Aldrich) for 24 h and IL-6 production was measured by ELISA. 

PBMCs were cultured in X-VIVO 15 (Lonza) containing 5% human serum AB (Lonza) and 

100 ng/mL recombinant human thymic stromal lymphopoietin (TSLP) (1398-TS/CF; R&D 

Systems) for 24 h. Cells were washed and plated on 48-well plates, at a density of 4×106 

cells per well, in 0.5 mL of X-VIVO 15 supplemented with 5% human serum AB in the 

presence of 10 ng/mL recombinant human IL-2 (202-IL; R&D Systems) and 10 ng/mL 

recombinant human IL-17E (1258-IL; R&D Systems). After 72 h, the amount of IL-5 

present in each well was determined with an ELISA kit (DY205; R&D Systems).

Reverse transcription and PCR (RT-PCR)

Total RNA was extracted with the RNeasy Mini Kit (QIAGEN), according to the 

manufacturer’s instructions. Reverse transcription was carried out with the SuperScript III 

First-Strand Synthesis System (Invitrogen). Conventional PCR was performed with the 

ChoiceTaq Blue DNA Polymerase (Denville Scientific) and the amplicons were analyzed by 

electrophoresis in 2% agarose gels. Quantitative PCR was performed with Fast SYBR Green 

Master Mix (Applied Biosystems) in the 7500 Fast Real-Time PCR System (Applied 
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Biosystems). The primer pairs used for conventional and quantitative PCR are listed in table 

S5.

Western blotting

Whole-cell lysates were prepared in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1% Nonidet P40, 0.5% sodium deoxycholate, and 0.1% SDS) supplemented with cOmplete 

Protease Inhibitor Cocktail (Roche). Proteins were separated by electrophoresis in either 

10% Criterion XT Bis-Tris Protein Gels (Bio-Rad) or 4-20% Mini-PROTEAN TGX Precast 

Protein Gels (Bio-Rad) and the resulting bands were transferred onto Immobilon-P PVDF 

Membrane (Millipore). All blots were incubated overnight with primary antibodies and 

developed with the Pierce ECL Western Blotting Substrate (Thermo Scientific). The 

antibodies used in this study included antibodies (from Cell Signaling Technology) against 

JNK1 (3708), pc-Jun (2361), c-Jun (9165), pATF-2 (9221), ATF-2 (9226); pIκBα (9246), 

pp65 (3033), pp38 (9211), p38 (9212), pERK1/2 (4370), ERK1/2 (4695), pSMAD2 (3101), 

SMAD2 (5339), pSMAD3 (9520), SMAD3 (9523), SMAD4 (38454), Myc (2040); as well 

as IκBα (610690; BD Biosciences), p65 (sc-372; Santa Cruz Biotechnology), and β-actin 

(AM1829B; Abgent), and the following secondary antibodies: Amersham ECL Mouse IgG, 

HRP-linked whole Ab (from sheep) (NA931; GE Healthcare Life Sciences) and Amersham 

ECL Rabbit IgG, HRP-linked whole Ab (from donkey) (NA934; GE Healthcare Life 

Sciences).

Ex vivo T-cell activation

PBMCs were cultured in 48-well plates, at a density of 3×106 cells per mL, in RPMI 1640 

medium (Gibco) containing 10% FBS with T-cell activation and expansion beads (TAE) 

(130-091-441; Miltenyi Biotec) or PMA plus ionomycin, in the presence of a protein 

transport inhibitor (GolgiPlug; BD Biosciences). After 12 h, the cells were collected and 

their expression of the indicated cytokines was assessed by flow cytometry, as previously 

described (17).

In vitro T-cell differentiation

Naïve and memory CD4+ T cells were isolated and cultured under polarizing conditions, as 

previously described (6, 83). Briefly, cells were cultured with TAE beads alone (TH0) or 

under TH1 (IL-12 [20 ng/mL; R&D Systems]) or TH17 (TGF-β1 [2.5 ng/mL; Peprotech], 

IL-1β [20 ng/mL; Peprotech], IL-6 [50 ng/mL; PeproTech], IL-21 [50 ng/mL; PeproTech], 

IL-23 [20 ng/mL; eBioscience]) polarizing conditions. After 5 d, the supernatants were 

harvested and the cells were restimulated with PMA/ionomycin for 6 h. The levels of 

specific cytokines were determined by intracellular staining and flow cytometry. The 

secretion of the indicated cytokines was determined with a cytometric bead array (BD 

Biosciences).

