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Abstract

development, pathogenesis, and treatment of MS.

The occurrence of neurodegenerative disease is increasingly raised. From physiopathological aspect, the emergence
of auto-reactive antibodies against the nervous system antigens contributes to de-myelination in Multiple sclerosis
(MS). These features cause the nervous system dysfunction. The follow-up of molecular alterations could give us a
real-state vision about intracellular status during pathological circumstances. In this review, we focus on the
autophagic response during MS progression and further understand the relationship between autophagy and MS
and its modulatory effect on the MS evolution. The authors reviewed studies published on the autophagy status in
neurodegenerative disease and on the autophagy modulation in MS prognosis, diagnosis, and possible therapies.
The inevitable role of autophagy was shown in the early-stage progression of MS. Due to critical role of autophagy
in different stage of cell activity in nervous system, the distinct role of autophagy should not be neglected in the
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Introduction

Overview of autophagy

The balance between protein anabolism and catabolism is
a fundamental mechanism for the normal function of each
type cell of body [1]. Cells commonly exploit two main ap-
proaches to eliminate dysfunctional proteins, including an
ubiquitin-proteasome system and autophagy process [2].
From an evolutionary perspective, autophagy is conserved
and regulated cellular catabolic molecular interaction that
is required for cell bioactivity during differentiation,
growth, proliferation, and starvation [3]. Autophagy is
termed as inclusion of misfolded, impaired, and toxic
aggregate-prone mutant proteins, whole dysfunctional or-
ganelles, or intracellular pathogens into double-membrane
autophagic vesicles namely autophagosomes further fuse
with lysosomes to form autophagolysosome that is
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essential for enzymatic degradation of target components
[4]. Based on the route of molecules delivery to the lyso-
somes, three distinct kinds of autophagy mechanisms were
introduced: (a) In the common and frequent form of
autophagy response termed macroautophagy, the cargo
were enclosed with a dual lipid membrane autophago-
somes to fuse with lysosomes (b) In the form of micro-
autophagy, target components directly enters components
into the lysosomes via the engulfing of self-membrane (c)
and the last form named chaperon-mediated autophagy
(CMA) that uses specific motifs (KFERQ: Lys-Phe-Glu-
Arg-Gln) for the degradation of a proteins with collabor-
ation of HSC70 complex and then adhere to lysosomes via
lysosome-associated membrane protein 2A (LAMP2A).
Moreover, the autophagic signaling is also triggered by
mitochondrial-related axis (mitophagy) which is respon-
sible for the removal of injured and aged mitochondria.
Other aliases exist regarding autophagy such as axono-
phagy, lipophagy, and xenophagy based on which sub-
stance is sequestrated and digested [1]. In this review,
macroautophagy will be termed as autophagy.
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Effectors participated in autophagy machinery
Autophagy is activated in response to multiple external
and internal stimuli. Phosphorylation of the AMPK and
inhibition of mTOR is at the center of autophagic activ-
ity of each cell. Almost 30 autophagy-related genes
(Atgs) participate in the promotion of autophagy. Au-
tophagic flux is mainly regulated through effector
namely mTOR by Unc-51-like kinase complex (ULK) ac-
tivity. As above-mentioned, autophagy signaling is coin-
cided with the formation of vesicle in the three distinct
steps initiation, elongation and maturation followed with
following with fusion to lysosomes. In elementary phase
of vacuole formation, an initiation complex consist of
three complexes (1) ULK complex with ATG1, ATG13,
ATG17, and ATGY, (2) PI3 kinase complex with ATG6
(also known as beclin-1) and (3) ATG5-ATG12-ATG16
polymerization complex, will be applied. ATG1-ATG13
complex recalls the factor ATGY9, an essential effector
for the early lipidation of the phagophore sheath. PI3
kinase-beclinl complex formation is based on the inter-
action of relevant partners which can induce/inhibit au-
tophagy. This complex could also recruit other essential
ATG proteins required for the development of phago-
somes. UV resistance-associated gene (UVRAG) in asso-
ciation with activating molecule in Beclin 1 regulated
autophagy (AMBRA) and ATG14 enhances autophagy
via beclin-1 complex interaction. Contrary to this,
UVRAG-RUBICON complex leads to autophagy sup-
pression. Soon after autophagy induction, beclin-1 is re-
leased from Bcl2 (B-cell lymphoma 2) located at the
endoplasmic reticulum (ER), then forms complex with
UVRAG/AMBRA to trigger ATG5-ATG12-ATG16
polymeric complex formation by applying factors ATG7
and ATG10. Afterwards, vacuolar membrane is enriched
with Microtubule-associated proteins 1A/1B light chain
3B (MAP 1LC3), hereafter referred to as LC3, originated
from cleavage and lipidation of LC3-I (ATGS8) by ATG4.
The target molecule is conjugated with phos-
phatidylinositol (PE) and distributed on both sides of the
membrane by ATG9 activity [5]. During elongation and
formation of autophagosomes, the recruitment of tar-
geted molecules is well documented. The completion of
autophagosomes formation is fulfilled by the release of
LC3bIl from the external surface of the double-
membrane and further recycled. Therefore, the dynamics
of LC3bII molecule is prominent biomarker to monitor
autophagy status. The newly formed autophagosome to-
gether with the selected cargo for degradation fuses with
lysosomes to form autophagolysosome (also named
autolysosome or amphisome). Cytoskeletal microtubules
transfer push autophagosomes to lysosomal proximity
by the help of lysosomal membrane proteins LAMP1/2
and Rab7, member of Rab family GTPases and vesicular
proteins such as class III Vps (vacuolar morphogenesis
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proteins), SNARE (soluble NSF attachment protein
receptors) and ESCRT (Endosomal Sorting Complex
Required For Transport). The stages of autophagy path-
way have been summarized in Fig. 1.