In vitro B-cell differentiation

Naïve and memory B cells were sorted and cultured in the presence of CD40L (200 ng/mL; 

R&D systems), with or without IL-21 (50 ng/mL; Peprotech) for 7 d, as previously 
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described (83). The production of IgA, IgG, and IgM was assessed by Ig heavy chain-

specific ELISA (83).

Flow cytometry

Cells were surface-labeled with CD4-APC-Vio770 anti-human CD4 (clone M-T321; 

Miltenyi Biotec), Brilliant Violet 421 anti-human CD197 (CCR7) (clone G043H7; 

BioLegend), PE-CF594 anti-human CD45RA (clone HI100; BD Biosciences), and LIVE/

DEAD™ Fixable Aqua Dead Cell Stain Kit (L34957; Thermo Fisher Scientific). 

Intracellular staining was performed with the Fixation/Permeabilization Solution Kit (BD 

Biosciences) and antibodies including Alexa Fluor 488 anti-IL-17A (clone eBio64DEC17; 

eBioscience), PE anti-IL-17F (clone SHLR17; eBioscience), and Alexa Fluor 700 anti-IFN-

γ (clone 4S.B3; eBioscience). Samples were analyzed with a Gallios Flow Cytometer 

(Beckman Coulter) and FlowJo software.

Immunofluorescence microscopy

Primary fibroblasts were fixed with ice-cold methanol and incubated with antibodies against 

fibronectin (Sigma-Aldrich), type III collagen (Chemicon), and type V collagen (LifeSpan 

BioSciences) at a dilution of 1:100, and with anti-α-smooth muscle actin antibody (A2547; 

Sigma-Aldrich) at a concentration of 2 μg/mL, as previously described (52, 56, 84). For 

analysis of the α2β1, α5β1, and αvβ3 integrins, cells were fixed with 3% paraformaldehyde 

(PFA)/60 mM sucrose and permeabilized with 0.5% Triton X-100, as previously reported 

(84). In particular, cells were incubated with anti-α5β1 (MAB1969; Chemicon), anti-αvβ3 

(MAB1976; Chemicon), and anti-α2β1 (MAB1998; Chemicon) integrin antibodies at a 

concentration of 4 μg/mL for 1 h. Cadherin-11 levels were investigated by fixing cells by 

incubation with 4% PFA/10 mM sucrose for 10 min, permeabilizing them by incubation 

with 0.1% Triton X-100 for 10 min, blocking them with by incubation with 2% BSA in PBS 

for 1 h, and then incubating them with anti-CDH11/cadherin OB antibody (Thermo Fisher 

Scientific) at a concentration of 2 μg/mL for 3 h, as previously described (56). The cells 

were washed and then stained with Alexa Fluor 488 anti-rabbit and Alexa Fluor 594 anti-

mouse antibodies (Thermo Fisher Scientific), or with rhodamine-conjugated anti-goat IgG 

antibody (Chemicon) for 1 h. Immunofluorescence signals were acquired with a black-and-

white CCD TV camera (SensiCam; PCO Computer Optics GmbH) mounted on a Zeiss 

Axiovert fluorescence microscope, and digitized with Image-Pro Plus software (Media 

Cybernetics).

In vitro scratch assay

Primary fibroblasts were plated on 35-mm Petri dishes at a density of 3×104 cells per dish 

and grown to confluence. The cell monolayers were wounded with a rubber policeman to 

generate an acellular area and dishes were marked to ensure the recording of the correct 

area. The monolayers were washed with PBS, rinsed in DMEM plus 10% FBS, and 

photographed with an inverted microscope at 0 and 48 h after scratching.
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Transwell assay

Cell migration was evaluated in a Transwell assay with an 8 μm-pore filter (Corning Costar). 

Primary fibroblasts (5×104 cells) were resuspended in DMEM without FBS, placed in the 

upper chamber, and allowed to migrate for 6 h through the polycarbonate membrane into the 

bottom well, which was filled with DMEM containing 10% FBS. The cells that did not 

migrate were removed from the upper surface with a cotton swab. The cells that had 

migrated were collected in the bottom chamber. They were fixed in methanol, stained with 

the Diff-Quik staining kit (Medion Diagnostic GmbH), and quantified in 10 non-overlapping 

fields of 1 mm2 with a light microscope.

Microarray and RNA-Seq analyses

Total RNA was extracted with the RNeasy Plus Micro Kit (QIAGEN), according to the 

manufacturer’s instructions. Microarray analysis was performed with the GeneChip Human 

Gene 2.0 ST Array (Thermo Fisher Scientific). The raw expression data were normalized in 

R with the robust multi-array average (RMA) method (85) and the affy R package (86), and 

processed as previously described (87). RNA-Seq analysis was performed with TruSeq 

Stranded mRNA (Illumina) and standard polyA-based methods for library preparation. 

Paired-end sequencing with a read length of 150 bp and ~19 million reads per sample was 

carried out with a HiSeq 4000 system (Illumina). Raw reads were aligned to the human 

genome assembly (hg38) with STAR aligner (88). The number of reads mapping to each 

gene feature was determined with HTSeq (89). Differential expression was analyzed with an 

in-house script in R with DESeq2 (90) and ComplexHeatmap (91). In brief, fold changes in 

expression between non-stimulated and stimulated conditions were calculated for each 

individual and time point separately, and genes were further filtered based on a minimal 1.5-

fold change in expression (upregulation or downregulation). The residual responses of the 

patients were calculated based on the number of responsive genes passing the above filter in 

both healthy controls (number of responsive genes in a subject / total number of responsive 

genes in healthy controls) × 100).

Statistical analysis

Unpaired t tests and two-tailed Mann-Whitney tests were used for comparisons of two 

groups. P < 0.05 was considered statistically significant in all tests performed with Prism 

software (GraphPad).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Identification of a heterozygous MAPK8 mutation in a kindred with AD CMC and CTD.
(A) Pedigree and segregation of the MAPK8 mutation. The patients, in black, are 

heterozygous for the mutation. E? indicates individuals whose genetic status could not be 

evaluated. (B) Electropherograms of partial sequences of MAPK8 corresponding to the 

mutation in a healthy control (C) and four members of the kindred (II.1, P1, P2, and P3). (C) 

Schematic illustration of the genomic locus and of the protein encoded by the MAPK8 gene 

extracted from the Ensembl database. It has 13 exons (I-XIII), 12 of which are coding exons 

(II-XIII), encoding four isoforms (JNK1α1, JNK1α2, JNK1β1, and JNK1β2), with 

alternative usage of exon VII or VIII and alternative splicing of exon XIII. The red arrow 

indicates the position of the mutation.
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Fig. 2. The mutant MAPK8 allele is loss-of-expression.
(A) MAPK8 mRNA levels in EBV-B cells and SV40-fibroblasts from healthy controls (C1, 

C2, and C3) and patients (P1, P2, and P3). TA cloning and subsequent sequencing of the five 

bands generated by amplification from exon III to exon V identified three spliced transcripts: 

band 1 corresponding to the WT sequence together with intron IV retention and exon IV 

skipping; band 2 (376 bp) corresponding to intron IV retention; band 3 corresponding to the 

WT sequence together with exon IV skipping; band 4 (284 bp) corresponding to the WT 

sequence; band 5 (225 bp) corresponding to exon IV skipping. (B) Schematic diagram of the 

constructs used for exon trapping. pET01, exon-trapping vector; RSV, Rous sarcoma virus 

long terminal repeat promoter; pA, polyadenylation; E in black, exon of the pET01 vector; 

IV and V in blue, MAPK8 exons IV and V; in yellow, MAPK8 intron IV. The red arrow 

indicates the position of the mutation. RT-PCR and subsequent sequencing identified three 

spliced transcripts: band 1 corresponding to intron IV retention and exon IV skipping; band 
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2 (354 bp) corresponding to the WT sequence; band 3 (295 bp) corresponding to exon IV 

skipping. (C) Schematic illustration of the mutant proteins. JNK1ES (JNK1 exon skipping) 

represents exon IV skipping, whereas JNK1IR (JNK1 intron retention) denotes intron IV 

retention. Both transcripts are predicted to encode proteins of approximately 10 kDa in size. 