Axonophagy

This kind of autophagy is commonly occurred in ner-
vous system. Axonophagy or neuronal autophagy is de-
fined as selective axonal degradation under pathological
conditions in central nervous system (CNS) and spinal
cord neurodegenerative disease including Parkinson,
Alzheimer, Huntington, amyotrophic lateral sclerosis
and multiple sclerosis (MS). The axonal degradation is
initiated during early period of degenerative disease. To
highlight the role of autophagy response, Yue et al. de-
clared that axonal dystrophic terminals in depredating
neurons contained a large number of autophagosomes
[6]. According to neuron morphology and structure,
neuronal autophagy is commonly seen and/or constitute
in axons more than in the cell soma or dendrites after
exposure to toxic insults. The formation of autophago-
somes in distal axons is promoted by the regulated
assembly of Atg proteins and then recruited to the endo-
plasmic reticulum in soma [7]. Although it has been elu-
cidated that the majority of autophagosomes in distal
axons are somewhat in a same maturation state com-
pared to the soma-derived autophagosomes and they are
at the different stages of maturation [8]. In support of
this claim, cell imaging of fluorescent-labeled autopha-
gosomes inside cerebellar granule neurons revealed a
retrograde transport from axonal ends to soma while
carrying different cargoes. The process of autophago-
somes is preceded via three distinct pathways through
microtubules, the dynein/dynactin complex and Kinesin-
1. As the intensity of insults increases, the induction of
autophagosomes formation exceeds the cell clearance
activity, thus are accumulated inside the neurons. The
occurrence of axonal swelling causes cytoskeletal dis-
turbance and the interruption of intracellular vesicular
transport. These changes contribute to the accumulation
of autophagosomes in axonal ends.

It is mentioned that the promotion of autophagy re-
sponse could reverse the progression pathological changes
in axons. However, the autophagy signaling pathway effec-
tors such as Beclin-1 are inactivated by induced myeloid
leukemia cell differentiation protein-1 (Mcl-1) under nor-
mal conditions. After the initiation of axonal degeneration,
termed Wallerian degeneration, the phosphorylation of
glycogen synthase kinase 3B (GSK3B) decreases Mcl-1-
mediated inhibition of Beclin-1.The activation of autoph-
agy seems critical to afford energy demand for the
completion of Wallerian degeneration. Notably, the inhib-
ition of Mcl-1 and GSK3B causes the abortion of autoph-
agy response and cellular degeneration against Wallerian
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Fig. 1 An overview of autophagy machinery. Autophagy, based on route of delivery, three different kinds of autophagy mechanisms
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degeneration. Other autophagy factors such as p62/
SQSTML is elevated after the impairment of autophagic
degradation [9]. Therefore, monitoring the level of au-
tophagic signaling pathways is useful to forecast progres-
sion and/or inhibition of autophagic response. In addition
to engagement of autophagic element to precede the ves-
icular transport, calcium influx also participate during the
occurrence of axonopathy [10]. Following the completion
of autophagic response, autophagosomes are released to
the extracellular microenvironment. Knoferle et al
claimed that the formation of autophagosomes followed
by axonophagy process which is dependent on calcium
ion content and translocation. In some cases, the calcium
level to promote these changes is adsorbed from out of
the cells [11]. Mechanical damage to the optic nerve in-
duced entry of extracellular calcium into axolemma via
calcium channels, resulting in rapid escalation of Ca**
levels. Ca>* incrassation lead to secondary generation of
autophagosomes and axonal degeneration.