Red arrows indicate the positions of premature stop codons. (D) mRNA levels for MAPK8 
isoforms in EBV-B cells (top panel) and SV40-fibroblasts (bottom panel) from healthy 

controls (C1, C2, and C3) and patients (P1, P2, and P3). Quantitative RT-PCR was 

performed with primers specific for JNK1α1/JNK1α2 and JNK1β1/JNK1β2 mRNAs. α/β, 

total mRNA corresponding to JNK1α1, JNK1α2, JNK1β1, and JNK1β2; α, total mRNA 

corresponding to JNK1α1 and JNK1α2; β, total mRNA corresponding to JNK1β1 and 

JNK1β2. The values shown are the means ± SEM of three independent experiments. *, P < 

0.05, **, P < 0.01, and ****, P < 0.0001; in unpaired t tests. (E and F) Immunoblot of JNK1 

in EBV-B cells and SV40-fibroblasts from healthy controls (C1, C2, and C3) and patients 

(P1, P2, and P3) (E), and in HEK293T cells transfected with plasmids encoding four WT 

JNK1 isoforms (α1, α2, β1, and β2) and two mutants (ES and IR) inserted into the pTRIP-

SFFV vector or the pCMV6-AN-Myc-DDK vector (F). Endogenous JNK1 was detected 

with an anti-JNK1 antibody recognizing the N-terminus of JNK1. Myc-tagged JNK1 was 

detected with an anti-Myc antibody. EV, empty vector. The data shown are representative of 

three independent experiments (A, B, E, and F).
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Fig. 3. The MAPK8 variant impairs fibroblast responses to IL-17A/F.
(A) Production of GRO-α (top panel) and IL-6 (bottom panel) by SV40-fibroblasts from 

healthy controls (C1 and C2), patients (P2 and P3), and an IL-17RA-deficient (IL17RA−/−) 

patient (16) stimulated with IL-17A, IL-17F, or IL-17A/F (10, 100, or 1000 ng/mL) for 24 h. 

(B) Production of GRO-α (top panel) and IL-6 (bottom panel) by SV40-fibroblasts from 

healthy controls (C1 and C2), patients (P2 and P3), and a NEMO-deficient (NEMO−/−) 

patient (92) stimulated with TNF-α (20 ng/mL) or IL-1β (10 ng/mL) for 24 h. (C) 

Production of GRO-α (top panel) and IL-6 (bottom panel) by SV40-fibroblasts from healthy 
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controls (C1 and C2) and patients (P2 and P3) transfected with empty vector (EV) or 

plasmids encoding WT JNK1α1 (α1), JNK1α2 (α2), JNK1β1 (β1), JNK1β2 (β2), all four 

isoforms (α1/α2/β1/β2), JNK1ES (ES), or JNK1IR (IR), in the presence of IL-17A (100 ng/

mL), for 24 h. (D) Production of GRO-α (left panel) and IL-6 (right panel) by primary 

fibroblasts from healthy controls (C1, C2, and C3) transfected with control siRNA (50 nM) 

or MAPK8 siRNA (50 nM) for 24 h and then stimulated with IL-17A (100 ng/mL) for an 

additional 24 h. The values shown are the means ± SEM of three independent experiments 

(A-D). *, P < 0.05, **, P < 0.01, ***, P < 0.001, and ****, P < 0.0001; in unpaired t tests 

(A-D).
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Fig. 4. Compromised T-cell differentiation in the patients.
(A) Percentage of total, naïve (CCR7+CD45RA+), central memory (CM; CCR7+CD45RA−), 

effector memory (EM; CCR7−CD45RA−), or CD45RA+ effector memory (EMRA; 