Relationship between autophagy state and
neurodegenerative abnormalities

As aforementioned, the close relation is linked between
autophagy and various neurodegenerative diseases [12—
15]. The suppression of autophagy via different effectors

such as mTOR promotion increases pro-inflammatory
response of microglia that contributes to progression of
nervous system degeneration. In contrast, the use of
rapamycin for the inhibition of mTOR factor and au-
tophagy activation has beneficial therapeutic effects in
patients with MS [16]. Therefore, a possible explanation
for these results is that mTOR blockers could reduce
neuro-inflammation by the suppression of microglial ac-
tivity and decrease of pro-inflammatory cytokines [17].
Interestingly, the malfunction of autophagy signaling re-
sults in a large number of neurodegenerative abnormal-
ities. The aggregation of specific proteins ensues
conformational disorder and is one of the hallmarks dur-
ing the promotion of neurodegenerative changes, caus-
ing dementia and movement disorder. Then, degradative
autophagy process removal could lead to neuronal cell
death and mortality [12]. Activated autophagy potentially
omits neurodegenerative associated proteins such as
mutant amyloid-f peptides, hyper phosphorylated tau
proteins, amyloid precursor protein (APP), Lewy bodies
components and a-synuclein, huntingtin, type 1 super-
oxide dismutase, Alsin Rho Guanine Nucleotide
Exchange Factor 2, and optineurin [18-21]. The severity
of the disease closely correlates with the content of im-
paired proteins [22]. In this regard, genetically
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dysfunctional autophagic flux in the CNS caused in such
proteinopathies, suggests a direct link between the
autophagy activity and neurodegenerative conditions
[23-25]. Different neurodegenerative disease manipulate
different steps of autophagic flux illustrated in Fig. 2.
Here, we discuss the evidence suggesting that autoph-
agy malfunction may contribute to the development and
progression of MS, the underlying mechanisms that link
autophagy with various aspects of MS pathology.

Critical role of autophagy in neural function and dynamic
Autophagy is activated in the physiologic activity of neu-
rons and even under the pathophysiologic conditions
such as neuropathies and genetic disorders. Following
the activation of autophagy, malfunction molecules and
organelles are excluded. In contrast, uncontrolled au-
tophagy activity could lead to neurodegeneration. The
hypothesis that autophagy may participate in cell death
in neurodegenerative status, has recently appeared and is
one of hot topic investigations.

Studies have been shown that numbers of autophagic/
autolysosomal vacuoles have increase after axonal
damage, cytotoxin exposure, in genetic models of degen-
eration, and neurodegenerative disease. In neurodegen-
erative disorders, impairment at distinct stages of
autophagy results in the accumulation of damaged or-
ganelles or pathogenic proteins. Meanwhile, autophagy
is widely considered as both a vital homeostatic mechan-
ism in healthy neuronal cells and a cyto-protective com-
pensatory response during chronic neurodegenerative
abnormalities. In this regard, Koike et al. documented
evidence of complete neuronal cell death needing au-
tophagy in in in vivo condition. Autophagic cell death is
characterized by apoptosis/necrosis-independent death
mechanisms, an increased autophagic flux in the dying
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neurons, and the prevention of cell death by autophagy
suppression [26]. In some cases, a neuronal cell death
involving autophagy reported in lysosomal storage disor-
ders. In neurodegenerative disorders, deficiencies at dis-
tinct steps of autophagy can trigger neuronal cell death
in several ways. In pathological conditions, abortion of
autophagic response led to an increased mitochondrial
injury, promoting apoptosis. In conditions with reduced
autophagic degradation rate of proapoptotic factors,
such as Caspases, cells enter to apoptotic condition [27].

Autophagy and MS

In many cases, MS is considered as an autoimmune dis-
ease characterized by neuro-inflammation and demyelin-
ation, afflicting near to 2.5 million people worldwide.
The clinical forms of MS include relapsing-remitting MS
(RRMS), secondary progressive MS (SPMS), primary
progressive MS (PPMS), and progressive relapsing MS
(PRMS). The occurrence of demyelination in MS is me-
diated by the activity of immune T cells. It seems that
the prolonged survival of auto-reactive T cells in MS is
as a main cause of inflammatory cascades, leading to
myelin loss and clinical relapse. Recently, it has been
shown that T cell survival is modulated by the activity of
Atgs. MS is a chronic multi-dimensional demyelinating
neurodegenerative disease of the CNS that assumed
inflammation-related and autoimmune origin. In light of
clinical signs, MS patients are recognized by a spatial
and temporal insufficiency originated from multifocal in-
juries in the periventricular white matter and by an im-
munoglobulin synthesis within the CNS. Proliferation
and survival of T cell have been associated with the in-
tensity of MS [28]. It is reported that expression of T cell
CD46 surface marker is modulated in MS. The critical
role of CD46 has been detected to participate in many
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biological responses including both inflammation and
autophagy. Hence, it can be concluded that one of the
autophagy inducing pathways in MS patients is associ-
ated with the marker CD46 [29].

Autophagy and MS in the peripheral immune system

Autophagy participates in both innate immunity and
adaptive immune system. The regulatory role of autoph-
agy in the long-term survival of adaptive immune cells
has recently surfaced as a defect in some autoimmune
disease such as MS and rheumatoid arthritis [30, 31]. It
was revealed that T helperl cells (Thl) and Th17 cells
have a central role at the early and later phase of MS
pathogenesis. Autophagy is necessary for the reduction
of auto-reactive T-cells. This pathway contributes to sev-
eral functions of the adaptive immune system, including
antigen presentation and T-cells homeostasis. As well-
known, the cells involved in the launch and progression
of inflammation processes are CD4 positive T cells, CD8
positive T cells, y/8 T cells, B cells, and cells of the in-
nate immune system such as microglia and macrophages
[32]. Autophagy develops antigen presentation to CD4
positive T-cells via MHC II molecules [33]. In patients
that suffer from MS, ATG5 protein levels are upregu-
lated in infiltrating T cells to inflammatory sites. Add-
itionally, it has been shown that knockdown of thymic
specific Atg5 in mice experimental model lead to infil-
tration of auto-reactive CD4" T-cells into multiple or-
gans [34]. Moreover, blockage of autophagy in dendritic
cells by Chloroquine diminishes the severity of experi-
mental autoimmune encephalomyelitis [35]. Concur-
rently, Cooney et al. demonstrated that the ablation of
Atgl6Ll in dendritic cells during Crohn’s disease re-
sulted in defective antigen presentation [36]. Further-
more, it has been stated that single nucleotide
polymorphisms in key genes of autophagy such as Atg7
and Atgl6Ll, can be potentially responsible for the
subsequent impact on adaptive immune cells prolonged
survival [37]. While long-term survival of auto-reactive
adaptive immune cells is a straightforward disease-
promoting abnormality. Maria Liguori and coworkers
found these two genes significantly dysregulated in MS
compared to the control group [38]. Autophagy modu-
lates the biological process such as differentiation, mat-
uration, proliferation, cell death and homeostasis of T
cells during adaptive immunity [39, 40]. Additionally,
prolonged T-cell survival and increased T-cell prolifera-
tion capacity have been linked to disease relapse and
progression in MS. In experimental autoimmune en-
cephalitis (animal model mimicking MS), autophagy ca-
tabolizes pro-caspase enzymes in T cells and antagonizes
apoptosis that implicate autophagy in the survival rate of
auto-reactive T cells. Moreover, studies have demon-
strated that ATG5, as a deputy of autophagy, participates
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in T cell survival regulating the differentiation, matur-
ation and proliferation of CD4/8 positive T- and B-cells
[40, 41]. In validation of this issue, Delgoffe et al. dem-
onstrated that mTOR-ablation in T cells inhibit differen-
tiation into Thl, Th2, and Th17 cells [42]. It was shown
that the level of Atg5 is impressively increased in T-cell
from MS mouse models compared to control subjects.
The elevated autophagy in T-cells may enhance their
survival and contribute to the MS pathogenesis [28]. Yin
and colleagues revealed that Atgl6L2 may have an im-
portant role in the autophagic response of T lympho-
cytes and serve as a promising biomarker to predict
clinical relapse of MS. They showed a reduced Atgl6L2
mRNA expression in T cells of MS subjects, reflecting
the irregular activation of T cells. The reduction of
Atgl6L2 may result in malfunction of the Atgl2-Atg5-
Atglé complex and preventing its localization to the
pre-autophagosomal structure (PAS), thus interrupting
autophagy in T cells. They also hypothesized a probable
relationship between Atglé and active MS disease [43].
Genetic susceptibility regarding autophagy has been
proposed for MS. This abnormality results from
inflammation-induced demyelination of CNS. Therefore,
T cells are the main pathogenic effectors in this condi-
tion [44]. Indirect causes could impair autophagic activ-
ity and favor chronic inflammation in these contexts.
Alirezaei et al. has disclosed in a human study, that Atg5
overexpression in serum and peripheral T cells is associ-
ated with the vigorous RRMS symptoms, proposing that
Atg5 may be used as a possible therapeutic target for
MS treatment [28]. A greater understanding of Atg5
function in T cells will help us in determining the
underdoing mechanisms of MS. For clarification of the
function of Atg5, investigations have demonstrated that
neuron specific knockout of ATG genes results in accu-
mulation of dysfunction proteins in autophagy deficient
neurons, in turn, contributing to neurodegeneration sta-
tus [45, 46] .This data suggests that autophagy plays a
key role in the alteration of host innate immune re-
sponses and pro-inflammatory response in CNS.