CCR7−CD45RA+) CD4+ and CD8+ T cells from healthy controls (n=40) and patients (P2 

and P3). (B) Frequency of TH1 (CXCR5−CXCR3+CCR6−), TH2 

(CXCR5−CXCR3−CCR6−CCR4+), TH17 (CXCR5−CXCR3−CCR6+CCR4+), TH1* 

(CXCR5−CXCR3+CCR6+CCR4+), TFH (CXCR5+), and Treg (CD25+FOXP3+) subsets 

among CD4+ T cells from healthy controls (TH1, TH2, TH17, TH1*, and TFH, n=34; Treg, 
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n=17) and patients (P2 and P3). (C) Production of IL-17A and IL-22 by whole blood from 

healthy controls (n=33) and patients (P2 and P3) after stimulation with PMA plus ionomycin 

for 24 h. (D) Percentage of IL-17A+, IL-17F+, and IFN-γ+ cells among memory CD4+ T 

cells from healthy controls (n=36) and patients (P2 and P3) activated by T-cell activation and 

expansion (TAE) beads or PMA plus ionomycin (P/I) for 12 h. (E) Cytokine production by 

naïve CD4+ T cells from healthy controls (n=8) and patients (P2 and P3) cultured under 

TH0-, TH17- or TH1-polarizing conditions. (F and G) Frequency of IL-17A+ and IFN-γ+ 

cells among naïve (F) and memory (G) CD4+ T cells from healthy controls (n=10) and 

patients (P2 and P3) cultured under TH0-, TH17- or TH1-polarizing conditions. C, Healthy 

controls; P, P2 and P3. Horizontal bars represent median values (A-G). *, P < 0.05 and **, P 
< 0.01; in two-tailed Mann-Whitney tests (A-G).
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Fig. 5. Impaired response to TGF-β in the patients’ fibroblasts.
(A) Immunofluorescence of fibronectin (FN), type V collagen (COLLV), type III collagen 

(COLLIII), α2β1, α5β1, and αvβ3 integrins, α-smooth muscle actin (α-SMA), and 

cadherin-11 (CAD-11) in primary fibroblasts from a healthy control (C), P2, a patient with 

hEDS (hEDS) (56), and a patient with cEDS (cEDS) (93). Scale bar: 10 μm. (B) In vitro 
scratch assay with primary fibroblasts from a healthy control (C), P2, a patient with hEDS 

(hEDS) (56), and a patient with cEDS (cEDS) (93). Images were captured at 0 and 48 h after 

scratching. Scale bar: 100 μm. (C) Transwell assay with primary fibroblasts from a healthy 
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control (C), P2, a patient with hEDS (hEDS) (56), and a patient with cEDS (cEDS) (93). (D) 

mRNA induction in primary fibroblasts from healthy controls (C1 and C2) and patients (P2 

and P3) stimulated with TGF-β (10 ng/mL) for the indicated times. (E) The top 10 

upregulated or downregulated genes in terms of absolute fold change, in primary fibroblasts 

from healthy controls (C1 and C2) stimulated with TGF-β (10 ng/mL) for 2, 6, and 24 h, 

with a greater than 1.5-fold change relative to patients (P2 and P3) at each time point. (F and 

G) Expression of JNK1 protein (F) and production of fibronectin (top panel) and IL-11 

(bottom panel) (G) by primary fibroblasts from healthy controls (C1 and C2) transfected 

with control siRNA (50 nM) or MAPK8 siRNA (50 nM) for 48 h and then stimulated with 

TGF-β (10 ng/mL) for an additional 24 h. NS, non-stimulated conditions. The values shown 

are the means ± SEM of two (C) or three (D and G) independent experiments. *, P < 0.05, 

***, P < 0.001, and ****, P < 0.0001; in unpaired t tests (D and G).
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Fig. 6. JNK1-dependent IL-17 and TGF-β signaling.
The binding of IL-17A/F to the IL-17RA/IL-17RC receptor facilitates the recruitment of 

ACT1 to the receptor, which mediates the activation of JNK1, ERK, p38, and NF-κB (p65/

p50) signaling, leading to the production of pro-inflammatory cytokines and chemokines 

(e.g. CXCL1, IL6). Similarly, TGF-β binds to its receptor (TGFBR1/TGFBR2), leading to 

the activation of JNK1, ERK, p38, and SMAD (SMAD2/3/4) signaling. This pathway 

ultimately results in the production of extracellular matrix proteins and regulators (e.g. FN1, 

IL11). The mutation (yellow star) in JNK1 impairs the JNK1-dependent activation of 

downstream AP-1 (c-Jun/ATF-2), thereby reducing the JNK1-dependent cellular responses 

to IL-17 and TGF-β.
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