Protective role of autophagy in MS

Malfunctioned mitochondria generate reactive oxygen
species (ROS) that participate in demyelination process
and axonal damage [47]. Mitophagy clears depolarized
mitochondria and hamper the ROS excessive production
which is protective in MS [48]. It is assumed that au-
tophagy may be a therapeutic target for neurodegenera-
tive diseases treatment because of its protective role
[49]. For example, the up-regulation of autophagy by
mTOR inhibitors such as rapamycin protects the cells
against neuro-degeneration in mice model [50]. Feng
et al. disclosed that defective autophagy is linked to
neuronal injury in a mouse model of MS [51]. The
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protective effect is not only a function of autophagy
releasing fuels for cells, but also appears to be associated
to decrease in the amount of intracellular mitochondria
(mitophagy rate). In turn, this leads to less liberate of
toxic molecules such as cytochrome C and ROS from
mitochondria in response to proapoptotic signals. Deple-
tion of critical factors for autophagy induction like Atg5,
Atg7 or FIP200 induces neuronal cell death and
cytoplasmic accumulation of organelles or ubiquitinated
proteins [52].

Pathological role of autophagy in MS

Autophagy of nervous system is related to severe neuro-
degenerative conditions. As above mentioned deficient
autophagy in neuronal cells results in protein accumula-
tion and consequently the occurrence of neurodegenera-
tive diseases. Neuro-inflammation is one of the most
important actors in neurological diseases, particularly
MS. Autophagy and neuro-inflammation are cross linked
with each other that influences the progression of vari-
ous abnormality of CNS [45]. Neuro-inflammation is
inversely modulated by autophagic flux to decrease
detrimental effects to the CNS. Microglia cells, main
effectors of neuro-inflammation process, produce pro-
inflammatory cytokines and neurotoxic elements such as
ROS and NO. Under these condition, astrocytes are acti-
vated and intensify the inflammatory response which are
cytotoxic on primary neurons [53]. Nevertheless,
autophagy has a crucial role in maintaining neuro-
inflammation at a safe level. Recently, it has been shown
that the autophagy level increases in PBMC from MS
during acute phase and decreases following treatment.
However, the autophagy response significantly increase
in RRMS and enhanced autophagy rate may play its role
in the pathogenesis of MS. Patergnani et al. documented
that Atg5, an autophagic marker, and Parkin, a mitopha-
gic marker, is increased drastically in cerebrospinal fluid
(CSF) of MS patients compared with healthy patients,
proposing that elevated autophagy/mitophagy seems to
be specifically correlated to the disease [53]. The func-
tion of autophagic cascades in MS pathophysiology is
not well elucidated, and remains hesitant whether they
are defensive or destructive processes. Moreover, they
have been demonstrated that level of TNF-a, an inflam-
mation marker, escalated in MS individuals, suggesting
that autophagic activity and inflammation may be correl-
ate each other. It is concluded that, with continue of
investigations, serum levels of these autophagic/mito-
phagic molecules could be used as a diagnostic or pro-
gression biomarkers of MS [54]. Meanwhile, in other
study, Igci et al. probed autophagy-related genetic profile
of MS individuals and observed that many autophagy-
related genes significantly over expressed in MS patients
compared to healthy controls, including ULK1, ULK2,
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FOXOI1, Bcl-2, Htt, UVRAG, Atg2B, AtgdC, Atg5,
TMEM?74, DAPK1, EIF2AK3, Atgll, p62, PIK3R1. How-
ever, Atgl6L, Rab24, Atg9A, Fas, HGS (also known as
Hrs), acid a-glucosidase (GAA), PIK3C3, AMBRAI,
LAMP2, Beclinl, PIK3R4, BCL3L1, DRAMI1, PIK3CA
[55]. To interpret their data, the finding of Zhou and
colleagues improved our understanding on why autoph-
agy is triggered at the same time while it seems pre-
vented transcriptionally [56]. These findings propose
that some of the autophagy-related genes might have
different cellular functions independent of autophagy.
Nevertheless, additional investigations are required.
Protein aggregates have been detected in the brain and
cerebral spinal fluid of MS patients, probably due to the
reduced autophagy level [57]. For a first time, Albert
et al. provided ultrastructural data proposing autophagy
as an underlying mechanism for synaptic pathology in
chronic MS [58].

Roles of autophagy in MS-associated demyelination and
re-myelination

Autophagy is strictly related to de- and re-myelination.
Rangaraju et al. demonstrated that autophagy plays
powerful functions in improving Schwann cell re-
myelination in mice model of demyelinating peripheral
neuropathies [59]. During demyelination, microglia, as a
first line defense of CNS, phagocytized cell debris that
requires autophagy-related genes [60]. Loss of autopha-
gic potency in microglia hampers the clearance of un-
wanted debris, resulting to impaired re-myelination and
intensifies of neuro-inflammation. It has been estab-
lished that autophagy inducer such as rapamycin en-
hanced myelination process and caused in improved
survival rate of neurons in tuberous sclerosis [61]. Be-
sides, in Long—Evans shaker rat experimental model, an
exuberated autophagy flux elevated the axons myelin-
ation and myelin cover thickness during dysmyelination,
indicating that the autophagy is a direct target for ther-
apy of demyelination [62]. Meanwhile, high mobility
group box chromosomal protein 1 (HMGB1), an au-
tophagy promoter, is increased in MS patients [63]. A
number of studies documented that the mTOR signaling
pathway establishes the regrowth of axons in the CNS,
which is important for remyelination process in MS
[64]. In fact, the mechanism of autophagy in different
stages of MS pathogenesis needs supplementary investi-
gation to determine the underlying relationship between
autophagy and MS Additional file 1.

Conclusion

As above-mentioned, the modulation of autophagy could
act as two-edged sword during CNS pathological condi-
tions. Although, autophagic stimulation accelerates the
release of abnormal intracellular accumulation and
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decrease intensity of pathologies but uncontrolled au-
tophagic response could also force the cells to apoptotic
and necrotic changes. However, the intensity and dur-
ation of autophagy modulation must be carefully moni-
tored to precisely control cell function and bioactivity
[65]. Identification of MS-specific biomarkers and rela-
tionship with autophagy response must be defined. The
close association of autophagy signaling pathway with ef-
fectors playing key role in the promotion of degenerative
changes needs to be clarified.
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